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ABSTRACT
We revisit the excursion set approach to calculate void abundances in chameleon-type modified
gravity theories, which was previously studied by Clampitt, Cai & Li. We focus on properly
accounting for the void-in-cloud effect, i.e. the growth of those voids sitting in overdense
regions may be restricted by the evolution of their surroundings. This effect may change the
distribution function of voids hence affect predictions on the differences between modified
gravity (MG) and general relativity (GR). We show that the thin-shell approximation usually
used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore,
it is necessary to numerically solve the fifth force in both overdense and underdense regions.
We then generalize the Eulerian-void-assignment method of Paranjape, Lam & Sheth to
our modified gravity model. We implement this method in our Monte Carlo simulations and
compare its results with the original Lagrangian methods. We find that the abundances of small
voids are significantly reduced in both MG and GR due to the restriction of environments.
However, the change in void abundances for the range of void radii of interest for both models
is similar. Therefore, the difference between models remains similar to the results from the
Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt
et al., we find that the void abundance is much more sensitive to MG than halo abundances.
Our method can then be a faster alternative to N-body simulations for studying the qualitative
behaviour of a broad class of theories. We also discuss the limitations and other practical issues
associated with its applications.

Key words: methods: numerical – cosmology: theory – dark energy – large-scale structure of
Universe.

1 IN T RO D U C T I O N

The discovery of the accelerated expansion of the Universe sparked
a surge of research on the possibility of modified gravity models (see
for example, Jain & Khoury 2010; Clifton et al. 2012, for reviews).
The main goal of such modifications is to alter the large-scale be-
haviour to explain the acceleration – however, any modifications in
the gravity model must at the same time satisfy the tight constraints
from the Solar system tests. One way to fulfil this requirement is
to include some kind of screening mechanism to suppress the mod-
ification in the local environment (i.e. regimes with high matter
density or deep Newtonian potential). In this work, we focus on one
particular subclass of modified gravity theories – one that modifies
gravity by introducing a dynamical scalar field that mediates a fifth
force.

The chameleon model of Khoury & Weltman (2004) is a very
representative example of this class of modified gravity theories.

� E-mail: clampitt@sas.upenn.edu

In this model, the acceleration of the Universe is associated with a
scalar field, which has a runaway-type self-interaction potential and
an interaction (coupling) with matter. Such a specific setup ensures
that during the cosmic evolution the scalar field is trapped to the
vicinity of 0, so that its potential energy roughly stays as a constant
– of the order of the energy density of the cosmological constant
in the � cold dark matter (�CDM) paradigm – which means that
the expansion history can be very close to that of �CDM. The
coupling to matter produces a fifth force which can be as strong
as standard gravity, so that the model is naively ruled out by Solar
system tests of gravity. However, because the scalar field is trapped
close to 0 (especially in regions with high matter density), the fifth
force can be severely suppressed, thereby passing the stringent local
constraints. This is the chameleon mechanism (Khoury & Weltman
2004), in which the behaviour of the fifth force depends on the
environment: the suppression of the fifth force in the Solar system
is achieved by reducing its force range to submillimetres, while on
the cosmological background (at late times) the force range can be
of the order of O(1-10) Mpc, on which scales strong deviations
from �CDM can be found. Notice that on even larger scales, the
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effect of the fifth force diminishes, implying that the effect on very
large-scale structures is minimal.

Because the background evolution and the linear perturbations
on large scales can be indistinguishable from the standard �CDM
cosmology (Hu & Sawicki 2007; Li & Barrow 2007; Li & Zhao
2009), and Solar system tests are satisfied by construction, non-
linear structure formation (on scales of 100–102 Mpc) is the only
regime where effects of such models would possibly be detected. A
number of studies (e.g. Oyaizu 2008; Oyaizu, Lima & Hu 2008; Li
& Zhao 2009, 2010; Schmidt et al. 2009; Li & Barrow 2011; Zhao,
Li & Koyama 2011; Li et al. 2012a) employed N-body numerical
simulations to study non-linear structure formation – however high-
resolution simulations with cosmological volume are still challeng-
ing due to the highly non-linear equation governing the scalar field.
As a result, semi-analytic methods are often used to make qualita-
tive predictions and provide insights into the underlying physics for
such models.

This work will be along this direction and aim at investigating
the effect of the chameleon-type modified gravity (MG) on the
large-scale structure in the non-linear regime. We will extend the
standard excursion set approach (Bond et al. 1991; Mo & White
1996; Sheth & Tormen 1999) to predict the abundance of structures.
The application of this approach to halo abundance and bias has been
visited by Li & Efstathiou (2012), Li & Lam (2012) and Lam & Li
(2012), and therefore in this work we will focus on cosmic voids.

Cosmic voids found in redshift surveys have many applications.
Observationally, Hoyle, Vogeley & Pan (2012) studied the pho-
tometric properties of void galaxies found by Hoyle & Vogeley
(2002) and Pan et al. (2012). There is also ongoing work towards
using voids as cosmological probes. The Alcock–Paczynski test
has been proposed (Lavaux & Wandelt 2012) and progress has even
been made towards applying it to data (Sutter et al. 2012, 2014).
Stacking of voids for the cosmic microwave background has been
used to detect the integrated Sachs–Wolfe effect as an alternative to
the cross-correlation method (Granett, Neyrinck & Szapudi 2008;
Ilić, Langer & Douspis 2013; Planck Collaboration XIX 2014; Cai
et al. 2014a,b; Hotchkiss et al. 2015); Void–void and void–galaxy
clustering is another promising cosmological probe (Hamaus et al.
2014). Recent measurements of the weak lensing signal (Melchior
et al. 2014) and density profile of voids (Clampitt & Jain 2014)
gives a direct handle on their dark matter content. Void ellipticity
has been shown to be sensitive to the dark energy equation of state
(Bos et al. 2012). Voids properties have been studied in coupled
dark energy model using N-body simulations (Li 2011; Sutter et al.
2015).

The excursion set predictions of void abundances have been done
previously by Clampitt, Cai & Li (2013), where they showed that
voids, due to the underdensity and therefore weaker suppression of
the fifth force inside them, would yield a stronger signal of MG
compared to haloes. This work focuses on applying a modern void-
assignment algorithm, Eulerian void assignment, in the context of
the same modified gravity model. Eulerian void assignment was
recently proposed by Paranjape, Lam & Sheth (2012b) as an im-
provement to the traditional Lagrangian-based assignment by taking
into account the effect of the immediate surroundings on the growth
of voids.

This paper is organized as follows. In Section 2, we briefly review
the theoretical model to be considered and summarize its main in-
gredients. In Section 3, we find and validate the numerical solutions
to the fifth force, which will be used in Section 4 to calculate nu-
merically the evolution of spherical over and underdensities in the
modified gravity model. Section 5 presents a detailed description

of the different void-assignment methods adopted in the literature
and in this paper; in particular, we will describe how the Eulerian
method of Paranjape et al. (2012b) can be implemented in the con-
text of MG. In Section 6, we show the comparison of predictions
on the void abundance from the different methods and demonstrate
their consistency. Finally, Section 7 summarizes the main results
and discusses their implications.

2 TH E C H A M E L E O N TH E O RY

This section presents the theoretical framework for investigating
the cosmological effects of a coupled scalar field. We will give the
relevant general field equations in Section 2.1, and then specify the
models analysed in this paper in Section 2.2.

