
Modifying Polyester Surfaces with Incompatible Polymer Additives 

Reactive and Functional Polymers .,  03/2015; DOI: 10.1016/j.reactfunctpolym.2015.03.002 

Christopher D. James,1 Christopher Jeynes,2 Nuno P. Barradas,3 Luke Clifton,4 Robert M. Dalgliesh,4 

Rebecca F. Smith,1,5 Stephen W. Sankey,6 Lian R. Hutchings1 and Richard L. Thompson.1* 

1 Department of Chemistry, Durham University, Mountjoy Site, Durham, DH1 3LE, U.K. 

2
 University of Surrey Ion Beam Centre, Guildford, GU2 7XH, U.K.

 

3
 Instituto Superior Técnico, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS, Portugal

 

4
 STFC ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 

OX11 0QX, U.K.
 

5 Current address: School of Chemical Engineering and Analytical Science, The University of 
Manchester, Oxford Road, Manchester, UK, M13 9PL 

6
 DuPont Teijin Films Ltd., Wilton Centre, Middlesbrough, Teesside, TS90 8JE, U.K.

 

*To whom correspondence should be addressed: 
Email r.l.thompson@dur.ac.uk 
Tel +44 191 3342139 
Fax +44 191 3844737 

 

 

 

Abstract 

Surface modification of amorphous PET in incompatible blends is demonstrated using fluorocarbon 

end-functional polystyrenes.  Contact angles with water and decane were consistent with high levels 

of surface fluorocarbon, even for spin-cast films with no further processing required.  

Hydrophobicity and lipophobicity were further increased by annealing above the glass transition 

temperature.  High resolution depth profiling using complementary ion beam analysis and specular 

neutron reflectometry has enabled accurate characterisation of the composition profile of the 

additive including the minimum in additive concentration found just below the surface enriched 

layer.  This analysis quantified the very low compatibility between the modifying polymer and the 

amorphous PET and was consistent with the highly segregated nature of the adsorbing species and 

its sharp interface with the subphase.  For these incompatible polymer blends, surfaces enriched 

with the surface active polymer could coexist at equilibrium with extremely low (~0.4 %) bulk 
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loadings of the additive.  This suggests that for thicker films at even lower additive concentrations 

than the minimum 1% that we studied, it may be possible to achieve efficient surface modification.  

However, at this concentration, the efficiency of surface modification is limited by the processing 

conditions.  Finally we note that in higher loadings of surface active additive there is clear evidence 

for lateral phase separation into patterned domains of differing composition. The enhancement in 

surface properties is due to local reorganisation rather than bulk redistribution of the components 

within the film, as the composition versus depth distributions of the polymer blend components was 

observed to be relatively unaffected by annealing.   

 

 

Introduction 

A continuing challenge for the polymer industry is to deliver new effects or enhanced 

properties from a palette of materials that is often increasingly restricted.  For example, in 

food and drug applications a limited range of approved materials exists, which may be used 

in applications where they are to be ingested, or in contact with materials that are ingested.   

For many other applications, sophisticated tooling and production methods, which have 

been developed and commercialised over decades are prohibitively expensive to adapt for 

entirely new polymers.  With rising raw materials cost, and growing concern over 

environmental impact, there is a continuing drive to “do more with less”, and to achieve this 

with existing production facilities.  For these reasons, it is often more appealing to modify an 

existing polymer than it is to attempt to synthesize an entirely class of materials. 

Surface modification is a clear example where desirable improvements in performance, for 

example biocompatibility,1 hydrolysis or wear resistance2 are obtainable and enable new 

applications for existing polymers.  For most applications, it is vital for this to be achieved 

without altering the bulk properties that are compatible with established processing 

protocols.  In recent years, we have shown that the controlled introduction of multiple 

functional groups the ends of polymer chains allows these materials to be added to a 

compatible matrix.3  The functional groups can be sufficiently surface-active to achieve 

dramatic surface modification.  “PTFE-like” surfaces can be generated on many polymers 

whilst retaining their other desirable bulk properties of these polymers, as defined by their 

solubility, melting temperature and glass transition temperature.3-6  Until now, work on 

surface modification with end functional polymers has focused almost exclusively on blends 

in which the matrix polymer and the end-functionalised polymer chain are compatible.  

