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Abstract:

Recently, a new way of deriving the moduli space of quiver gauge theories that arise on the world–

volume of D3–branes probing singular toric Calabi–Yau cones was conjectured. According to the

proposal, the gauge group, matter content and tree–level superpotential of the gauge theory is

encoded in a periodic tiling, the dimer graph. The conjecture provides a simple procedure for

determining the moduli space of the gauge theory in terms of perfect matchings.

For gauge theories described by periodic quivers that can be embedded on a two–dimensional torus,

we prove the equivalence between the determination of the toric moduli space with a gauged linear

sigma model and the computation of the Newton polygon of the characteristic polynomial of the

dimer model. We show that perfect matchings are in one–to–one correspondence with fields in the

linear sigma model. Furthermore, we prove that the position in the toric diagram of every sigma

model field is given by the slope of the height function of the corresponding perfect matching.
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1. Introduction

According to the AdS/CFT correspondence [1, 2, 3, 4], the large N ’t Hooft limit of N = 4

SU(N) super Yang Mills is equivalent to type IIB String Theory on AdS × S5 with N units of

Ramond–Ramond 5–form flux on the S5. The N = 4 gauge theory arises as the worldvolume

theory of a stack of N D3–branes in flat ten dimensional space. Since its original formulation,

the AdS/CFT correspondence has been extended to and checked in a variety of more realistic,

less supersymmetric situations. The worldvolume theory of D3–branes over a singular Calabi–Yau

threefold is an N = 1 quiver gauge theory [5, 6]. The structure of the gauge theory reflects the

properties of the singular manifold. When the Calabi–Yau is a metric cone over an X5 Sasaki–

Einstein manifold, the corresponding dual is type IIB string theory on AdS5 × X5.

Toric Calabi–Yau’s are a particularly simple, yet extremely rich, subset in the space of Calabi–

Yau threefolds. Their simplicity resides in that they are defined by a relatively small amount of

combinatorial data and can be constructed in terms of two–dimensional gauged linear sigma models.
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Recently, we have witnessed remarkable progress in our understanding of N = 1 superconformal

field theories, their embedding in string theory and their AdS/CFT duals. We now review an

abbreviated list of such developments. On the purely field theoretic front, the a–maximization

principle [7] has been a major breakthrough, permitting the computation of R–charges for arbitrary

N = 1 superconformal theories. In [8, 9], explicit metrics for an infinite family of Sasaki–Einstein

5–manifolds denoted Y p,q were found. The metric cones over these manifolds are toric [10] and

the corresponding gauge theories have been determined [11]. Afterwards, a larger set of metrics

dubbed La,b,c, containing the Y p,q’s as particular cases, was discovered [12, 13, 14]. Again, the

corresponding cones are toric and the dual gauge theories were identified [15, 16, 17]. With these

theories, we passed from having a couple of examples in which the explicit AdS5 × X5 metric and

the field theory dual were known (X5 being S5, T 1,1 and their orbifolds) to an infinite number

of such pairs. In [18], the geometric dual of a–maximization, Z–minimization, was found. Using

Z–minimization it is possible to compute the volume of subcycles in a toric variety using solely the

information in the toric diagram. Further developments in the subject appeared in [19, 20, 21].

In parallel, there has been considerable advancement in the techniques for deriving gauge

theories on D–branes over singularities. Some of the approaches are partial resolution [22, 23, 24]

of orbifold singularities [5, 6], exceptional collections [25, 26, 27, 28, 29, 30, 31, 32] and dimer

methods [33, 34, 15, 35, 36, 37], the subject of this paper. For toric manifolds, dimers have proved

to be very strong in comparison to alternative approaches, producing the most vast set of results

together with an appealing elegance and extreme computational simplicity.

As a result of these developments the paradigm under which we look for and test AdS/CFT

pairs, at least in the case of toric singularities, has changed. Dimer methods immediately provide

the gauge theory for a given toric geometry. Next, we can perform non–trivial checks comparing R–

charges and central charges of the field theory, determined with a–maximization, to the volumes of

supersymmetric cycles in the singular geometry, which can be computed without explicit knowledge

of the metric thanks to Z–minimization.

The dimer method approach to quiver theories on D–branes over toric singularities was ini-

tiated in [33], where a striking correspondence between the perfect matching partition function

and the toric diagram of the underlying geometry was observed. The idea was fully developed in

[34], where the rules for constructing a tiling on which dimers live for an arbitrary toric quiver

were established. A physical interpretation of this tiling as a configuration NS5 and D5–branes

was also proposed. In addition, [34] conjectured a specific correspondence between GLSM fields

and perfect matchings, noticing also how perfect matchings are natural variables to solve F–term

equations. This correspondence, which we call Mathematical Dimer Conjecture in this paper, leads

to impressive simplifications in the study of branes on toric singularities and lies at the core of the

breakthrough of the dimer ideas. The main result of this paper is the proof of the Mathematical

Dimer Conjecture.
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Until recently, finding the tiling for a particular theory was somewhat ad hoc. A major break-

through was made in [35], by interpreting R–charges as angles in the tiling. Furthermore, based on

the observation that the so called zig–zag paths are in one–to–one correspondence with the edges

of the toric diagram, the Fast Inverse Algorithm was established which is by now the most efficient

tool for computing the quiver and the superpotential from the toric diagram of a toric non–compact

Calabi–Yau. A physical realization of the tilings, which supports the proposal of [34], and a proof

of the Fast Inverse Algorithm was recently derived in [36] using mirror symmetry.

In order to provide a self–contained presentation, we devote Sections 2 and 3 to review back-

ground material. Section 2 discusses the main concepts in toric quivers, brane tilings and dimer

models. Section 3 presents the gauged linear sigma model (GLSM) approach for computing toric

moduli spaces of toric gauge theories. In Section 4 we present the conjecture of [34], splitting it

into the Mathematical and Physical dimer conjectures. Finally, we prove the Mathematical Dimer

Conjecture in Section 5. We illustrate all discussions in the paper with the relatively non–trivial

example of a quiver theory for D3–branes probing a complex cone over the second del Pezzo surface.

2. Toric quivers and brane tilings

We consider the N = 1 superconformal gauge theories that live on the worldvolume of a stack of

N D3–branes probing a non–compact toric Calabi–Yau 3–fold. For every singularity, the gauge

theory on the D3–branes is not unique. In fact, we have an infinite number of gauge theories

connected by Seiberg duality [38, 39, 40, 25, 41] that flow to the same universality class in the

infrared limit. Every gauge theory is specified by a gauge group and a matter content, which are

encoded in a quiver diagram, and a superpotential. We will concentrate on a particular subset of

this infinite set of dual theories, denoted toric phases. A toric phase is defined as a phase in which

the gauge group is
∏

SU(N), i.e. the ranks of all gauge group factors are the same. Non–toric

phases are obtained by Seiberg duality on a node for which the number of flavors is larger than

twice the number of colors. The fact that the probed geometry is an affine toric variety constraints

the possible structure of the superpotential. It has to be such that all F–term equations are of

the form “monomial = monomial”. This constraint is dubbed the toric condition [42] and can

be rephrased by saying that every field in the quiver must appear exactly in two terms of the

superpotential, with both terms having opposite signs. In addition, all superpotential coefficients

can be normalized to 1 by rescaling the fields.