2.1 Cosmology with a coupled scalar field

The equations governing the scalar field can be found in Li & Zhao
(2009, 2010) and Li & Barrow (2011), and are presented here only
to make this paper self-contained. Because of this, this section is
brief and contains only the most essential ingredients of coupled
scalar field cosmology. Interested readers are referred to the above
references for more details.

We start from a Lagrangian density

L = 1

2

[
M2

PlR − ∇aφ∇aφ
] + V (φ) − C(φ)(LDM + LS), (1)

in which R is the Ricci scalar, the reduced Planck mass is MPl =
1/

√
8πG with G being Newton’s constant, and LDM and LS are,

respectively, the Lagrangian densities for dark matter and standard
model fields. φ is the scalar field and V(φ) is the potential describing
its self-interaction. The coupling function C(φ), on the other hand,
describes its interaction with matter. The coupled scalar field model
is then fully specified by the functional forms for V(φ) and C(φ).

Varying the total action with respect to the metric gab, we obtain
the following expression for the total energy momentum tensor in
this model:

Tab = ∇aφ∇bφ − gab

[
1

2
∇c∇cφ − V (φ)

]
+ C(φ)(T DM

ab + T S
ab),

where T DM
ab and T S

ab are the energy momentum tensors for (un-
coupled) dark matter and standard model fields. The existence of
the scalar field and its coupling change the form of the energy
momentum tensor, leading to potential changes in the background
cosmology and structure formation.

The coupling to the scalar field generates an extra interaction
(the fifth force) between matter particles, which can be regarded as
a result of the exchange of scalar quanta. This is best illustrated by
the geodesic equation for dark matter particles

d2r
dt2

= −∇� − Cφ(φ)

C(φ)
∇φ, (2)

where r is the particle position, t is the physical time, � is the
Newtonian potential and ∇ is the spatial derivative; Cφ ≡ dC/dφ.
The second term on the right-hand side is the fifth force, whose
potential (the conservative force potential, not to be confused with
the self-interacting potential V(φ)) can be described by ln C(φ).

Equation (2) suggests that to follow the motion of particles we
need to know the time evolution and spatial configuration of φ. This
is usually achieved by explicitly solving the scalar field equation of
motion

∇a∇aφ + dV(φ)

dφ
+ ρ

dC(φ)

dφ
= 0, (3)
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where ρ = ρDM + ρb is the sum of dark matter and baryonic matter
densities. Equivalently, the equation of motion can be written as

∇a∇aφ + dVeff (φ)

dφ
= 0, (4)

where we have defined an effective potential for the scalar field

Veff (φ) = V (φ) + ρC(φ). (5)

The background evolution of φ can be solved given the present-day
value of ρ̄ (note that ρ̄ ∝ a−3; Li & Zhao 2009). We can then split
φ into two parts, φ = φ̄ + δφ, where φ̄ is the background value of
φ and δφ is its perturbation around φ̄, and subtract the background
part of the scalar field equation of motion from the full equation to
find the equation of motion for δφ. In the quasi-static limit, where
we can neglect all time derivatives of δφ compared with its spatial
derivatives (this is a good approximation on scales well within the
horizon), this can be obtained as

∇2δφ = dC(φ)

dφ
ρ − dC(φ̄)

dφ̄
ρ̄ + dV(φ)

dφ
− dV(φ̄)

dφ̄
. (6)

The calculation of the scalar field φ using the above equation
then completes the source term of the Poisson equation,

∇2� = 1

2M2
Pl

[ρtot + 3ptot] − 1

2M2
Pl

[ρ̄tot + 3p̄tot]

= 1

2M2
Pl

[
ρC(φ) − ρ̄C(φ̄) − 2V (φ) + 2V (φ̄)

]
, (7)

where we have neglected the kinetic energy of the scalar field since
the running of φ is always negligible for the model studied here. In
equation (7), we have again exploited the quasi-static approximation
by dropping time derivatives of the Newtonian potential.

2.2 Specification of model

As mentioned above, to completely specify the coupled scalar field
model, we need to give the functional forms of V(φ) and C(φ). Here,
for illustration purpose, we will use the chameleon-type models
investigated by Li & Zhao (2009, 2010), with

C(φ) = exp(γφ/MPl), (8)

and

V (φ) = ρ�[
1 − exp (−φ/MPl)

]α . (9)

In the above ρ� is the energy density of the cosmological constant
in the standard �CDM scenario, φ plays the role of dark energy
in this model, and γ , α are dimensionless model parameters which
control the strength of the coupling C(φ) and the slope of the scalar
field self-interaction potential V(φ), respectively.

We choose α � 1 and γ > 0 as in Li & Zhao (2009, 2010),
so that the global minimum of Veff(φ) is always very close to φ = 0
throughout the cosmic evolution, and that m2

φ ≡ d2Veff (φ)/dφ2

at this minimum is very large in high-density regimes. For example,
the minimum of Veff(φ) on a background with matter density ρ is
approximately (Li & Zhao 2009)

φ = αρ�

γρ
, (10)

such that φ � 1, especially in high-density regions where ρ � ρ�.
Such choices of model parameters ensure that:

(i) φ is trapped in the vicinity of φ = 0 throughout the cosmic
history and thus V(φ) ≈ ρ� behaves as a cosmological constant.

For this reason, we take the background expansion of this model to
be exactly the same as that of �CDM with the same cosmological
parameters. Note that this is not guaranteed if α � 1 does not hold.

(ii) The fifth force is strongly suppressed in high-density regions
where φ acquires a large mass, m2

φ � H 2 (H is the Hubble ex-
pansion rate), and therefore the fifth force cannot propagate a long
distance without decaying. This is because the fifth force, mediated
by a scalar field, takes the Yukawa form and decays exponentially
over the Compton wavelength, λ ≡ m−1

φ , of this scalar field.

The fact that the fifth force is strongly suppressed when matter
density is high implies that its influence on structure formation
occurs mainly at late times. The environment-dependent behaviour
of the fifth force was first considered in Khoury & Weltman (2004),
and has since then been known as ‘chameleon screening’. It is one of
the most well-studied modified gravity theories: because of the finite
range of the fifth force, and because of the severe suppression of it in
high-density regions, it is believed that the strongest cosmological
constraints on such models come from the study of cosmic voids,
which are low-density regions (δ ∼ −0.8) in the Universe with sizes
ranging from a few to O(100) Mpc.

3 FO R C E S O L U T I O N S

Although in this work we are only concerned with void abundances,
the Eulerian-void-assignment method of Paranjape et al. (2012b)
requires solutions for collapsing overdense walls around the voids.
Thus, the equations below will apply generally to calculate fifth
forces for under and overdensities. The distinction between the two
regimes is made entirely in the choice of parameters, specifically
the ratio of the object’s density to that of its environment. After
presenting the general equations, we will focus on the overdense
solutions since they are unique to this work (underdense solutions
were already shown in detail in Clampitt et al. 2013). Finally, we
will describe numerical checks of our algorithm.