Increasingly, it is becoming recognised that more complex, multiphase polymer blends and 

composites offer distinct advantages over single phase materials.  It is well known, for 

example, that the presence of separate phases can offer much greater control over bulk 

properties (e.g. modulus, glass transition temperature) than is possible with single phase 

blends.7  However, there are relatively few reports in the literature on the surface 

modification of polyesters by functional polymers, and most have focused on the 

biodegradable polyesters. Esteves et al have recently demonstrated the potential of 



oligomeric fluorocarbon functionalised PCL to modify the surface of a cross-linked resin,8 

and that the inclusion of appropriately functionalised particles in polymers has enabled the 

formation of durable, recoverable superhydrophobic coatings.9  In our own earlier work,10 

we found that multi-fluorocarbon end functional polylactides could confer highly 

hydrophobic surfaces to compatible blends with polylactides, which would otherwise be 

quite hydrophilic, and Abe et al11 demonstrated that end functional polylactides could 

significantly increase the stability of polylactides with respect to enzymatic degradation. 

Due to their relatively high cost, efficient use of surface modifying additives is essential.  

Therefore, a clear understanding of the influences of key parameters such as degree of 

functionalisation, molecular weight, or process conditions is necessary to successfully 

implement the use of functional polymer additives to achieve surface modification.  

Hydrophobicity is determined by topography as well as surface chemistry, so spurious 

results occur when a surface is inadvertently roughened or contaminated.  Furthermore, 

only by understanding the equilibrium between bulk and surface concentration and the 

approach to this state is it possible to predict the most cost-efficient combination of additive 

concentration, process time and temperature to deliver the required level of surface 

modification.  Therefore, validation of this technology depends not only on characterisation 

by standard techniques such as contact angle analysis, but more sophisticated methods that 

can probe beneath the surface are also essential to understand the mobility5 and efficiency4 

of surface adsorption of the functional additive.  This is a significant challenge to address 

since it is necessary to quantify behaviour on length scales comparable to polymer chain 

dimensions (typically 3-30 nm) as well as the much larger scales associated with diffusion 

and phase separation (0.1-10 m).12-15  Many methods can achieve or even exceed the 

required depth resolution near surfaces (ToF-SIMS,16 XPS,17 neutron reflection18, etc) and 

there are also methods such as confocal microscopy19,20 that can deliver the range required 

for phase separation or stratification.  However, ion beam analysis appears to be almost the 

only technique in which it is possible to span the relevant depth range with sufficient 

resolution in a single experiment.21,22  

Here we compare the influences of functionality and incompatibility for the first time in a 

multi-end functional polymer blend, which has been designed to deliver hydrophobic 

surfaces. Such surfaces might be expected to enhance the hydrolytic stability of polyester, 

which would improve the lifetime of polyester film in many applications.  The viability of this 

concept has been demonstrated by the work by Abe et al11 mentioned earlier, but we are 

unaware of any equivalent work being carried out on PET. 

Our test system is based on a multi-fluorocarbon end-functional polystyrene, which is 

known to be extremely surface active in polystyrene matrices.  However the surface 

behaviour of this type of additive in a less compatible matrix has not previously been 

explored, and is not trivial to predict.  This blend has significant practical interest, since 

increasing the hydrophobicity of polyester has the potential to improve resistance to 



hydrolysis, but only if the additive could migrate to the blend surface and furthermore, that 

the hydrophobic layer has sufficient mechanical stability to remain on the blend surface.   

The possibility of achieving surface modification with very low quantities of an incompatible 

surface active polymer is extremely desirable, since it greatly increases the potential utility 

of this class of additive material as well as the other industrially important polymers such as 

PEN, PP and PE for which surface modification is desirable.  We explore the separate 

influences of multiple fluorocarbon functionality and matrix incompatibility on the surface 

properties of spin cast blended films. The vertical depth distribution of the additives 

responsible for surface modification is analysed in detail using complementary ion beam 

analysis for the main features of the profile,  and neutron reflectometry to explore the fine 

structure of the adsorbed layer and the influence of annealing on this structure .  Finally, we 

consider the impact of matrix incompatibility on the lateral homogeneity of a blended film 

surface and show that even for low surface energy additives that can appear to yield a 

surface wetting layer, lateral phase separation may occur. 