Figure 1 shows one toric phase for the complex cone over dP2 [24, 42], usually referred to as

Model II. The corresponding superpotential is given by

W = [X34X45X53] − [X53Y31X15 + X34X42Y23]

+ [Y23X31X15X52 + X42X23Y31X14] − [X23X31X14X45X52]
(2.1)
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where we have grouped terms to make a Z2 global symmetry that acts by interchanging nodes

1 ↔ 2 and 4 ↔ 5 and charge conjugating all the fields manifest. We will use this example to

illustrate all our discussions.

21 3

5

4

Figure 1: Quiver diagram for Model II of dP2.

In [34], it was realized that all the information in the quiver diagram and the superpotential

of a toric phase can be encapsulated in a single object: the periodic quiver. A periodic quiver is

a planar quiver drawn on the surface of a 2–torus (equivalently, a doubly periodic infinite quiver

on the plane) s. t. every plaquette corresponds to a term in the superpotential. The sign of the

superpotential terms is given by the orientation of the corresponding plaquettes, which alternates

between clockwise and counterclockwise. The toric condition is automatically incorporated in the

periodic quiver, since every field appears precisely in two neighboring plaquettes with opposite

orientation.

It has been conjectured that any quiver corresponding to D3–branes probing non–compact,

toric Calabi–Yau threefolds can be embedded in a T 2 [34]. Furthermore, the two cycles around the

T 2 have been identified with the non–R symmetry U(1) isometries [43]. In Section 2.1, we discuss

how conformal invariance restricts the possible embeddings of the periodic quiver. Figure 2 shows

the periodic quiver for our dP2 example.

32
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32 232 2

Figure 2: Periodic quiver for Model II of dP2. We show several fundamental cells.
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Along the rest of the paper, our working hypothesis will be that we consider gauge theories

that are described by periodic quivers on T 2. For this class of theories, we will show that the GLSM

determination of the moduli space can be translated into a dimer problem.

The superpotential can be written schematically as

W =
∑

µ

±Wµ (2.2)

where every superpotential term Wµ is a gauge invariant mesonic operator with R–charge equal to

2 and neutral under the U(1) × U(1) flavor symmetry1. We have explicitly indicated the sign of

each term, which satisfy the toric condition.

In toric quivers, F–term equations can be used to show that all these operators are equivalent

in the chiral ring. The toric condition implies that every field Xi appears (linearly) in exactly

two superpotential terms. Let us call them W1 and −W2 (according to the toric condition both

contributions have opposite signs). Then

0 = X ∂X W = X ∂X (W1 − W2) = W1 − W2 (2.3)

This becomes very intuitive from the perspective of the periodic quiver (see Figure 3), where

one can show that any two adjacent plaquettes are equal by using the F–term relation for the

common field. Iterating this process we see that, once F–term equations are taken into account,

all superpotential terms are identical. This idea has already been used in [43].

415

3 2 3

232

5

Figure 3: Two plaquettes are equal once the F–term equation for the common field is imposed.

In [34], an alternative representation of the gauge theory, dubbed brane tiling2 was introduced.

The brane tiling is constructed by dualizing the periodic quiver graph: Nodes, arrows and plaquettes

of the periodic quiver are replaced by faces, transverse lines and nodes, respectively.

1In some cases the U(1)2 global symmetry can be enhanced. For example, for Y p,q theories the flavor symmetry

is SU(2) × U(1) [11].
2We alert the reader that the goal of this paper is independent of the possible interpretation of the tiling as a

physical object, such as a configuration of branes. However, we will adhere to the term brane tiling for simplicity.

The arguments that identify brane tilings with physical configurations of D5– and NS5–branes are primarily based

on the analogy with brane box and brane diamond constructions dual to orbifold singularities [44, 45, 46]. A concrete

string theory realization of the tiling was studied in detail in [36].
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The resulting tiling is a bipartite graph. This means that it is possible to assign nodes two

colors (by convention we choose black and white) such that white nodes are only connected to black

nodes and viceversa. The coloring of nodes is in one–to–one correspondence with the orientation of

plaquettes in the periodic quiver (hence the sign of superpotential terms). Edges in the tiling carry

a natural orientation (for example from white to black nodes), which corresponds to the orientation

of arrows in the periodic quiver.

We can translate among periodic quiver, brane tiling and gauge theory concepts using the

following dictionary

Periodic quiver Brane tiling Gauge theory

node face SU(N) gauge group

arrow edge bifundamental (or adjoint)

plaquette node superpotential term

We denote F , E and N the number of faces, edges and nodes in the tiling. They correspond

to the number of gauge groups, chiral multiplets and superpotential terms in the gauge theory.

For a comprehensive description of brane tilings we refer the reader to [34]. Figure 4 shows the

brane tiling for the dP2 example under consideration, obtained by dualizing the periodic quiver in

Figure 2
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Figure 4: Brane tiling for Model II of dP2.

In analogy to the chemical terminology, every edge in the tiling is denoted a dimer. A perfect

matching is a collection of edges (dimers) such that every node in the tiling is the endpoint of

exactly one edge in the set. For later reference, we list all perfect matchings for the dP2 brane tiling

in the Appendix. Perfect matchings play a fundamental role in our forthcoming discussion.
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2.1 Geometry of the tiling embedding from conformal invariance

In the previous section we stated that we will focus on tilings of a two dimensional torus. Since the

gauge theories under consideration have a finite number of gauge groups, fields and superpotential

terms, it is natural to represent them by a tiling of a compact Riemann surface Σ. But, is any

Σ a valid option? Why do we choose a T 2? Interestingly, as we discuss in this section, the gauge

theory actually constraints the geometry of Σ.

Conformal invariance at the IR fixed point requires the beta functions for all superpotential

and gauge couplings to be zero. For superpotential couplings this implies that

∑

i ∈ edges

around node

Ri = 2 for every node (2.4)

while vanishing of gauge coupling beta functions corresponds to

2 +
∑

i ∈ edges

around face

(Ri − 1) = 0 for every face (2.5)

Adding (2.5) over all faces and using (2.4) we conclude that

F + N − E = χ(Σ) = 0 (2.6)

Hence, conformal invariance implies that the Euler characteristic of Σ has to be zero. This fact

has been already noticed in [34]. There are only two options for Σ. On one hand, it can be a T 2

as considered so far in the paper and in the literature. On the other hand, there is the interesting

possibility of Σ being the Klein Bottle. Figure 5 shows an example of a bipartite tiling of the Klein

Bottle. This tiling is known as the Franklin graph [47] and has F = 6, N = 12 and E = 18, hence

satisfying (2.6).

Figure 5: A bipartite graph tiling the Klein Bottle.

At present, both the gauge theory and geometric interpretations of such a tiling are unknown

and remain an intriguing question that deserves further study. Along the rest of the paper, we
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will restrict ourselves to the case in which Σ = T 2. The planar quiver, dual to the tiling, will

consequently be also embedded in a T 2.