3.1 Scalar field solution

We are interested in the simplest model of a dark matter halo (or
void), with top-hat (or bucket) density profiles described by

ρ0(χ ) =
{

ρin for χ ≤ r

ρout for χ > r
, (11)

in which r is the object’s radius and χ is a variable characterizing
the distance from the centre of the object. Because φ is confined to
the vicinity of φ = 0, we have C(φ) ≈ 1 and the first term on the
right-hand side of equation (7) can be integrated once to find the
force per unit test mass

FN(χ ) = −GM(< χ )

χ2
. (12)

The second term on the right-hand side of equation (2) is the fifth
force, which for our choice of C(φ) in equation (8) can be expressed
as

Fφ(χ ) = −γ
d

dχ
(φ/MPl) . (13)

We define the ratio of fifth to Newtonian forces at the surface of the
object (χ = r) as

η ≡ Fφ

FN
= 6γMPl

rρin

dφ

dχ

∣∣∣∣
χ=r

, (14)

which is constrained to be η ≤ 2γ 2 for overdensities.
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In the model considered in this work, the force ratio η can be
equivalently determined by three length-scales: the radius of the
object r, and the Compton wavelengths inside and outside the object.
The latter are given by the following relations:

ρi =
(

MPl
√

αρ�

γ

)
1

λi

, (15)

where i = [in, out] and λ is the Compton wavelength of the scalar
field (note that the Compton wavelength is small on a high matter-
density background and vice versa). In Clampitt et al. (2013), we
showed that the degrees of freedom of a spherical top-hat under-
density can be reduced from the three length-scales, r, λin and λout,
to two ratios of these lengths: r/λout and λout/λin. This logic pro-
ceeds without change for overdensities, and so we only quote the
key equations here.

The effective potential for the specific model studied here can be
written as

Veff (φ) = �[
1 − exp (−φ/MPl)

]α + ρi exp(γφ/MPl) , (16)

with which the equation of motion equation (4) can be simplified to
read

d2ψ

dτ 2
+ 2

τ

dψ

dτ
+ 1

ψ
=

{
λout/λin for τ ≤ r/λout

1 for τ > r/λout
(17)

with the following two boundary conditions:

dψ

dτ

∣∣∣∣
τ=0

= 0, ψ(τ → ∞) = 1 . (18)

Note that in the above the solution has been rescaled and written in
terms of ψ ≡ φ/φout and τ ≡ χ/λout. Rewriting equation (14) in
terms of the new variables and using ρ� = ��ρc (where ρc is the
critical density at the present day), we find

η(r) = 6γ

√
α��

�m

MPl
√

ρ̄m

rρin

dψ

dτ

∣∣∣∣
τ=r/λout

, (19)

where ρ̄m is the background matter density today.
The recasting of the scalar field equation of motion in the form of

equation (17) has the advantage that the fifth-force-to-gravity ratio
η(r) can then be obtained by interpolating a 2D pre-computed table,
for spherical top-hat systems of arbitrary size, density, and in any
kind of environment. This can in turn greatly simplify the numerical
computations in this work, which would otherwise be prohibitively
expensive.

3.2 Comparison to the thin-shell approximation

The radial profile of a chameleon-type scalar field has been studied
in detail for spherical overdensities (see e.g. Khoury & Weltman
2004; Davis et al. 2012; Lombriser et al. 2012, for a few examples).
Khoury & Weltman (2004) derived a simple analytical formula for
the fifth force which has been shown to agree well with numerical
simulations (Li, Zhao & Koyama 2012b). Here we show that the
thin-shell prescription followed by Li & Efstathiou (2012, rewritten
using our reduced parameters) given by

F
(thin−shell)
φ /FN = λinλout − λ2

in

r2
(20)

gives qualitatively reasonable results.
In Fig. 1, we compare the two solutions, where the solid lines in

the top panel show the numerical solutions for the ratio of forces η as
a function of the two dimensionless parameters r/λout and λout/λin,

Figure 1. Top panel: we compare the value of the force ratio η = Fφ/FN in
both the exact solution (solid lines) and the thin-shell approximation (dotted
lines). For r/λout > 10 the fifth force is less than 2 per cent of the strength of
gravity. Thus we do not need the exact solution and can approximate the fifth
force as zero there. Bottom panel: the ratio of the curves in the top panel.
The approximate solution is accurate for small r/λout, large λout/λin values,
but otherwise does not reproduce well the exact result. At small λout/λin

however, the fifth force is quite weak anyway, so we can set it to zero safely.

while the dotted lines show the thin-shell approximation. λout > λin

means that the density inside the top-hat region is greater than
outside, which is the case for haloes. Both solutions are qualitatively
the same:

(i) When the exterior and interior Compton wavelengths are very
close in magnitude, the fifth force is negligible compared to gravity,
because the scalar field takes very similar values inside and outside
the overdensity, making its gradient (i.e. the fifth force) small.

(ii) As λout increases, the fifth force grows in importance until
λout ∼ a few × λin, after which the ratio η = Fφ/FN decreases. This
can be understood as follows: suppose λin remains unchanged, then
an increase in λout with fixed r/λout means that the radius of the
overdensity, and so the Newtonian potential �N ∝ r2 ∝ λ2

out, is in-
creased; meanwhile, according to the thin-shell approximation, the
fifth-force-to-gravity ratio is proportional to |φout − φin|/�N, with
φout ≈ αρ�/γ ρout ∝ λout for our model: when φout is close to φin, i.e.
when λout/λin ∼ 1, |φout − φin| increases faster than �N, making η

increase; but when with φout � φin, η becomes ∝ |φout/�N| ∝ λ−1
out,

which decreases with λout. Physically, there are two parts of the
screening, self and environment screening: the self-screening be-
comes stronger with increasing mass (and therefore increasing r),
while the environment screening becomes weaker with decreas-
ing environmental density (and therefore increasing λout). The be-
haviour of η, with r/λout fixed, is the result of the competition of
the two.

MNRAS 450, 3319–3330 (2015)

 at U
niversity of D

urham
 on June 29, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Eulerian voids in modified gravity 3323

(iii) The fifth force ratio η decreases monotonically with increas-
ing radius r of the spherical overdensity, for fixed λout. This is
because a larger r means that the overdensity is more massive, and
therefore more efficient self-screening of the fifth force in given
environment (specified by λout).

Note that for the r/λout = 0.01, 0.05 and 0.1 cases, the dashed lines
are all horizontal and all overlap each other. Likewise, for those
cases the solid lines all overlap each other.

Next we explore in more detail the differences between the thin-
shell formula and our exact numerical solution, showing that the
thin-shell formula has the expected deviation in various regimes.
The differential equation that gives Fig. 1 is equation (17), which
has a step function as its source on the right-hand side. For the
sake of discussion, we can fix this step function by fixing the value
of λout/λin, which means that we are looking at a fixed horizontal
coordinate in Fig. 1. Let us also assume that λout/λin is small. We
are interested in the solution to dψ/dτ which governs η according
to equation (19). Remember that we are interested in forces at the
edge of the spherical top hat, i.e. where the step function jumps so
that τ = r/λout.

Consider the cases where r/λout is large, and assume further that
we fix λout but keep increasing r. Because r is very large, the scalar
field will settle to φin at some point when we move from outside
the top hat to inside the top hat, before we reach the centre of the
body. As a result, as long as r is much larger than λout, the transition
of the scalar field from φout to φin will get insensitive to the exact
value of r. The fifth force at the edge of the top hat will therefore
be insensitive to the exact value of r also.

The upper panel of Fig. 1 shows the fifth-force-to-gravity ratio.
For very large r, the fifth force is insensitive to r as argued above,
while standard gravity is proportional to r. As a result, moving from
the black solid line to the red solid line (r is decreased by a factor
2.5) there should be an increase of the same factor in η, which is
indeed the case. The thin-shell approximation, on the other hand,
predicts that η is proportional to 1/r2. This is given in equation (20).
Therefore, moving from the black dashed line to the red dashed line
there is an increase by a factor of 2.52 = 6.25. We can therefore see
why the thin-shell condition predicts a more sensitive dependence
on r than the exact solution, and why the various dashed curves
differ more than the solid curves.