 

Experimental 

A tri-fluoro end functional deuterated polystyrene (Mn = 11.2 kg/mol, Mw= 14.9 kg/mol) 

(“3CFdPS11”) was prepared by living radical polymerisation of dPS from a fluorocarbon 

functionalised initiator.  Each fluorocarbon functional C8F17 group, has a length of 

approximately 1 nm 10 and a cross-sectional area of approximately 0.28 nm2, 23 and 

therefore accounts for approximately 5% of the volume of the 3CFdPS11 chain.  The 

synthetic methodology ensured that all of the polymer chains carried the fluorocarbon 

functional groups and that there was good control over the final molecular weight 

distribution.  Further details of the synthesis are given in an earlier publication.6  An 

unfunctionalised deuterium labelled polystyrene of similar molecular weight, dPS11, (Mn = 

11.1 kg/mol, Mw =11.4 kg/mol) was also prepared as a control additive to enable the 

influence of the fluorocarbon functionality on the material properties to be isolated.  An 

amorphous polyester was prepared by condensation polymerisation of 

bishydroxyethylterephthalate (BHET) and bishydroxyethylisophthalate (BHEI) in a 3:2 ratio as 

shown in figure 1.  The reaction, yields a random copolymer, poly(ethyleneterephthalate-r-

ethyleneisophthalate), which is an amorphous analogue to semi-crystalline 

poly(ethyleneterephthalate), PET.24   The absence of any detectable melting transition, and 

therefore the absence of crystalline domains, was confirmed by differential scanning 

calorimetry, and we refer to this material hereafter as “amPET”.  The molecular weight 

distribution of the resulting amPET was characterised by GPC using chloroform as the 

solvent. The number average molecular weight, Mn, was 5600 g/mol and the polydispersity 

index, Mw / Mn was 5.6.  A further control sample of hydrogenated polystyrene, hPS100, Mn 

= 90 000 g mol-1, Mw/Mn = 1.10, was used in order to resolve the effects of matrix 

incompatibility on the surface properties. 



 

 

 

Figure 1: Reaction scheme for the synthesis of amPET 

Polymer blend films were prepared by co-dissolution of the constituent polymers in their 

required proportion in chloroform so that the total polymer concentration in the solution 

was approximately 4% (w/w).  These solutions were spin-cast onto clean silicon wafers using 

a photoresist spinner at ~2500 rpm for 25 s to yield smooth films of approximately 500 nm 

total thickness.  Prior to solution spin casting, wafers were split into 2 cm × 2 cm squares, 

which were cleaned of any debris and surface contamination by repeated spin-casting of 

pure toluene (99+%) at 3200 rpm.  After allowing sufficient time for the solvent to 

evaporate, the films were analysed in this ‘unannealed’ state, or were annealed in a vacuum 

oven at 160 °C for 1 hour. 

Static contact angle analysis was carried out using a Ramé-Hart NRL manual goniometer 

(100-00-230) using high purity water and n-decane as the contacting fluids.  The use of a 

polar and non-polar contact fluid enabled an approximate measure of surface energy to be 

derived using the Owens-Wendt method.25  More importantly the use of a non-polar 

contact fluid also enables the direct confirmation of the presence of significant levels of 

fluororcarbon on the film surface, since decane wets both PS and PET giving almost zero 

contact angles in the absence of fluorocarbon. 

An NEC 5SDH Pelletron accelerator was used for ion beam analysis (IBA) experiments.  A 2.4 

mm diameter beam of 3He+ ions, 0.7 MeV, 4 C total charge was incident on each sample.  

Measurements were carried out at grazing incidence to ensure sufficient depth resolution to 

quantify the surface excess of the deuterium labelled additive.  The energetic nuclear 

reaction products arising from the D(3He,p) reaction (Q = 18.353 MeV)26 were detected at 

170° to the incident beam.  Both protons and alphas are detected, but the protons carry the 

most information:  the PIPS detector had an active layer 1.5 mm thick, and an energy 

resolution of approximately 19 keV.   