2.2 Height function

Given a perfect matching M , it is possible to define an integer–valued height function h over the

brane tiling [48, 49]. In order to do so we fix a reference perfect matching M0 and a face f0. The

difference M −M0 defines a set of closed curves over the tiling. The minus sign flips the orientation

of bifundamentals associated with the edges of M0, giving the resulting closed curves a definite

orientation. The height function jumps by ±1 when crossing a curve, where the sign is given by

the orientation of the crossing. The height for f0 is set to be zero. Notice that the difference of the

height functions of two matchings is well–defined independently of M0.

The slope of a perfect matching is defined as the height change (hx, hy) when moving from

one unit cell to the next one along the two fundamental directions. Changing M0 amounts to a

constant shift (hx0, hy0) in the slopes of all perfect matchings.

We exemplify the concepts presented in this section with dP2. Figure 6 shows a perfect match-

ing, a reference perfect matching and the corresponding height function. In this case, we see that

the slope is (hx, hy) = (−1, 0).

h=2

h=0

h=1

Figure 6: (a) The dimers in the a perfect matching M are shown in cyan. (b) The dimers in the reference

perfect matching M0 are shown in red. (c) The height function, whose level curves are given by M − M0.

There is an equivalent way to define slopes, that later will turn out to be useful. To every

perfect matching we can associate a unit flow on its edges, directed from white to black nodes.

The slope then corresponds to the net flux between adjacent fundamental regions in the x and y

directions. The Appendix gives the slopes for all perfect matchings of Model II of dP2. We will

come back to the interpretation of matchings as unit flows in Section 5.2.

It is straightforward to count the number of perfect matchings with a given slope [48, 49]. In

order to do so, we first introduce the Kasteleyn matrix of the tiling K(x, y). It is a weighted,

signed, (N/2) × (N/2) adjacency matrix defined as follows. In our convention, the rows of K(x, y)

are indexed by white nodes and its columns by black nodes. We associate a ±1 weight to every

edge ei in the tiling such that when we multiply the weights around every face we have
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sign
(

∏

ei

)

=

{

+1 if (# edges) = 2 mod 4

−1 if (# edges) = 0 mod 4
(2.7)

Next we take two fundamental paths Cx and Cy in the graph dual to the brane tiling winding

once around the (1, 0) and (0, 1) cycles of the 2–torus. These paths are conventionally denoted flux

lines and can be visualized as the boundaries of the fundamental region. The weight of every edge

in the tiling that is crossed by Cx is then multiplied by x or x−1 depending on the orientation of

the crossing. Respectively, edges crossed by Cy are multiplied by y or y−1.

The determinant of the Kasteleyn matrix P (x, y) = detK(x, y) is a Laurent polynomial, the

so–called characteristic polynomial of the dimer model. It has the following general form

P (x, y) = xhx0yhy0

∑

chx,hy
xhxyhy (2.8)

P (x, y) is the partition function of perfect matchings on the brane tiling, in the sense that the

integer coefficients |chx,hy
| count the number of perfect matchings with slope (hx, hy) [49].

In our example, we have

K =







1 − x−1 y 1

1 1 x

−1 + x−1y−1 1 1






(2.9)

Then

P (x, y) = x−1y−1 − x−1 + 5 − x − y − xy (2.10)

which gives the following counting of perfect matchings

slope # matchings

(-1,-1) 1

(-1,0) 1

(0,0) 5

(1,0) 1

(0,1) 1

(1,1) 1

that is in precise agreement with the direct counting in the Appendix.

3. Toric geometry from gauge theory

We now review the procedure for computing the moduli space of a given toric quiver (i.e. quiver

plus toric superpotential). For N D3–brane probes, the moduli space along the mesonic branch

corresponds to the symmetric product of N copies of the probed geometry. This procedure has

been algorithmized in [24] and dubbed the Forward Algorithm. It involves the following steps:
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• Use F–flatness equations to express the fields in the quiver (which transform in bifundamental

or adjoint representations) Xi, i = 1, . . . , E in terms of F + 2 independent variables vj .

Although the vj’s can be taken to be a subset of the Xi fields, other choices are also possible.

For example, as we will discuss later, dimers pick other combinations which turn out to be

more natural. The final answer does not depend on this choice. Since for toric quivers the

F–term equations are of the form monomial = monomial, each Xi is given by a product of

vj ’s to appropriate powers. This can be encoded in an E × (F + 2) matrix K according to

Xi =
∏

v
Kij

j , i = 1, . . . , E, j = 1, . . . , F + 2 (3.1)

The Xi can involve negative powers of the vj ’s, i.e. Kij may have negative entries. The row

vectors ~Ki of K span a cone M+ in R
F+2, corresponding to non–negative linear combinations

of them.

• Next, to get rid of the negative powers, we introduce new variables pα, α = 1, . . . , Nσ. In

order to do so, we compute the cone N+ dual to M+. N+ is spanned by vectors ~Tα, such that
~Ki · ~Tα ≥ 0. These vectors can be organized as the columns of an (F +2)×Nσ integer matrix

T such that K ·T ≥ 0 for all entries. The dimension of the dual cone Nσ is not known a priori

and is determined by explicitly computing N+. The intermediate and original variables vj

and Xi are expressed in terms of the pα as follow

vj =
∏

α

p
Tjα
α Xi =

∏

α

p
∑

j KijTjα

α (3.2)

The amount of operations required to compute Nσ grows with the size of the gauge theory.

This growth becomes prohibitive when trying to apply the Forward Algorithm to gauge

theories with large quivers. Later, we will explain how this difficulty is circumvented by the

dimer model.

• A convenient way to encode the relations among the Nσ variables pα and the original F +2 vj

is by obtaining them as D–terms of an appropriately chosen U(1)Nσ−(F+2) gauge group. Its

action is given by an (Nσ − F − 2) × Nσ charge matrix QF (where the subindex F indicates

that QF contains all the information about F–term equations). Gauge invariance of the vj ’s

under the new gauge group gives rise to the desired relations. Hence, QF is such that

T · QT
F = 0 (3.3)

• The charges of fields under the F gauge groups of the quiver are summarized by the F × E

incidence matrix d. It is defined as dli = δl,head(Xi) − δl,tail(Xi). Every column associated

to a bifundamental field contains a 1 and a −1 and the rest of the entries are 0’s. Adjoint

fields are represented in quiver language by arrows starting from and ending at the same
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node. Hence, the corresponding columns have all 0’s. It is clear that one of the rows of d is

redundant. Thus, we define the matrix (F − 1) × E matrix ∆, which is obtained from d by

deleting one of its rows. For our example, we have

∆ =

















X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

1 −1 1 −1 1 0 0 0 0 0 0 0

2 0 0 0 0 −1 1 −1 1 0 0 0

3 0 −1 0 −1 1 0 1 0 −1 1 0

4 1 0 0 0 0 0 0 −1 1 0 −1

















(3.4)

The F − 1 independent D–term equations of the original theory are implemented by adding

a U(1)F−1 gauge symmetry to the GLSM. The charges of the pα under these symmetries

is given by an (F − 1) × Nσ matrix QD which can be determined in two steps. First, we

construct an (F − 1) × (F + 2) matrix V that translates the charges of the Xi’s to those of

the vj’s. Thus,

V · KT = ∆ (3.5)

Next, we find an (F + 2) × Nσ matrix U that transform the charges of vj’s into those of the

pα’s

U · T T = Id(F+2)×(F+2) (3.6)

Finally, we have

QD = V · U (3.7)

QD and QF are combined into a single (Nσ − 2) × Nσ charge matrix Q

Q =

(

QD

QF

)

(3.8)

The construction we outlined can interpreted as a Witten’s two dimensional gauged linear

sigma model (GLSM) of Nσ chiral fields pα and U(1)Nσ−3 gauge group with charges given

by Q.