This calculation shows that the thin-shell condition is actually
quite poor in some situations. The problem of this approximation
is the following: it assumes that all matter inside the thin shell
contributes to the fifth force in the same way as it contributes to the
standard gravity, while in reality it is only the gradient of the scalar
field at the edge of the spherical top hat that matters. The two can
be quite different.

On the other hand, when r is small, we are in the linear perturba-
tion regime and the fifth force should depend on r in the same way
as the standard gravity, which is why η becomes insensitive to r.
This explains the overlapping of the blue, cyan and green curves in
Fig. 1. However, for small values of λout/λin, the numerical solution
predicts η � 1 instead of η = 1/3 as given by the thin-shell condi-
tion. The cause of this failure of the thin-shell solution is as follows.
As the densities inside and outside the top hat approach each other,
the scalar field becomes homogeneous and the fifth force, which is
the gradient of the scalar field, goes to zero. Meanwhile, the stan-
dard gravity is calculated using the mass within the top hat, and will
always be a constant if r and ρ in do not change. So their ratio should
be smaller and smaller in order to make ρout closer and closer to
ρ in.

Figure 2. The solution of equation (17) as a function of dimensionless pa-
rameters r/λout and λout/λin, in the overdensity case for which λout/λin > 1.
The fifth force Fφ ∝ dψ/dτ grows monotonically with either quantity, for
all relevant parameter space. The top-right corner is numerically difficult to
solve, but we have verified that this regime of parameter space is not used
in obtaining the Eulerian barriers.

To summarize, while it is usually qualitatively accurate, the thin-
shell solution can be up to a factor of 10 too large or too small.
The thin-shell solution is quantitatively correct only in the regime
in which the exterior Compton wavelength is much larger than both
the overdensity radius and its interior Compton wavelength. This
is where the fifth force has its largest magnitude relative to gravity,
Fφ = FN/3, the thick-shell regime, and for other regimes we need
to go beyond the thin-shell approximation to be accurate. Because
the Eulerian environment results of this work require the fifth force
solution for both over and underdensities (and because the thin-shell
approximation fails for the latter), we need the exact (numerical)
solution in both cases for the sake of continuity and consistency.

3.3 Validation of numerical solution

Having demonstrated that a numerical solution of the fifth force
is necessary for both under and overdensities, we proceed to the
non-trivial validation of such solutions. The void solutions of equa-
tion (17) correspond to the parameter space with λout/λin < 1. These
are shown in Clampitt et al. (2013) and are numerically straight-
forward. However, for the overdense case (λout/λin > 1), much of
the parameter space is difficult to solve. In Fig. 2, we show these
solutions of equation (17) as a function of the two dimensionless
parameters. In the top-right corner of this plot, we were unable to
obtain numerical solutions, and therefore set dψ/dτ = 0 for display
purposes. However, according to Fig. 1, the fifth force can still be a
significant fraction of gravity in this regime (more precisely, it can
have a strength >2 per cent of gravity).

Fortuitously, overdensities with the range of Eulerian radii in
which we are interested (Reul ≥ 5 Mpc h−1) do not stray into this
unsolved regime. The solutions of Section 4 require calculating the
evolution of an overdensity from deep in the matter-dominated era
to the present day. Early in cosmic history the r/λout parameter is
very large (because both r is large and λout is quite small due to
the high density) and λout/λin is only slightly larger than one. Then,
for collapsing overdense regions λout/λin grows monotonically with
time, while r/λout decreases monotonically with time. Qualitatively,
then, all solutions track from the top left of Fig. 2 force table to the
bottom right as time passes.

The difficulty of obtaining fifth force solutions is greater for
larger objects, corresponding to larger smoothing radii in the initial
Lagrangian density field or equivalently smaller s. (Here, s = σ 2 is
the variance of the smoothed linear matter power spectrum, to be
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defined below.) However, we have verified that we can obtain the
Eulerian barriers (again to be defined below) all the way to a small
value of s, that is, down to some smin such that

δlin > 5
√

smin = 5σ . (21)

We do not need the barrier solution at such small s since they are
seldom hit by random walks starting at the origin. In summary, we
have verified that for each timestep with Fφ ≥ 0.02FN, we solve the
exact numerical solution. For timesteps with Fφ < 0.02FN, we set
the fifth force to zero.

4 E VO L U T I O N O F D E N S I T Y PE RT U R BAT I O N S

In our simplified modelling of the evolution of spherical over and
underdensities, we make the assumption that the profile remains as
a top hat or bucket during the whole course and there are no shell
crossings. Under this premise, we need to track the evolution of two
shells: the halo (for overdensity cases) or the void (for underdensity
cases) shell, with proper radius rin(t), as well as the shell of the
environment that co-evolves with the over or underdensity inside it
(Li & Efstathiou 2012), with radius renv(t). The evolution equation
is given by

r̈j

rj

= − 1

6M2
Pl

[
ρj (1 + η) − 2ρ�

]
, (22)

where ρj ≡ 3Mj/4π r3
j is the matter density in the spherical shell

and the constant ρ� ≈ V (φ) is the effective dark energy density
defined in Section 3.1. The notation rj denotes rin or renv.

The only difference between the evolution of the inner shell and
that of its environment is the effect of the fifth force. For the inner
shell we calculate the fifth force, whereas the larger environment
shell is approximated as evolving under general relativity (GR),
η = 0, because the environment is generally taken to be larger than
the Compton wavelength of the scalar field, for which the fifth-
force-to-gravity ratio is small (cf. Fig. 1). To calculate the fifth
force on the inner shell at each timestep, we use a spherical top-hat
profile,

ρ(χ ) =
{

ρin for χ ≤ rin

ρenv for χ > rin
. (23)

The fifth-force-to-gravity ratio is then, using equation (19),

η =

√
3α��γ dψ

dτ

∣∣∣∣
τ=r/λenv

1
2 �m (H0R) (ayin)−2 , (24)

for the inner shell. Following the general excursion set literature,
in Li & Efstathiou (2012) and Clampitt et al. (2013), equation (22)
is recast to a simpler form by making several changes of variable:
they define N ≡ ln (a) and yj(t) ≡ rj(t)/a(t)Rj, where Rj is the
initial comoving radius. Derivatives with respect to N are denoted
by y′ = dy/dN. We do not repeat in detail here, but only show the
result from those references:

y ′′
j +

[
2 − 3

2
�m(N )

]
y ′

j + �m(N )

2
[y−3

j (1 + η) − 1]yj = 0 , (25)

with initial conditions specified at aini � 1 (deep into the matter-
dominated epoch), as

yj (aini) = 1 − δj,ini/3, y ′
j (aini) = −δj,ini/3 . (26)

Note that in the above, �m(N ) ≡ �me−3N/(�me−3N + ��), and
��(N ) ≡ ��/(�me−3N + ��). δj, ini is the initial density pertur-
bation of the spherical patch (j = in) or its environment (j = env).

Thus, the solution is given by considering two second-order dif-
ferential equations, equation (25) with j = [in, env] along with the
boundary conditions given in equation (26). The force ratio η in
equation (24) at arbitrary time is obtained by interpolating the table
(cf. Fig. 2) for both haloes (overdensities, cf. Fig. 2) and voids (un-
derdensities), which is straightforward provided the values of r/λout

and λout/λin at that time.