Specular neutron reflectivity experiments were carried out at the SURF reflectometer, ISIS 

neutron Source, Rutherford Appleton Laboratories, UK.  Samples were prepared in the same 

way as for ion beam analysis except that they were spin cast onto 5 mm thick, 50 mm 

diameter silicon blocks, from a 2% w/w polymer solution in order to yield films of 

approximately 100 nm thick.  Reflectivity data were collected over the range 0.005 < Q / Å-1 

< 0.3, which covers the range from critical reflectivity to the background.   

In this work the IBA profiles were first fitted without presupposing any theoretical model,  

and then fitted with the functional form specified in Eq.2 using the DataFurnace code27 with 

the executable NDFv9.6a.  The methodology is described in greater detail elsewhere, and is 

summarised in the supporting information (S.I.1)282530  Model-free fitting is necessary to 

demonstrate that the assumed model is valid for these data, but a relatively coarse layer 

structure is the natural output because of the intrinsic depth resolution of the technique.  

The knowledge that the profile is not discontinuous is extra prior information that is not 

objectively in the IBA data.  The model-free fit could of course be improved, but then would 

for our present purposes have to be parameterised.  Figure 4 shows the difference between 

a model-free fit and the fitted model:  the issue of how to extract maximum information 

from the data, with Bayesian and other methods, is discussed at length by Jeynes et al31.  

 

Results 

Surface modification of PET and PS by end-functional polystyrenes. 

Figure 2(a) shows the results of contact angle analysis with water on a variety of blended 

polymer films.  We note that the behaviour observed in these spin-cast films is quite similar 

to that reported previously for compatible blends in which the functional polymer additive 

and matrix polymer had the same repeat unit.3-6  At low concentrations of additive there is a 

sharp increase in hydrophobicity with increasing additive concentration up to a plateau 

value typically obtained at approximately 2-4 % additive.  For the control additive, dPS11, 

which lacks any fluorocarbon groups, the maximum contact angle obtained is not much 

more than 90°, consistent with the value obtained for the unmodified hPS100 film, and our 

previous results for contact angles on unmodified polystyrene surfaces.3,6  In contrast, the 

presence of 3 C8F17 fluorocarbon groups per chain end of the 3CFdPS11 additive is sufficient 

to yield contact angles well in excess of 100°, and at higher loadings (>4% w/w) approach 

values expected for PTFE.  We note that although the 3CFdPS11 has more CF3 groups than 

PTFE, the hydrophobicity does not exceed that of PTFE because each functional group is 

covalently bound to a much larger hydrocarbon chain, and it is unlikely that sufficient 

packing density could ever be achieved to present a pure CF3 surface.  As seen previously for 

pure PS films, annealing above the glass transitions of the constituent polymers gives a 

further increase in hydrophobicity for any given additive concentration.  Since our results for 

both additives in PET, an incompatible matrix, are rather similar to those for the hPS100 



matrix, with which the additives are fully compatible, our contact angle results strongly 

suggest that incompatibility has relatively little influence on surface activity of functional 

polymers.  Only at low concentrations where there is insufficient additive to achieve high 

surface coverage, do our results diverge toward the values expected for the unmodified 

matrix materials. 
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Figure 2.  Influence of 3CFdPS11 additive concentration on the contact angle of (a) water 

and (b) n-decane in hPS100 (triangles) and in amPET (squares).   Data for a control 

experiment dPS in amPET are included as circles.  Contact angles measured before 

annealing are shown as open symbols and after annealing as solid symbols.  The lines are 

a guide to the eye and include interpolation to measurements made at 100% additive. 

Although it is not expected that sample roughness could contribute significantly to the 

measured changes in hydrophobicity in smooth spin-cast films, we cannot reject this 



possibility based on the aqueous contact angle analysis data alone.  However, in all of our 

blended films containing 3CFdPS11, a qualitatively similar trend in contact angle was 

observed for nonpolar n-decane as were found with water.  Results for n-decane contact 

angle experiments are shown in figure 2(b).  This is a significant observation in that even 

relatively rough surfaces of the unmodified PET or PS should yield decane contact angle of 

approximately zero.  On this basis, the existence of significant (up to 45°) contact angles 

with a nonpolar contact fluid provides clear evidence of a fluorocarbon enriched surface. 