• The U(1) charges defined above are exactly those that appear in the construction of a toric

variety as a symplectic quotient. In toric geometry it is standard to encode the charge matrix

by means of a toric diagram.

G = (Ker(Q))T (3.9)

One of the rows in G can be set to have all entries equal to 1 by an appropriate SL(3, Z)

transformation. This is the Calabi–Yau condition and amounts to the fact that the sum of

the charges of all the pα under any of the U(1) gauge symmetries is zero. Effectively, we are
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left with a two dimensional toric diagram. Every GLSM field pα corresponds to a point in

the toric diagram, which is a vector ~vα in Z
3. Q is given by linear relations of the form

n
∑

i=1

Qα
a~vα = 0 (3.10)

satisfied by the ~vα’s.

Figure 7 summarizes the relevant matrices in the Forward Algorithm.

Q

Q

G

T

σ

Nσ

3

N

σ

σN

F

D

N

F−1

F+2

h

−3

−F−2

Figure 7: Relevant matrices in the Forward Algorithm.

4. The conjecture

Having introduced all necessary concepts, we are ready to study the conjecture of [34]. It is

convenient to divide the conjecture into two parts, to which we refer as the Mathematical and

the Physical Dimer Conjectures.

Mathematical dimer conjecture

The mathematical dimer conjecture states that there is a one–to–one correspondence between

fields pα in the gauged linear sigma model construction of the toric moduli space of the given toric

gauge theory and perfect matchings in the brane tiling dual to the toric quiver. Here, when we

refer to a toric gauge theory we mean a gauge theory whose quiver can be drawn on a surface

of a 2–torus, s. t. the plaquettes give the terms in the superpotential (see discussion in Section
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2.1). Furthermore, according to the conjecture, the toric diagram is the Newton polygon of the

characteristic polynomial (i.e. the set of integer exponents of monomials [49]) which, as we have

already discussed, is the set of height function monodromies (“slopes”) of the perfect matchings.

Physical dimer conjecture

The physical dimer conjecture identifies dimers and tilings with physical objects. According to

the conjecture, the brane tiling is interpreted as a physical brane configuration. It consists of an

NS5–brane extended in the 0123 directions that wraps an holomorphic curve in 4567. The 5 and

6 directions are periodically identified giving rise to the 2–torus. D5–branes extend in 012346,

suspended within the “holes” of the NS5–brane in the 46 torus. Every stack of D5–branes gives

rise to a gauge group. Strings crossing every NS5–brane segment and connecting two D5–brane

stacks correspond to chiral multiplets transforming in the bifundamental representation of the

corresponding gauge groups. Gauge invariant superpotential terms are produced by the coupling of

massless string states at the nodes of the NS5–brane configuration. This configuration is conjectured

to be related to the D3–branes over the singularity by two T–dualities. The suspended D5–branes

are dual to the probe D3–branes and the NS5–brane structure is dual to the singular geometry.

The correspondence between dimers and a physical brane system could be more subtle and

might differ from the one suggested by the physical dimer conjecture. However, the validity of the

mathematical dimer conjecture, which is the main subject of this paper, is completely independent

of how tilings are realized in terms of branes3.

Having introduced the conjectures of [34], we devote the rest of the paper to proving the

mathematical dimer conjecture.

5. The proof

In this section we prove the Mathematical Dimer Conjecture. As we said before, we prove it for

toric gauge theories whose quivers (and hence their brane tilings) are embedded in a two–torus.

A considerable amount of evidence supporting its validity has been accumulated in the literature.

This includes:

3Recently, another physical description of the tiling has been developed in [36]. Using mirror symmetry, the

D3–branes are mapped to a system of D6–branes that wraps a self–intersecting T 3 torus. The mirror geometry is

a double fibration over the complex W plane, one being the W = uv torus fibration degenerating at the origin and

another being the W = P (w, z) fibration degenerating at some critical points. Here P (w, z) ≡ det(Kasteleyn) is the

spectral curve with (w, z) = (es+iθ, et+iφ) ∈ (C∗)2. The spectral curve can then be projected to the non–compact

space (s, t) which yields the amoeba whose spine is the pq–web of the toric diagram. Projection on the compact (θ, φ)

coordinates gives the so–called alga of the curve. Its skeleton is the rhombus loop diagram that has been used to

construct the brane tiling for a given toric diagram [35, 36]. This construction supports the D5–NS5 tiling proposal

of [34], which appears when T–dualizing along the S1 fibre in the uv plane.
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• Construction of the correct toric diagram for the moduli space of gauge theories for an infinite

number of singularities. This number is infinite thanks to the determination of the tilings for

the Y p,q [34] and La,b,c manifolds [15, 17].

• Precise agreement between the number of perfect matchings and the multiplicity of GLSM

fields in toric diagrams for various models [15].

• Derivation of Seiberg dual theories by transformations of the tilings preserving the Newton

polygon of the characteristic polynomial [15, 35].

• In [15], it was shown that given a simple proposal to express quiver fields in terms of perfect

matchings, F–term conditions are straightforwardly satisfied. This proposal will be derived

as part of our proof.

• The geometry of brane tilings has recently been investigated in [36]. The results of this paper

show how tilings appear in the description of toric gauge theories by explicitly deriving them

from the mirror geometry but do not prove the correspondence between perfect matchings

and GLSM fields.

Our computations with dimers will closely follow those of the Forward Algorithm. It is impor-

tant to keep in mind that some of the steps (or intermediate matrices) are naturally skipped by

the inherent simplifications of the dimer approach. In order to avoid confusion we will use tilded

variables at some stages of the proof. In the end, we will show that they can be identified with the

untilded ones of the Forward Algorithm.

5.1 Solving F–term conditions: gauge transformations and magnetic coordinates

The tiling is bipartite, therefore each edge has a natural orientation from its white vertex to its

black vertex. Any weight function ǫ(e) on the edges defines a 1–form, satisfying ǫ(−e) = −ǫ(e),

where −e is the edge with opposite direction [49]. We denote the linear space of 1–forms on the

tiling by Ω1. Analogously, the functions on nodes and faces define 0– and 2–forms in Ω0 and Ω2.