5 VO I D A S S I G N M E N T IN T H E E X C U R S I O N
S E T: L AG R A N G I A N V E R S U S E U L E R I A N

In this section, we first briefly review some of the key aspects of a
recently proposed void-assignment formalism based on Eulerian ar-
guments (in contrast to the traditional Lagrangian-based approach).
We will then describe how to extend this Eulerian-based void as-
signment to modified gravity theories. For clarity, we will choose
a single set of parameters (α, 2γ 2) = (10−6, 1/3) to demonstrate
the formalism, and in a future work we plan to apply the methodol-
ogy developed in this work to study void abundances in a class of
chameleon-like theories.

5.1 Void assignment in excursion set formalism

The excursion set formalism (Bond et al. 1991) was initially applied
to describe the abundance of haloes: the calculation is mapped
to the computation of the first crossing distribution across some
prescribed barriers (see for example, Zentner 2007, for a review).
In its simplest form, the first crossing across a constant barrier whose
amplitude is obtained from the spherical collapse model is evaluated
for random walks whose heights depend on the linearly extrapolated
matter power spectrum as well as the smoothing window filter:
analytic solutions are available for sharp-k filter (Zhang & Hui 2006;
Lam & Sheth 2009). Recent developments improve the model by
including scale-dependent (Sheth & Tormen 1999, 2002) barriers,
diffusive barriers (Maggiore & Riotto 2010b; Corasaniti & Achitouv
2011), random walks with correlated steps (Maggiore & Riotto
2010a; Musso & Sheth 2012; Paranjape, Lam & Sheth 2012a),
and peak constraints (Paranjape & Sheth 2012; Paranjape, Sheth &
Desjacques 2013).

The formation of voids, the biggest underdense regions in the
Universe, can also be formulated in the excursion set formalism.
Sheth & van de Weygaert (2004) demonstrated that this calculation
has to include an additional criterion in order to avoid overcounting
the number of voids: the so-called void-in-cloud effect in which
voids sitting in overdense regions where haloes are forming should
be excluded. Technically, this is realized in the excursion set for-
malism by imposing two barriers for halo (denoted by δc) and void
(denoted by δv) formation, respectively. One then computes the first
down-crossing probability across the void formation barrier of ran-
dom walks that never crossed the halo formation barrier at larger
smoothing scales. Sheth & van de Weygaert (2004) provided an
analytical solution for the case where both halo and void barriers
are constant; Lam, Sheth & Desjacques (2009) generalized the so-
lution to barriers of arbitrary shapes. Some more recent attempts
of formulating void abundance include Eulerian void assignment
(Paranjape et al. 2012b, more details below), modifying the map-
ping from Lagrangian volume to abundance (Jennings, Li & Hu
2013), and introducing diffusive barriers (Achitouv, Neyrinck &
Paranjape 2013). In this work, we will focus on extending the Eu-
lerian void assignment in a context in which gravity is modified.

The main purpose of the Eulerian void assignment is to look
for the biggest Eulerian volume that satisfies the void criteria:

MNRAS 450, 3319–3330 (2015)

 at U
niversity of D

urham
 on June 29, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Eulerian voids in modified gravity 3325

having a density below 20 per cent of the background. Conserva-
tion of mass requires the Lagrangian patch to expand five times (in
volume). Another essential assumption in the formalism is no shell
crossing: while the relative separations change, concentric shells
(and hence the mass within them) preserve their orderings (see for
example, Sheth 1998, for discussion). Hence, the immediate envi-
ronment would have significant impact on the formation of voids:
the void in cloud described above is a special case in which the
surrounding environment collapses into a vanishing Eulerian size.
(Note that it is only a limiting case in which the spherical collapse
approximation results in vanishing volume. In reality haloes are
virialized objects with physical sizes.) However, this is only part
of the picture: halo forming is not a necessary condition to modify
the formation of voids. For example, if an underdense region is em-
bedded in a slightly overdense environment, the comoving volume
of this slightly overdense environment would decrease and restrict
the expansion of the underdense patch. Whether a void would be
formed depends on the Eulerian size of the surrounding overdensity
environment. There are three possibilities:

(i) A void of the same size as predicted by the Lagrangian treat-
ment (Sheth & van de Weygaert 2004) will be formed.

(ii) A void will be formed; however, its size is smaller than its
Lagrangian treatment counterpart.

(iii) No void will be formed (in other words the limiting case
where the void size is zero).

As a result, the Eulerian-volume void assignment consists of a
remapping of the size of the void being formed and the volume
function of voids is modified accordingly. For clarity, we refer to
this Eulerian void assignment as the PLS (Paranjape et al. 2012b)
void assignment in the following.

The evolution of the Eulerian volume of the surrounding environ-
ment is a key ingredient in the PLS void assignment. In Paranjape
et al. (2012b), they use the following spherical collapse approxima-
tions (Bernardeau 1994; Sheth 1998):

�NL ≡ M

ρ̄VE
≈

(
1 − δl

δc

)−δc

(27)

to obtain the relationship between the Lagrangian volume (equiv-
alently, the total enclosed mass M) and the linearly extrapolated
density contrast (BVE = δl) for a given Eulerian volume VE:

BVE (M) = δc

[
1 −

(
M

ρ̄VE

)−1/δc
]

. (28)

BVE (M) defines a barrier in the δl–s plane for Eulerian volume VE,
where S is the variance of the smoothed linear power spectrum over
a Lagrangian volume VL which satisfies M = ρ̄VL,

s ≡ σ 2(M) =
∫

d3k

(2π)3
P (k)W 2(kRL), (29)

in which W(kRL) is the Fourier transform of the smoothing win-
dow function and RL is the Lagrangian radius associated with the
Lagrangian volume VL.

Note that equation (28) defines a monotonically decreasing bar-
rier in the δl–s plane and its limiting value for �NL → ∞ is δc.
When �NL = 0.2 and δc = 1.676, BVE,�NL=0.2(M) ≈ −2.76 which
is the constant void formation barrier. Sheth (1998) and Lam &
Sheth (2008a) discussed the application of the excursion set with
barrier defined in equation (28) to obtain the mass distribution at
some fixed Eulerian volume.

Changing VE in equation (28) results in a series of nested curves
whose heights are lower for increasing VE. The limiting case where

Figure 3. Illustration of Eulerian void assignment. Barriers for four differ-
ent Eulerian volumes are shown, together with the constant barriers for halo
(top thick dashed) and void (bottom thick dot–dashed) formation. Two sam-
ple random walks shown demonstrate the characteristics of Eulerian versus
Lagrangian void assignment (see text for descriptions).

VE → 0 is a constant barrier BVE = δc and this corresponds to the
halo formation barrier. The PLS algorithm looks for the biggest
Eulerian volume which has a density contrast of −0.8: we are look-
ing for random walks that cross some Eulerian barriers below the
threshold δv = −2.76. For each random walk, we start from a
very large Eulerian volume. Since the Eulerian barrier associated
with a big volume is decreasing very rapidly, the random walk
almost always pierce that barrier above δv. As we gradually de-
crease the Eulerian volume, the flattening of the barrier allows the
random walk fluctuates before piercing the barrier. Ultimately, one
may find an Eulerian volume whose barrier is only pierced by the
random walk below δv and this Eulerian volume is the Eulerian
size of the void associated with the random walk. Fig. 3 uses two
sample random walks to illustrate the characteristic of PLS void
assignment (note: these walks are for demonstration purposes and
while non-vanishing heights at s = 0 are unphysical, they do not
affect our discussion). Two thick horizontal curves are halo (top)
and void (bottom) thresholds in GR. Four decreasing barriers show
Eulerian barriers for different Eulerian sizes. Both walks represent
void-forming regions in Lagrangian void assignment: they cross the
bottom barrier (at approximately s = 1.8 and 2, respectively) with-
out crossing the upper constant barrier at smaller s, and as such they
represent voids of similar sizes in the Lagrangian-void-assignment
scheme. The result is very different when Eulerian void assignment
is considered: the grey walk is going to form a void of Eulerian
radius of 5 Mpc h−1 while the purple walk is not a void (in the
regions shown). The red decreasing barrier corresponds to an Eu-
lerian size RE = 5 Mpc h−1. The grey walk touches it at around
s = 1 but the walk never pierces this barrier above δv. To see it is the
biggest Eulerian size allowed for the grey random walk, imagine
we increase the Eulerian size by �RE. The Eulerian barrier asso-
ciated with RE + �RE lies somewhere between the green and red
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barriers – the grey random walk will pierce such barrier with δl > δv,
and as a result the density contrast within RE + �RE will be higher
than 20 per cent of the background. This sudden increase in mass
corresponds to the wall around the void as discussed in Paranjape
et al. (2012b).