Using the Owens-Wendt model, we can estimate the modified surface energy from the 

contact angle, , obtained with multiple contact fluids.   
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where the total surface tension of the contacting fluid , L, can be separated into its polar 

(L
P) and dispersive (L

D) contributions, and the total solid surface energy, which is the 

parameter of interest to determine, is given by the sum of its polar and dispersive 

compenents, S
P and S

D respectively.  Two probe liquids – deionized water (σL = 72.8 

mN/m; σL
D = 21.8 mN/m, σL

P = 51.0 mN/m) and n-decane, (σL = 23.8 mN/m; σL
D = 23.8 

mN/m, σL
P = 0 mN/m), yield two equations from which the two unknown parameters, σS

D 

and σS
P, can be determined.  Although absolute values obtained in this way should be 

treated with caution, the overall trend shown in figure 3 is credible and shows that there is a 

systematic reduction in surface energy with increasing additive concentration, which is most 

apparent for the fluorocarbon functionalised additive, and becomes somewhat more 

dramatic after the samples have been annealed above the glass transition temperature of 

the components. 
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Figure 3.  Surface energy of blended films as a function of composition and annealing.  

Notation is the same as for figure 2. 



 

In the first instance to fit the NRA data, the additive concentration profile was approximated 

by a series of discrete layers of varying composition, and the calculated proton spectra were 

iteratively fitted from an initial simulation to the measured spectra by varying the thickness 

and composition of each layer.  The minimum layer thickness was set to 5×1016 atoms/cm2, 

which for our materials is approximately 5 nm and was chosen to be similar to the 

instrumental depth resolution at the lowest grazing angle of incidence employed.  This 

approach has been successfully used to characterise the surface segregation of deuterium 

labelled polymer previously.29  In subsequent fits, the layer model was replaced with the 

analytical functional form given by equation 2, 

1 2
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where h1 is the thickness of the surface enriched layer and w1 is the width of the interface 

between this layer and the adjacent concentration, which is expected to be somewhat 

depleted with respect to the bulk concentration, b.  A gradual increase in concentration 

between the depleted layer and the bulk is also expected, which is represented by the 

corresponding parameters in the second term of equation 2.  NRA data for 10% 3CFdPS11 in 

amPET are shown in figure 4, along with the fits to the experimental data obtained using the 

layer and analytical function models.  The vertical composition profiles obtained by each 

fitting method are compared in figure 5.  
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Figure 4. Simultaneous self-consistent fits of IBA data at three beam incident angles.  Data 

and fits (lines) for layer model (red) and obtained using equation 2 (black) to determine 

the concentration profile of the 3CFdPS11 additive. 
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Figure 5.  Comparison of concentration profiles obtained by layer models (red) and a 

functional form model (black).  The inset highlights the composition profile determined in 

the depleted region below the surface. 

Control NRA experiments were also carried out, at a single angle of incidence, to isolate the 

contributions to the vertical depth distribution of each deuterium labelled additive arising 

from matrix incompatibility and fluorocarbon functional groups.  Data and fits are included 

as supporting information S.I.2.  The composition versus depth profiles obtained using 

equation 2 are presented in figure 6.  It is evident that with the exception of dPS11 in 

hPS100, (which is only expected to be significantly surface active at much higher molecular 

weights than are considered here)30, all of the other spin-cast films show a considerable 

level of additive surface segregation.  
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Figure 6.  Influences of matrix compatibility and fluorocarbon functionality on the depth 

distribution of spin-cast films comprising 10% additives and 90% matrix.  The black curves 

correspond to 3CFdPS11 and the red curves dPS11.  Solid curves are for additives in amPET 

and dashed curves are for additives in hPS. 

 

Table 1 shows typical values for the confidence limits to fit parameters obtained by Bayesian 

Inference (BI).  The functional form used to describe the concentration dependence of the 

deuterated component was restricted to the region of the polymer film; therefore the fact 

that w1 exceeds h1 slightly implies a surface volume fraction at z = 0 of somewhat less than 

1, but does not have any impact on the air/polymer surface. 