The three spaces are related by differentials

0 → Ω0 d
−→ Ω1 d

−→ Ω2 → 0 (5.1)

We can now define gauge transformations on the tiling, whose action on the 1–forms is

given by [49]

ǫ′(ei) = ǫ(ei) + df f ∈ Ω0 (5.2)

That is

ǫ′(ei) = ǫ(ei) + f(bi) − f(wi) (5.3)
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with bi and wi the black and white nodes at the endpoints of edge ei. These gauge transformations

of the tiling should not be confused with the gauge symmetries of the quiver theory. We are

confident that the distinction between both types of gauge transformations will be clear from the

context in which we use them. Given a closed path on the tiling

γ = {w0, b0,w1, b1, . . . , bk−1,wk} wk = w0 (5.4)

we define the magnetic flux through γ as

B(γ) =

∫

γ

ǫ =

k−1
∑

i=1

[ǫ(wi, bi) − ǫ(wi+1, bi)] (5.5)

Magnetic fluxes are clearly gauge invariant. The brane tiling is embedded in a two dimensional

torus. Hence, gauge inequivalent classes of 1–forms are parameterized by R
F−1⊕R

2. The first term

corresponds to dǫ ∈ Ω2, a function on the faces of the tiling subject to the condition
∑

dǫ = 0.

We can specify the R
F−1 part by the magnetic fluxes Bz(j) (j = 1, . . . , F − 1) through the γi

contours around F − 1 faces. The remaining two parameters (Bx, By) correspond to fluxes around

two non–trivial cycles (γx, γy) winding around the torus.

Gauge transformations are of particular interest because taking ǫ to be the energy function they

do not modify the energy difference between perfect matchings. Hence, the probability distribution

of perfect matchings is invariant under gauge transformations.

In this section, we will exploit gauge transformations with a different goal, namely to provide

a convenient set of variables (mostly in Ω2) that solve the F–term equations. For this purpose, we

define the complex 1–form

ǫ(ei) = ln Xi ⇒ under gauge transformations: X ′

i = Xie
f(bi)−f(wi) (5.6)

In this context, we refer to the Xi’s as weights4.

Using (5.6), we can define new variables associated to closed paths

ṽ(γ) = e
∫

γ
ǫ =

k−1
∏

i=1

X(wi, bi)

X(wi+1, bi)
(5.7)

where the product runs over the contour γ. Then {ṽj ≡ ṽ(γj), ṽx, ṽy} provides a parametrization

of inequivalent gauge classes.

We define a convenient basis of 0–forms F (µ), µ = 1, . . . , N ,

F (µ)

{

fµ = 1

fν = 0 for ν 6= µ
(5.8)

4If we regard −ǫ(ei) as the energy of a link, the Xi’s can be interpreted as complex valued Boltzmann weights.
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Their virtue is that superpotential terms transform simply under the corresponding gauge

transformations. Taking the gauge transformation for αµF (µ), with αµ a complex coefficient, we

get

W ′

µ = Wµesign(µ)vµαµ (5.9)

where vµ is the valence of node µ (i.e. the order of the associated superpotential term Wµ) and

following (5.6) sign(µ) is 1 for black nodes and −1 for white nodes.

As discussed in Section 2, solving F–term conditions corresponds to setting all the Wµ’s equal.

Given arbitrary values of the Wµ, it is possible to set them equal to W1 by the basic gauge

transformations of (5.9) with

αµ =
sign(µ)

vµ

ln W1

lnWµ
(5.10)

In other words, solving F–term equations corresponds in this language to partially fixing the

gauge. Each gauge choice can be labeled by the common value of Wµ = W1
5. Equivalently, one

can label gauge choices using the more symmetric variable V defined as

V = W N
1 =

N
∏

µ=1

Wµ =
E
∏

i=1

X2
i (5.11)

We denote V, the ṽj’s, ṽx and ṽy the flux variables.

We have just seen that on each gauge orbit there exists a unique solution to F–term equations

for every value of V. Hence, we conclude that solutions to F–flatness equations are parametrized by

the F + 2 flux variables: the value of V indicating a partial gauge fixing, along with the variables

ṽj (j = 1, . . . , F − 1), ṽx and ṽy parametrizing gauge equivalence classes. It is now clear that these

fluxes can be identified with the vj (j = 1, . . . , F + 2) variables of the Forward Algorithm.

With this identification, it is straightforward to write down a left inverse matrix for K, which

we call K−1
L . This is an (F + 2) × E matrix such that K−1

L K = Id(F+2)×(F+2).

For our dP2 example, we have

K
−1
L =































X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

ṽ1 1 −1 1 −1 0 0 0 0 0 0 0

ṽ2 0 0 0 0 1 −1 1 −1 0 0 0

ṽ3 0 1 0 1 −1 0 −1 0 1 −1 0

ṽ4 −1 0 0 0 0 0 0 1 −1 0 1

ṽx −1 0 0 1 −1 0 0 1 0 0 0

ṽy 1 −1 0 0 0 0 0 0 0 1 −1

V 2 2 2 2 2 2 2 2 2 2 2































(5.12)

for which we have taken the γi loops to run clockwise around faces, and γx and γy are the two

non–trivial cycles shown in Figure 8, i.e.

5We thank Alastair King for discussions on related ideas.
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ṽx = X−1
14 X42X

−1
23 Y31

ṽy = X53X
−1
31 X14X

−1
45

(5.13)

With this choice of contours, it is clear that the first F − 1 rows of K−1
L are equal to −∆ (see

(3.4)). There are other paths equivalent to γx and γy that are obtained by deforming them using

F–term equations.

5
41

23
35

41

23
3

Figure 8: Contours defining ṽx and ṽy.

The matrix K converts magnetic variables into weight variables. We do not determine K

explicitly in this section as it is not necessary for our discussion. As explained in Section 3, the

vectors ~ni corresponding to rows in K (i = 1, . . . , E) span a cone S in R
F+2.

5.2 The GLSM fields are perfect matchings

In the previous section we discussed at length how the F–flatness conditions can be satisfied in terms

of the ṽi magnetic fluxes that are in one–to–one correspondence with the variables vj according to

(5.7). The relation between these variables and the original Xi fields are encoded in the matrix K,

whose rows span the cone M+ in R
F+2. The Forward Algorithm proceeds by computing the cone

dual to M+:

N+ = {x ∈ R
F+2 | 〈 ~Ki, x〉 ≥ 0 for i = 0, . . . , E} (5.14)

There are Nσ spanning vectors for this dual cone N+. These Nσ vectors define the columns ~Tj of the

matrix T and they are in one–to–one correspondence with the homogeneous pα GLSM coordinates.

We would like to understand the computation of the dual cone in terms of tiling techniques.

In order to do so, we introduce a slightly different viewpoint that will prove to be useful.

An arbitrary real weight system on the edges can be interpreted as a white–to–black flow6

[49]. The (possibly negative) strength of the flow from white to black node along an edge ei is

given by the corresponding real weight ci. The real weights considered in this section are not to be

confused with the complex weights given by Xi that we have discussed earlier.

A flow is nonnegative if it has a nonnegative strength on all edges of the tiling (ci > 0 for all ei).

The flows are typically not divergence free, therefore there can be sinks and sources at the vertices.

6The flow space should not be confused with the flux space, which was introduced in the previous section and is

R
F+2.
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The net flux coming out of a given white node or into a black node is denoted the vorticity of the

node.