The purple random walk has a different story: although it crosses
the δv barrier without crossing the δc barrier, the random walk
pierces the red Eulerian barrier at around s = 2.1, above the δv

barrier. For this particular walk, one would need to consider smaller
Eulerian sizes (and hence the barrier will be shallower) to check if
a void would be formed (not shown here).

We would like to point out two important characteristics of this
PLS void assignment as compared to the Lagrangian version.

(i) Random walks identified as void forming in Lagrangian void
assignment (crossing δv at some S but never crossed δc for s < S)
may not form a void. However, the reverse is true: PLS assigned
voids are always associated with a Lagrangian counterpart.

(ii) PLS assigned voids cannot be bigger than the corresponding
Lagrangian-assigned voids.

5.2 Void assignment in modified gravity models

The above discussion on Eulerian void assignment applies to models
where the gravity is described by GR. In this section, we describe
how to extend the various void assignments to modified gravity
models. Clampitt et al. (2013) discussed the extension of Lagrangian
void assignment and found that the abundance of voids would con-
strain modified gravity models. In particular, the signature of MG is
stronger at the bigger voids, which also justifies their approximation
of neglecting the void-in-cloud effect. In what follows we review
how to apply the Lagrangian void assignment in modified gravity
models as well as describe how to apply the PLS void assignment.

In models with MG, the dynamics is modified by the presence
of the fifth force, whose strength can depend on the environmental
density. Thus, all the barriers involved are modified accordingly.
There are multiple scales involved in this case: an environmental
scale corresponding to halo formation, as well as various Eulerian
volumes and their corresponding environments against which the
void formation criteria are checked. As discussed in Li & Efstathiou
(2012), the environment should be big enough to encompass the ob-
jects being considered, but at the same time give a representative
environment to that particular object (hence it cannot be too large).
Li & Lam (2012) and Lam & Li (2012) proposed using an Eu-
lerian size of Rh = 5 Mpc h−1 (which was roughly the Compton
wavelength of the scalar filed in the models considered) as the en-
vironment for halo formation and we will adopt the same here. For
void formation, Clampitt et al. (2013) suggested a scale five times
the void radius as the environment, each we also adopt here. While
Lagrangian environment is used in Clampitt et al. (2013), we use
Eulerian environment in the following since it allows us to follow
the evolution of the Eulerian volumes closely. Notice that previous
studies always assume the evolution of the environment follows
that of GR since it is always much bigger than the Compton wave-
length of the scalar field being considered. We will also make this
assumption in the following discussion.

We apply the PLS void assignment as follows. We first generate
the following tables of different barriers for different environmental
densities δenv (here δenv is the linear density contrast of the environ-
ment, extrapolated to today using the �CDM linear growth factor;
δenv > 0 denotes overdense environments and vice versa):

Figure 4. Illustration of the PLS void assignment in modified gravity mod-
els (see text for description). The constant barriers at the top and the bottom
are the halo and void formation threshold, respectively, in GR. The orange-
shaded region is the void formation barriers in modified gravity model for
−2.4 ≤ δenv ≤ 1.5. Eulerian barriers for RE = 5 Mpc h−1 are shown: the red
curve going through the blue-shaded region is the corresponding GR barrier
while the blue-shaded region shows the MG barriers with the same range of
δenv as in the void formation. The green dotted curve shows the spherical
collapse approximation (equation 28) in GR.

(i) halo formation barrier (in GR it is a constant barrier at δc);
(ii) void formation barrier (in GR it is again a constant barrier at

δv);
(iii) Eulerian barriers BV(S|δenv) for each Eulerian volume VE.

Although we assume that the evolution of all the environments
would be described by GR, we use the same numeric solver to
obtain the GR Eulerian-volume barrier for consistency. Fig. 4 shows
results for different barriers. For an Eulerian size of 5 Mpc h−1,
the blue-shaded region corresponds to its Eulerian barriers for a
wide range of environmental density contrast (−2.4 ≤ δenv ≤ 1.5).
The red dashed curve running from the top of the shaded region
at small s to the bottom of the shaded region at big s is the GR
Eulerian barrier computed by the same numerical solver. On the
other hand, the green dotted curve shows the approximation formula
equation (28).

Fig. 5 shows the difference between barriers of three different
Eulerian sizes from the GR counterparts. Three environmental den-
sity contrasts (δenv = −2.4, 1.5, 0) are chosen for comparison, and
the result shows the following features.

(i) At very large scales (small s), there is no difference between
the GR and MG barriers. At larger s, the two deviate from each
other: the deviation starts at smaller s for bigger Eulerian size since,
with δenv fixed, to have a bigger Eulerian size the initial density δl

is in general lower (cf. Fig. 4), which means the effect of the fifth
force is stronger.

(ii) Whether the Eulerian barriers in MG are higher or lower
than their GR counterparts depends on the relative density
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Figure 5. Difference between the MG and GR Eulerian barriers for RE = 5,
10, 15 Mpc h−1 for three different environmental overdensities. The results
for RE = 10 and 15 Mpc h−1 are shifted by ±0.7. We truncate the comparison
for δl < −3.

contrast to the environment. If the density inside is higher than
that in the environment, the fifth force is attractive (i.e. points to-
wards the centre) and slows down the expansion. To have the same
RE today, the patch needs to have a lower initial density that helps
to speed up the expansion. If the density inside is lower than that
in the environment, the fifth force helps the expansion, which has
to be compensated by having higher initial densities in the patch.
A special case is when δl = δenv, so that the fifth force vanishes
identically throughout the evolution: here δl = δGR

l , and is where
the curves cross zero in Fig. 5. As an example, take the dotted
curves in Fig. 5, which correspond to a very dense environment
(δenv = 1.5) so that the barrier is higher in MG for most values of
s; however, when s is extremely small, the initial size of the patch
is huge and for it to evolve to a given RE today its initial density
has to be higher than 1.5, so that the patch must be overdense. In
this case, the MG barrier becomes lower than in GR. This trend is
followed by all curves in Fig. 5, which only differ by their values
of s at which δl − δGR

l crosses zero.

To better understand the physics, we shall build up the PLS-void-
assignment scheme step by step, following three steps.

5.2.1 Void barrier (1 barrier)

As discussed in Clampitt et al. (2013), we fix the environment to be
five times the size of the resulting voids. The void formation critical
density depends on the environmental density at the corresponding
environment. The first crossing distribution is therefore

f (S) =
∫ S

0
ds f (δenv, s; Renv)f (S, δv(δenv)|s, δenv), (30)

in which f(δenv, s; Renv) is the first crossing probability of the envi-
ronmental barrier of Eulerian size Renv that corresponds to a void
of size S – it is five times the void size. f(S, δv(δenv)|s, δenv) is the
conditional first crossing probability of the modified void formation
criteria density, after having first crossed the environment Eulerian

barrier at (s, δenv). Notice that one does not impose the restriction
of not crossing the halo formation barrier here.