 

Table 1.  Fitted parameters and confidence limits using equation 2 for surface active 

blends 10% dPS11 or 3CFdPS11 in amPET. 

 Fitted value 

parameter 10% 
3CFdPS11/amPET 

10% 
dPS11/amPET 

10% 
3CFdPS11/hPS100 

h1 / nm 9.9 ± 0.9 9.7 ± 1.6 11.7 ± 4.2 

w1 / nm 11.0 ± 0.3 11.2 ± 1.0 12.3 ±3.2 

h2 / nm 143 ± 5 111 ± 5 29 ± 9 

w2 / nm 72 ± 4 63 ± 6 12 (± 24) 

 

It appears that 3CFdPS11 in hPS100 has the highest surface concentration of any of the 

blended films, which is consistent with the high levels of surface hydrophobicity and 

lipophobicity seen in figure 2 for this combination, even at very low additive concentrations.  

However, it should be noted that the thickness obtained for the surface enriched layer, h1 

(=11.7 nm) is only marginally greater than the depth resolution of the measurement, so 

values contain a significant error arising from this uncertainty and the choice of the 

functional form used to describe the concentration profile.  What is more significant and 

unequivocally determined by the NRA experiments is the gradual variation in depth 

distribution apparent in the subsurface layer.   

 

The dependence of the 3CFdPS11 depth profile on concentration in amPET is shown for spin 

cast blended films in Figure 7.  Our results highlight the high level of surface activity in these 

blends, and in the case of the lowest concentration explored, the majority of the additive 

detected in the film appears to be present in the surface layer.  Both the 5% and 10% 

additive blends yield similar results for the minimum concentration of additive adjacent to 



the surface layer of approximately 0.4%, suggesting that this is a consistent measure of the 

binodal composition defining the upper solubility limit of 3CFdPS11 in amPET. 
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Figure 7.  Composition dependence of 3CFdPS11 in amPET films obtained by NRA. 

 

By integrating under the composition versus depth profile curves and correcting for the 

molecular volume of each polymer chain, we can estimate the surface excess, , of 

adsorbed polymer chains per unit surface area to be 

        (3)  

where  is the density of the adsorbing species.  Results for derived values of  obtained by 

nuclear reaction analysis are given in figure 8.  Interestingly, for 10% mass fractions of 

polystyrene based additive, the surface excess was found to be quite similar, irrespective of 

fluorocarbon functionalisation and only weakly dependent upon matrix compatibility, 

provided that the blend is one in which the additive has some inherent surface activity. 
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Figure 8.  Surface excess values for blended films. 



 

The composition profiles obtained are an average over the macroscopic area (~20 mm2) 

struck by the incident ion beam. Since the components of the polymer blend are chosen to 

be incompatible and expected to undergo phase separation in the bulk, it is not 

unreasonable to expect that there may also be lateral phase separation across the surface 

of a two-dimensional film. To explore this possibility further we conducted some AFM 

measurements on the higher concentrations of 3CFdPS 11 in amorphous PET. Figure 9 

shows the variation in surface topography for a 10×10 µm scan carried out by AFM. At 15% 

3CFdPS11, which was a higher concentration than we could obtain fittable neutron 

reflectometry data, evidence for surface dewetting was indeed seen by AFM.  Before 

annealing, there appear to be small (<5 nm) variations in surface height comprising a 

continuous layer with some sub-micron depressions within it.  After annealing, the surface 

becomes considerably rougher and the cross-sectional analysis of the scan shown in figure 

9b reveals features that regularly approach 50 nm in height.  Analysis of larger (25×25 

micron) scans indicated that the r.m.s. roughness of the spin-cast samples was 

approximately 1.8 nm, and that this roughness increased to approximately 11 nm after 

annealing.  However, because the vertical scale of roughness is very small compared to the 

lateral scale over which roughness is measured, the effective increase in surface area arising 

from roughness is miniscule, and amounts to relative increases in surface area of 0.016% 

and 0.42% for the unannealed and annealed samples respectively. 

 

Figure 9.  AFM height maps and cross sectional analysis for 15% 3CFdPS11 (a) before 

annealing and (b) after annealing at 150 °C for 1 hour. 