For each point in flux space x ∈ R
F+2 we define a real flow on the tiling whose strength at the

ith edge is given by
∑

j Kijxj. Hence the points inside N+ correspond to nonnegative flows in this

picture.

We want to find the spanning vectors ~Tα of the dual cone N+ ∈ R
NF +2. Following our

discussion in Section 5.1, we can rescale the vectors ~Tα by a positive real number using the gauge

transformations of the dimer model. Thus we can set their vorticity to one. Therefore, we can

focus on the hyperplane H ⊂ R
NF +2 such there is a unit source residing at every white vertex and

a unit sink at the black ones. The flows associated with this hyperplane are called unit flows.

The vectors ~Tα span the cone N+, hence they also span the intersection H ∩ N+ in flux

space. From the previous discussion, we know that this intersection is linearly mapped by Kij to

nonnegative unit flows P ⊂ R
E in flow space. It is well–known in the literature that the set of

nonnegative unit flows is a convex polytope in the flow space and that perfect matchings are vertices

of this polytope (Perfect Matching Polytope Theorem, [50]). Their preimages are the spanning

vectors ~Tα in flux space. For ~Tα, the flow on the ith edge is given by
∑

j Kij(~Tα)j =
∑

j KijTjα.

We conclude that there is a one–to–one correspondence between the GLSM fields in the Forward

Algorithm and perfect matchings.

Perfect matchings are naturally represented as unit flows, hence they immediately determine

KT . By introducing the following “product” between perfect matchings and edges in the tiling

〈ei, pα〉 =

{

1 if ei ∈ pα

0 if ei /∈ pα

(5.15)

the matrix KT is simply

(KT )iα = 〈ei, pα〉 (5.16)

The correspondence between GLSM fields and perfect matchings and the computation of KT in

terms of perfect matchings that we derived in this section was originally proposed in [34].
Using (5.16) for dP2, we have

KT
T =















































X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

p1 0 1 0 1 0 0 0 0 1 0 0

p2 0 0 1 0 0 0 0 1 0 0 1

p3 0 0 0 0 0 1 0 1 0 1 0

p4 0 0 0 0 1 0 1 0 0 1 0

p5 1 0 1 0 0 0 0 0 1 0 0

p6 0 0 0 1 0 0 0 1 0 1 0

p7 1 0 0 0 1 0 0 0 0 1 0

p8 0 1 0 0 1 0 0 0 0 0 1

p9 0 0 1 0 0 0 1 0 1 0 0

p10 0 1 0 0 0 1 0 0 1 0 0















































(5.17)
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As we discussed in the previous section, the left inverse of K, which we called K−1
L , arises

naturally using dimer methods. Then, it is straightforward to write down

T = K−1
L KT (5.18)

T =































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

ṽ1 −2 1 0 0 2 −1 1 −1 1 −1

ṽ2 0 −1 −2 2 0 −1 1 1 1 −1

ṽ3 3 0 −1 −3 1 0 −2 0 0 2

ṽ4 −1 2 1 0 −2 1 −1 1 −1 −1

ṽx 1 1 1 −1 −1 2 −2 −1 0 0

ṽy −1 −1 1 1 1 1 2 −2 0 −1

V 6 6 6 6 6 6 6 6 6 6































(5.19)

Notice that the fact that T may have negative entries is not a problem. The important point

is that (KT )iα ≥ 0. In fact we can give a straightforward definition of T in terms of the tiling,

similar to (5.16). In order to do so, we take into account the edges ei in the curves γj that define

the magnetic fluxes (similarly, all ei’s are included for V). The γj’s have an orientation and then

the fields Xi associated to edges ei appear with a ±1 power that we denote sign(ei). Combining

these ideas, we get

Tjα =
∑

ei∈γj

sign(ei)〈ei, pα〉 (5.20)

5.3 Height changes as positions in a toric diagram

So far we have shown that GLSM fields are perfect matchings. This is half of the proof of the

Mathematical Dimer Conjecture, which in addition states that the height changes (hx, hy) of a given

perfect matching should be interpreted as the position in the toric diagram of the corresponding

GLSM field.

Let us define the following 3 × Nσ matrix

Gh =







hx

hy

1






(5.21)

The non–trivial piece of Gh is given by (hx, hy). We have included a third row with value 1 for

all perfect matchings that plays the role of the trivial coordinate of the toric diagram.

Our goal is to prove that Gh defines the GLSM charge matrix Q through the vanishing linear

relations among its columns, and thus can be identified with G in (3.9). I.e. we want to show that

Q GT
h = 0 ⇔ QF GT

h = 0

and QD GT
h = 0

(5.22)
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For the third row of Gh, (5.22) means that the trace over perfect matchings of any given GLSM

U(1) charge vanishes. It is straightforward to see that this condition is always satisfied. Thus, from

now on we concentrate on the (hx, hy) piece of Gh.

Let us first show that QF GT
h = 0. From (5.23), we have

T QT
F = 0 (5.23)

Hence, it is sufficient to prove that hx and hy are given by linear combinations of the rows of

T . It is straightforward not only to show that this is the case but also to identify the precise form

of these linear combinations. The key ideas are the interpretation of height changes as horizontal

and vertical net flows as discussed in Section 2.2 and that KT is computed as the “overlap” of

perfect matchings and edges (5.16). With this in mind, we can express the height changes as

hx(pα) =
∑

j

(
∑

ei∈Ex

signx(ei)Kij) Tjα (5.24)

hy(pα) =
∑

j

(
∑

ei∈Ey

signy(ei)Kij) Tjα (5.25)

where Ex and Ey denote the set of edges crossing the horizontal and vertical boundaries of the unit

cell (i.e. the flux lines Cx and Cy), and signx(ei) and signy(ei) indicate the direction of the crossing.

For illustration, let us consider our dP2 example, for which

Ex = {X52,X53, Y23} signx(ei) = {−1, 1,−1}

Ey = {X23, Y23} signy(ei) = {1,−1}
(5.26)

Figure 9 shows Ex and Ey in the tiling.

Ex Ey

5
41

23
3 5

41

23
3

Figure 9: Sets of edges Ex and Ey that enter the computation of (hx, hy).

Using (5.23), the fact that (hx, hy) is given by the linear combinations constructed in (5.24)

and (5.25) implies that

QF GT
h = 0 (5.27)

as we want. The missing part of the proof is to show that QD GT
h = 0. This can be done as follows
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(

QD GT
h

)

lx
=
∑

ei∈Ex

signx(ei)
(

V UT T KT
)

li
=
∑

ei∈Ex

signx(ei)
(

V KT
)

li

=
∑

ei∈Ex

signx(ei)∆li = 0 (5.28)

In the first equality we have used (5.24) and (3.7). In the second one, we used (3.6). In the

third one, we used (3.5). The last step uses the following reasoning. Every face l of a tiling

(l = 1, . . . , F ) is crossed by Cx over an even number of edges 7. Typically, as in the dP2 example

we are considering in the paper, this intersection number is 0 or 2, but larger values are also

possible. Every edge intersected by Cx corresponds to a field Xi in Ex that transforms either in the

fundamental (∆li = 1) or antifundamental (∆li = −1) representation of the SU(N) gauge group

associated with face l 8. Let us consider two edges in ei and ej in Ex that are consecutive as we

move around face l. Then, ∆li/∆lj = 1 or −1 provided ei and ej are separated by and odd or even

number of edges, respectively. Conversely, signx(ei)/sign
x(ej) = 1 or −1 if they are separated by

and even or odd number of edges. Hence, we have that signx(ei)∆li/sign
x(ej)∆lj = −1, and thus

∑

ei∈Ex
signx(ei)∆li = 0.