5.2.2 Void in cloud (2 barriers)

The void-in-cloud effect is straightforward to implement: the first
crossing across an Eulerian barrier corresponding to a halo forma-
tion environment of Rh = 5 Mpc h−1 is obtained. The resulting δhalo

env
will be used to compute the halo formation barrier. We then check
that the random walks never cross this halo formation barrier to
enforce the void-in-cloud condition.

5.2.3 PLS void assignment

The implementation of the Eulerian void requires more attention and
we will illustrate the idea with the following example. For simplicity
assume that we choose a random walk that has not crossed the halo
formation barrier. At scale s the random walk has a height δl: we
would like to get the Eulerian volume VE at this point, and at the
moment we neglect previous steps of this walk. In the case of GR,
given M and B, one can find the associated Eulerian volume either
by looking up the table or by inverting equation (28). In the case of
modified gravity models, the exact Eulerian volume VE associated
with (s, δl) depends on the environmental density, while the size
(and density) of the environment depends on VE, because we have
defined void environment to have five times the size of the void that
forms inside it. We use the following iterative process to break this
inter-dependence and obtain VE.

(i) Take a guess for the Eulerian size RE (for example using the
corresponding GR value).

(ii) We now fix the parameters s, δl and RE and vary δenv.
(iii) Set Renv = 5RE and use the GR numerical table to construct

the associated environmental barrier (recall that we assume GR
applies in the environment).

(iv) The first crossing of the environmental barrier associated
with Renv gives δenv.

(v) We now fix three parameters: s, δl and δenv, and vary RE.
(vi) We then search the table of Eulerian barriers in modified

gravity models, BVE (S|δenv), for an Eulerian volume V ′
E that satisfies

the three parameters. This gives a new estimate of R′
E.

(vii) Repeat step (iii) until we finally arrive at a consistent set of
{s, δl, RE, δenv}. This is deemed to be achieved when RE changes
by less than 1 per cent, or less than 0.5 Mpc h−1 in absolute value,
between two consecutive trials, and we call this the convergence
of RE.

The resulting environmental density contrast δenv is then used to
obtain the associated MG void formation barrier. This iterative pro-
cess is applied at each step of the random walk. We then look for
the biggest Eulerian volume that the random walk crossed below
the corresponding void formation barrier.

Fig. 4 uses a sample random walk to illustrate the idea. We will
take the value s ≈ 1 where the random walk touches the red dashed
curve as a demonstration. At this particular value of s, the random
walk has a height of around δl = 0.3. We now need to find the
corresponding Eulerian size for this particular value of (s, δl). In
the case of GR, this Eulerian size would be 5 Mpc h−1. Using this
initial guess, we obtain an environmental size of Renv = 25 Mpc h−1,
whose (GR) Eulerian barrier is shown by the blue dot-dashed curve.
The first crossing of this environment barrier is approximately
δenv = −0.1. We then use this δenv value to find a new R′

E whose
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Eulerian barrier will have the value (s, δl). In this particular case,
the Eulerian barrier for (RE, δenv) = (5 Mpc h−1, −0.1) lies some-
where in the blue-shaded region and hence the new R′

E value will be
slightly larger than 5 Mpc h−1. One then repeat the above procedure
until RE converges. This iterative process only gives one Eulerian
size at any particular point in the random walk. To find the largest
Eulerian size that would form a void, one needs to examine the
whole random walk – which means that the iteration is done at each
step of the walk, with a frequency �s = 0.0025 for our numerical
implementation.

Notice that the implementation of PLS void assignment is com-
putationally very intensive in the case of modified gravity models.
For this reason, we restrict our algorithm to search only for voids
having size bigger than 5 Mpc h−1 but smaller than 100 Mpc h−1.
We believe this range is appropriate since smaller voids are diffi-
cult to identify and previous study suggests that the signature of
MG lies in the bigger voids. On the other hand, voids bigger than
100 Mpc h−1 are extremely rare and this upper limit should not
affect our result.

6 R ESULTS

Having outlined our methodology, in this section we present the
results of the void abundance in our model of MG. In addition to the
PLS-void-assignment scheme we described in the previous section,
we also include comparisons with the Lagrangian void assignment.
We will discuss void abundance derived from both correlated and
uncorrelated steps in the random walks. In order to avoid sample
variance when computing void abundance, we apply the different
algorithms on the same set of random walks in both the uncorrelated
and the correlated cases, which is realized by using the same random
k-mode value δ(k) but different window function W(kR) in

δ(x = 0; R) =
∫

d3k
(2π)3

δ(k)W (kR), (31)

to generate the walks. In the uncorrected case, W(kR) is a top-hat
filter in k space – because δ(k) is a Gaussian random number with
different k modes independent of each other, and the k-space top-hat
filter does not introduce correlations between them, the values of
δ(x = 0, R) are uncorrelated when changing R; in the correlated
case the filter is a top hat in real space. Note that we can apply
the three algorithms (1 barrier, 2 barriers and PLS) to correlated
and uncorrelated walks, and therefore there are in total six ways to
assign voids. We run a total of 40 million random walks to get our
results. For the PLS method there are 1476 740 (GR) and 2123 162
(MG) voids, respectively.

Fig. 6 shows the first crossing probability of various void-
assignment schemes. The top panel shows different predictions for
GR while the middle and the bottom panels show the differences
in modified gravity models. The black histograms/symbols/curves
are the results with uncorrelated steps while the red are correlated
steps. Note that in both cases we use the top-hat window function to
relate the variance s and the smoothing scale in Lagrangian space.

In the case of GR, the three different void-assigning schemes have
very similar results when correlated steps are used (red symbols),
showing our Monte Carlo simulations are consistent with the results
in Paranjape et al. (2012b). On the other hand, for the uncorrelated
steps, the void abundance in the PLS formalism is significantly
lower than the other two. The results for single barrier (filled black
squares) and two-barrier (solid curve) are the same, indicating that
at these (relatively large) smoothing scales the void-in-cloud effect
is insignificant (see below). In other words, in the value range of ν

Figure 6. The multiplicity function for various void-assigning schemes in
the excursion set approach. The top panel shows various results in GR while
the middle and the bottom panels show the relative differences in modified
gravity models studied in this paper.

Figure 7. The first crossing probability as a function of the Eulerian void
size for various void-assigning schemes in the excursion set approach. Same
legends are used as in Fig. 6. The top panel shows various results in GR while
the middle and the bottom panels show modifications in modified gravity
models with uncorrelated- and correlated-step void-assignment schemes,
respectively.

(which can be mapped to the void radius, cf. Fig. 7) of interest to us,
the expansion of voids is indeed restricted by their environments
– the two-barrier void-assignment scheme, which only removes
voids-in-cloud that eventually collapses, is oversimplistic and not
accurate.
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In the middle and the bottom panels, we show the modifica-
tions in void abundance in modified gravity models using uncorre-
lated steps and correlated steps in the random walks, respectively.
We only show the error bars of one of the schemes (in both cases the
histogram for the PLS method) for clarity. In the middle panel, the
filled squares are the modifications for a single void barrier (hence
neglecting the void-in-cloud effect) and the solid curve sharing a
very similar result shows the modifications in the two-barrier case
(including void-in-cloud effect). Since it is very unlikely that these
large voids are embedded in even larger patches that are going to
form haloes, the results from these two void-assigning methods are
nearly the same. Notice that it is not straightforward to directly
compare this panel to fig. 6 in Clampitt et al. (2013) since we use
Eulerian barrier for the environment as well as a different linear
power spectrum generated from CAMB (Lewis 2000) with the recent
Planck cosmology (Planck Collaboration XVI 2014). None the less
the trend in the abundance modification is very similar in both stud-
ies. The histogram shows the modifications using the PLS algorithm
with uncorrelated steps: for very big voids the results are similar to
the other two void algorithms, however there are differences when
going to relatively small voids. The modification in void abundance
using the PLS algorithm is slightly less than the other algorithms in
small voids.

The bottom panel shows the modification of void abundance in
modified gravity models for correlated steps. In this case, we employ
the top-hat filter in real space and generate a series of random walks.
The open squares, the dashed curve and the histogram represent
results from the one-barrier, two-barrier and PLS void algorithm,
respectively. All of them show very similar results, suggesting that
when using correlated steps, one would derive the void abundance
using the much simpler one-barrier or two-barrier algorithms. We
also checked that while there are some quantitative differences,
the results from uncorrelated-step random walk with one-barrier or
two-barrier algorithm agree with the more sophisticated correlated
steps with PLS algorithm.

In summary, while there are noticeable differences in the void
abundances from the different void-assignment schemes, the rela-
tive difference between our chameleon model and GR only changes
slightly. This is somewhat surprising, but it may simply suggest that
void abundance in chameleon models changes with different void
assignments in a similar manner as in GR.

Fig. 7 shows the first crossing distribution plotted as a function of
the Eulerian sizes of voids being formed. This figure uses the same
set of random walks, but since s and R are not linearly related the
walks are organized into different bins. We use the same legends
as in Fig. 6. One noticeable difference when comparing the middle
and the bottom panels with those of Fig. 6 is stronger modifications
at very large voids: although very rare, the abundance of large voids
(larger than 20 Mpc h−1) is a very sensitive probe of modified gravity
models. Notice that the model parameters used in this work are mild
such that the fifth force helps to enhance the halo mass function by
�15 per cent across the whole mass range at z = 0 (Li & Efstathiou
2012); in contrast, for the void radii studied in this work, we can
see that the fifth force can enhance the void abundance by over
50 per cent (and over 100 per cent for Rvoid > 15 Mpc h−1).

7 SU M M A RY A N D D I S C U S S I O N

In this paper, we considered the void abundance in the chameleon-
type modified gravity models – we have extended previous work
in Clampitt et al. (2013) and Paranjape et al. (2012b) to compute
the void volume function in modified gravity models, using the

recently developed Eulerian-void-assignment (PLS) scheme within
the excursion set approach and to compare its result to other void-
assignment schemes. This Eulerian void method includes the effect
of the surrounding on the growth of void – it would reduce the
size of the void or even disqualify it as a void (if the surrounding
collapses). A brief description of this PLS void method is included
in Section 5.1.

In order to implement this PLS-void-assignment method in mod-
ified gravity models, we solved the spherical collapse equation of
motion for various environmental density contrasts, to calculate the
critical density contrasts for halo and void formation. We performed
validation test on the numerical solver to make sure the barriers be-
ing used in the excursion set approach are correct. We then applied
these barriers to evaluate the first crossing probability using Monte
Carlo simulations: we used both correlated- and uncorrelated-step
random walks on various void-assigning schemes. Correlated- and
uncorrelated-step random walks are associated with the window
function kernel used to define the Lagrangian patches: the former
corresponds to top-hat or Gaussian window functions while the
latter to a sharp-k filter.

We then discussed the implementation of the excursion set ap-
proach for void volume function in modified gravity models in
Section 5.2. The one-barrier and two-barrier cases are relatively
straightforward, while we introduce an iterative method in the PLS
formalism to obtain a consistent description of the parameter set
{s, δl, RE, δenv} – it is important since the evolution of structure
depends on the strength of the fifth force, and hence the environ-
mental density contrast. Notice that these are implemented using
the Eulerian picture.

The results of our calculation are summarized in Figs 6 and 7.
Our results are consistent with those in Clampitt et al. (2013): the
abundances of voids are very sensitive to MG. One unexpected find-
ing is the modifications in the void volume function due to modified
gravity models using the one-barrier and two-barrier methods with
uncorrelated steps match those using the PLS method with corre-
lated steps very well. We believe this would be a coincidence –
the fact that the bases of comparison (i.e. the GR predictions, see
the top panel) are very different supports it.1 On the other hand, the
results of the relatively straightforward one-barrier with correlated
steps agree with those of the PLS algorithm, for both the GR re-
sults as well as the modifications due to modified gravity models.
Hence when dealing with correlated steps, it is sufficient to com-
pute the void abundance using the one-barrier method – either with
Monte Carlo simulations as we did in this work or with one of the
approximations developed for computing first crossing probability.

The enhancement of void abundances due to modified gravity
model shows different characteristic than that of halo abundances:
the chameleon screening is less efficient for these underdense re-
gions and hence the abundances of voids (in particular large ones)
are very sensitive to MG. Furthermore, there is detriment in the
abundance of low-mass haloes due to mass conservation while the
void abundance is always enhanced (down to the scale we inves-
tigate). By combining the abundances of haloes and voids, it is
possible to break the degeneracy between modified gravity mod-
els and other cosmological parameters or models, such as σ 8 and

1 Another possibility is that the application of the PLS-void-assignment
method with correlated steps introduces the same differences to the simpler
1-barrier or 2-barrier results, and when taking the relative change this gets
cancelled out to a large extent.
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massive neutrinos, a possibility which merits further investigations
in the future.

While void abundance is a sensitive probe of modified gravity
models, there are several complications needing to be addressed
before it can be used to put constraints on these models. First,
real void catalogues are constructed using biased tracers in galaxy
surveys, while our study assumes that voids are found from the
dark matter field. This may introduce biases – since MG modi-
fies halo abundance (hence galaxies) as well, such biases may be
different for GR and modified gravity models. Secondly, the pre-
dictions from the excursion set approach do not agree with the void
catalogues generated using dark matter particles simulations, even
for the �CDM paradigm (see for example Achitouv et al. 2013;
Jennings et al. 2013). Different methods are proposed to circum-
vent this discrepancy but it is important to check for consistency in
both GR and modified gravity models if any of these methods was
used in the comparison analysis. Thirdly, the increase of void abun-
dance in modified gravity models aggravates the problem of having
a void volume fraction larger than unity. Notice that the excursion
set approach only considers structure formation at each position
independently – while this may be reasonable for collapsing objects
(haloes), objects (voids) having their comoving sizes expanded may
have a larger chance to merge with each other, invalidating the as-
sumption of the excursion set approach – this problem will be worse
in the presence of the fifth force, which helps inflate the voids faster.
Fourthly, given that the fifth force is less efficiently suppressed in
voids, the evolution and properties of galaxies there can also be
different from in GR, adding more subtlety to the interpretation of
observational data and constraints using them.

Finally, as pointed out in Clampitt et al. (2013), since voids sit-
ting in overdense environments show stronger signatures of modi-
fied gravity models (at least for the chameleon-type theories), one
would possibly increase the signal to noise by using the condi-
tional void volume function, or by constructing a weighted void
volume function. The latter method is now being investigated with
both weighted halo mass function as well as weighted void volume
function.
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