With identical reasoning, it follows that

(

QD GT
h

)

ly
=
∑

ei∈Ey

signy(ei)∆li = 0 (5.29)

From (5.28) and (5.29), we conclude that

QD GT
h = 0 (5.30)

Hence, we have Q GT
h = 0 and we can identify

Gh ≡ G (5.31)

We have shown that the slopes of the perfect matchings are the positions of the corresponding

GLSM fields in the toric diagram, completing our proof of the Mathematical Dimer Conjecture.

Before closing this section we notice an interesting result that was possible due the use of

dimers. Equations (5.24) and (5.25) give the positions of GLSM fields in the toric diagram directly

as linear combinations of rows of KT . Nothing like these expressions was clear from the Forward

Algorithm and shows, once again, how dimers manage to pick the natural variables for computing

the moduli space.
7Actually, a face of the tiling may be crossed by Cx over an odd number of edges. This happens when there

are chiral multiplets transforming in the adjoint representation of the corresponding gauge group. Adjoint fields are

represented in the tiling by edges such that the faces at both of its sides are identified (arrows beginning and ending

at the same node in the dual quiver). For a field Xi in the adjoint representation of the lth gauge group ∆li = 0 and

thus the derivation of (5.28) still holds. The reader should keep in mind this subtlety.
8As we explained, it is straightforward to incorporate fields in the adjoint representation to the proof.
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6. Conclusions

In this paper we have proved the Mathematical Dimer Conjecture. That is, we have explicitly

shown that there is a one–to–one mapping between the GLSM fields that realize the moduli space

of a toric quiver and perfect matchings in the brane tiling dual to the periodic quiver. We have

also demonstrated that the position of each GLSM field in the toric diagram is given by the slope

of the corresponding perfect matching.

We have witnessed how dimers often provide an intuitive interpretation of otherwise obscure

steps in the computation of the moduli space. An example of this type is that F–term equations

can be easily solved using gauge transformations of weights as shown in Section 5.1. This leads to

the magnetic flux variables and V as natural intermediate variables of the Forward Algorithm.

There are several interesting directions that deserve further investigation. A partial list of them

is:

• Our discussion has been limited to toric phases of the gauge theories (i.e. phases in which

all the gauge groups have the same rank). Non–toric phases are obtained by performing a

Seiberg duality transformation on a node for which the number of flavors is larger than twice

the number of colors. It would be interesting to investigate whether some generalization of

the brane tiling methods is applicable to these phases.

• Conformal invariance can be broken by incorporating fractional branes (D5–branes wrapped

over vanishing 2–cycles in the singular geometry). They modify the ranks of gauge groups in

the quiver in a way that can be visualized in the brane tiling as a ”chessboard” configuration

[51]. The resulting RG flows take the form of duality cascades. It would be worth studying

whether such RG flows are captured by some modification of the tiling.

• Recently, there has been a renewed interest in marginal deformations of gauge theories [52]

and the construction of their supergravity duals [53]. Given the simplicity with which super-

potentials are encoded by brane tilings, it is natural to ask whether and how it is possible to

study this problem within this framework.

• It is interesting to explore whether brane dimer methods can be extended to D(9 − 2p)–

branes probing p–complex dimensional toric singularities. It is natural to conjecture that

the corresponding tilings will be (p− 1)–dimensional and live on a (p− 1)–dimensional torus.

The concepts of height function, slopes and characteristic polynomial should be appropriately

generalized to (p−1) dimensions. In analogy to what happens in four dimensions, if these

constructions exist in other dimensions, they might be useful for finding possible field theory

dualities.

• Another direction is to investigate what is the geometric and gauge theory meaning of brane

tilings on the Klein Bottle, such as the one presented in Section 2.1.
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7. Appendix

Perfect matchings for dP2

Figure 10 presents the ten perfect matchings for Model II of dP2 and their slopes.
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Figure 10: Perfect matchings and their slopes for Model II of dP2.

– 23 –



References

[1] J. M. Maldacena, The large n limit of superconformal field theories and supergravity, Adv. Theor.

Math. Phys. 2 (1998) 231–252, [hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from non-critical string

theory, Phys. Lett. B428 (1998) 105–114, [hep-th/9802109].

[3] E. Witten, Anti-de sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253–291,

[hep-th/9802150].

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large n field theories, string theory

and gravity, Phys. Rept. 323 (2000) 183–386, [hep-th/9905111].

[5] M. R. Douglas and G. W. Moore, D-branes, quivers, and ale instantons, hep-th/9603167.

[6] M. R. Douglas, B. R. Greene, and D. R. Morrison, Orbifold resolution by d-branes, Nucl. Phys. B506

(1997) 84–106, [hep-th/9704151].

[7] K. Intriligator and B. Wecht, The exact superconformal r-symmetry maximizes a, Nucl. Phys. B667

(2003) 183–200, [hep-th/0304128].

[8] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, Sasaki-einstein metrics on s(2) x s(3),

hep-th/0403002.

[9] J. P. Gauntlett, D. Martelli, J. F. Sparks, and D. Waldram, A new infinite class of sasaki-einstein

manifolds, hep-th/0403038.

[10] D. Martelli and J. Sparks, Toric geometry, sasaki-einstein manifolds and a new infinite class of

ads/cft duals, hep-th/0411238.

[11] S. Benvenuti, S. Franco, A. Hanany, D. Martelli, and J. Sparks, An infinite family of superconformal

quiver gauge theories with Sasaki-Einstein duals, hep-th/0411264.

[12] M. Cvetic, H. Lu, D. N. Page, and C. N. Pope, New einstein-sasaki spaces in five and higher

dimensions, hep-th/0504225.

[13] D. Martelli and J. Sparks, Toric sasaki-einstein metrics on s**2 x s**3, Phys. Lett. B621 (2005)

208–212, [hep-th/0505027].

[14] M. Cvetic, H. Lu, D. N. Page, and C. N. Pope, New einstein-sasaki and einstein spaces from kerr-de

sitter, hep-th/0505223.

[15] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, Gauge theories from toric

geometry and brane tilings, hep-th/0505211.

[16] S. Benvenuti and M. Kruczenski, From sasaki-einstein spaces to quivers via bps geodesics: Lpqr,

hep-th/0505206.

[17] A. Butti, D. Forcella, and A. Zaffaroni, The dual superconformal theory for lpqr manifolds,

hep-th/0505220.

[18] D. Martelli, J. Sparks, and S. T. Yau, The geometric dual of a-maximisation for toric Sasaki- Einstein

manifolds, hep-th/0503183.

– 24 –

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/9603167
http://xxx.lanl.gov/abs/hep-th/9704151
http://xxx.lanl.gov/abs/hep-th/0304128
http://xxx.lanl.gov/abs/hep-th/0403002
http://xxx.lanl.gov/abs/hep-th/0403038
http://xxx.lanl.gov/abs/hep-th/0411238
http://xxx.lanl.gov/abs/hep-th/0411264
http://xxx.lanl.gov/abs/hep-th/0504225
http://xxx.lanl.gov/abs/hep-th/0505027
http://xxx.lanl.gov/abs/hep-th/0505223
http://xxx.lanl.gov/abs/hep-th/0505211
http://xxx.lanl.gov/abs/hep-th/0505206
http://xxx.lanl.gov/abs/hep-th/0505220
http://xxx.lanl.gov/abs/hep-th/0503183


[19] A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a- maximization and

z-minimization, JHEP 11 (2005) 019, [hep-th/0506232].

[20] Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, hep-th/0507057.

[21] E. Barnes, E. Gorbatov, K. Intriligator, and J. Wright, Current correlators and ads/cft geometry,

hep-th/0507146.

[22] D. R. Morrison and M. R. Plesser, Non-spherical horizons. i, Adv. Theor. Math. Phys. 3 (1999) 1–81,

[hep-th/9810201].

[23] C. Beasley, B. R. Greene, C. I. Lazaroiu, and M. R. Plesser, D3-branes on partial resolutions of abelian

quotient singularities of calabi-yau threefolds, Nucl. Phys. B566 (2000) 599–640, [hep-th/9907186].

[24] B. Feng, A. Hanany, and Y.-H. He, D-brane gauge theories from toric singularities and toric duality,

Nucl. Phys. B595 (2001) 165–200, [hep-th/0003085].

[25] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz, and C. Vafa, A geometric unification of dualities,

Nucl. Phys. B628 (2002) 3–78, [hep-th/0110028].

[26] M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2004)

1117–1153, [hep-th/0212021].

[27] C. P. Herzog and J. Walcher, Dibaryons from exceptional collections, JHEP 09 (2003) 060,

[hep-th/0306298].

[28] C. P. Herzog, Exceptional collections and del pezzo gauge theories, JHEP 04 (2004) 069,

[hep-th/0310262].

[29] P. S. Aspinwall and S. Katz, Computation of superpotentials for d-branes, hep-th/0412209.

[30] P. S. Aspinwall and L. M. Fidkowski, Superpotentials for quiver gauge theories, hep-th/0506041.

[31] C. P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064, [hep-th/0405118].

[32] C. P. Herzog and R. L. Karp, Exceptional collections and d-branes probing toric singularities,

hep-th/0507175.

[33] A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149.

[34] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht, Brane dimers and quiver gauge

theories, hep-th/0504110.

[35] A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, hep-th/0511063.

[36] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, Dimer models from mirror symmetry and quivering

amoebae, hep-th/0511287.

[37] A. Butti and A. Zaffaroni, From toric geometry to quiver gauge theory: The equivalence of

a-maximization and z-minimization, hep-th/0512240.

[38] N. Seiberg, Electric - magnetic duality in supersymmetric nonabelian gauge theories, Nucl. Phys.

B435 (1995) 129–146, [hep-th/9411149].

– 25 –

http://xxx.lanl.gov/abs/hep-th/0506232
http://xxx.lanl.gov/abs/hep-th/0507057
http://xxx.lanl.gov/abs/hep-th/0507146
http://xxx.lanl.gov/abs/hep-th/9810201
http://xxx.lanl.gov/abs/hep-th/9907186
http://xxx.lanl.gov/abs/hep-th/0003085
http://xxx.lanl.gov/abs/hep-th/0110028
http://xxx.lanl.gov/abs/hep-th/0212021
http://xxx.lanl.gov/abs/hep-th/0306298
http://xxx.lanl.gov/abs/hep-th/0310262
http://xxx.lanl.gov/abs/hep-th/0412209
http://xxx.lanl.gov/abs/hep-th/0506041
http://xxx.lanl.gov/abs/hep-th/0405118
http://xxx.lanl.gov/abs/hep-th/0507175
http://xxx.lanl.gov/abs/hep-th/0503149
http://xxx.lanl.gov/abs/hep-th/0504110
http://xxx.lanl.gov/abs/hep-th/0511063
http://xxx.lanl.gov/abs/hep-th/0511287
http://xxx.lanl.gov/abs/hep-th/0512240
http://xxx.lanl.gov/abs/hep-th/9411149


[39] C. E. Beasley and M. R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001,

[hep-th/0109053].

[40] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, Toric duality as Seiberg duality and brane

diamonds, JHEP 12 (2001) 035, [hep-th/0109063].

[41] S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos, Duality walls, duality trees and fractional

branes, hep-th/0306092.

[42] B. Feng, S. Franco, A. Hanany, and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076,

[hep-th/0205144].

[43] S. Benvenuti and M. Kruczenski, Semiclassical strings in sasaki-einstein manifolds and long operators

in n = 1 gauge theories, hep-th/0505046.

[44] A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes,

JHEP 05 (1998) 001, [hep-th/9801134].

[45] A. Hanany and A. M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013,

[hep-th/9805139].

[46] M. Aganagic, A. Karch, D. Lust, and A. Miemiec, Mirror symmetries for brane configurations and

branes at singularities, Nucl. Phys. B569 (2000) 277–302, [hep-th/9903093].

[47] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. North-Holland, 1976.

[48] R. Kenyon, An introduction to the dimer model, math.CO/0310326.

[49] R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, math-ph/0311005.

[50] J. Edmonds, Maximum matching and a polyhedron with (0,1)-vertices, J. Res. Nat. Bur. Standards

B69 (1965) 125–130.

[51] S. Franco, A. Hanany, F. Saad, and A. M. Uranga, Fractional branes and dynamical supersymmetry

breaking, hep-th/0505040.

[52] R. G. Leigh and M. J. Strassler, Exactly marginal operators and duality in four-dimensional n=1

supersymmetric gauge theory, Nucl. Phys. B447 (1995) 95–136, [hep-th/9503121].

[53] O. Lunin and J. Maldacena, Deforming field theories with u(1) x u(1) global symmetry and their

gravity duals, JHEP 05 (2005) 033, [hep-th/0502086].

– 26 –

http://xxx.lanl.gov/abs/hep-th/0109053
http://xxx.lanl.gov/abs/hep-th/0109063
http://xxx.lanl.gov/abs/hep-th/0306092
http://xxx.lanl.gov/abs/hep-th/0205144
http://xxx.lanl.gov/abs/hep-th/0505046
http://xxx.lanl.gov/abs/hep-th/9801134
http://xxx.lanl.gov/abs/hep-th/9805139
http://xxx.lanl.gov/abs/hep-th/9903093
http://xxx.lanl.gov/abs/math.CO/0310326
http://xxx.lanl.gov/abs/math-ph/0311005
http://xxx.lanl.gov/abs/hep-th/0505040
http://xxx.lanl.gov/abs/hep-th/9503121
http://xxx.lanl.gov/abs/hep-th/0502086