 



 

The influence of annealing on the precise nature of the surface enriched layer of 3CFdPS11 

on amPET is beyond the resolution of ion beam analysis, so we used neutron reflectometry 

to explore this further.  NR results for 10% 3CFdPS11 in amPET, before and after annealing 

are presented in figure 10(a) and reflectometry data were fitted using scattering length 

densities of 2.43×10-6 Å-2 and 6.47×10-6 Å-2 for amPET and dPS respectively according to  
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    (4) 

which has the same parameters as equation 2 except that the surface and depletion 

concentrations of 3CFdPS11, s, and dep are explicitly included.  It is necessary to include s 

because the superior depth resolution of NR allows this parameter to be decoupled from h1, 

whereas this would have led to over-parameterisation of the NRA data.  We have also 

included dep, but fixed this parameter at the value obtained from NRA, which is more 

accurate for regions of the film where composition varies slowly with depth.  Although NR is 

completely insensitive to the gradual increase in concentration with increasing depth 

beyond the depleted region31 (figure 6), it is however superbly sensitive to the sharp 

gradients in the scattering length density profile associated with the adsorbed deuterated 

layer on the film surface.  The dramatic change in R(Q) arising from annealing the sample 

seen in figure 10(a) can be attributed to the sharpening of the interface between the 

adsorbed 3CFdPS11 and the amPET-rich subphase apparent in figure 10(b).  The very high 

(approaching unity) surface volume fraction of dPS, which is accurately resolved by NR is 

only possible with a complete surface wetting layer.  In other words our NR analysis leaves 

very little scope for lateral inhomogeneity such as “islands” of different phases at lower 

concentrations, despite some evidence for this behaviour at higher concentrations apparent 

in the AFM results. 

 

Discussion 

Our results show that high levels of surface modification arising from segregation of a 

surface active additive are possible in solution spin-cast blended films, regardless of the 

compatibility of the blend components.  Our contact angle analysis results show that the 

characteristic surface properties of the blended films depend primarily on the surface 

energy of the additive material.  It appears that the compatibility (or lack of compatibility) 

between the additive and the matrix in which it is dispersed is only of secondary importance 

to the surface properties.  It is interesting to note that although the contact angle results 

with water and decane show a similar overall trend, the hydrophobicity with water appears 

to reach a plateau at lower concentrations than the lipophobicity with decane.  The reason 

for this behaviour is not clear, although it appears to have little effect on the derived values 



of surface energy, which do not change dramatically, except at the lower additive 

concentration range in figure 3 over which the film surface becomes more hydrophobic. 
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Figure 10. Neutron reflectometry data and fits (a) and the corresponding composition 

versus depth profiles (b) for 10% 3CFdPS11 in amPET before and after annealing. 

 

Although it is possible that surface roughness can have significant impact on contact angle 

results, both AFM results for surface topography and contact angle results with n-decane 

confirm that roughness would have a minimal impact on the measured hydrophobicity or 

lipophobicity.  Even the films that appear to show signs of dewetting (figure 9(b)) are 

relatively smooth in the sense that the increase in surface area over projected surface area 

(the relevant measure for Wenzel wetting) is of the order of 0.4 %.  This is much too small to 

have any discernible impact on the measured contact angles, and we note that 

corresponding value for the unannealed sample was even lower; therefore we conclude 

that all of the spin-cast films can be treated as ‘smooth’ for the purposes of contact angle 

analysis.  



The increase in surface roughness determined by AFM following annealing, albeit small has 

not previously been seen for similarly functionalised additives in compatible blends, and 

indicates that the surface enriched layer of functional polymer has a tendency to dewet the 

amPET-rich subphase. Under these circumstances the total amount of fluorocarbon 

functionalised material on the surface does not change, but the number of fluorocarbon 

groups exposed at the surface per unit area may in fact decrease. The absence of any loss in 

surface hydrophobicity following this coarsening of the surface might be attributed to a 

residual thin layer of 3CFdPS11 wetting the surface, or simply that the water droplets are 

effectively pinned by a continuous surface network of 3CFdPS11.  Although we see no 

evidence for superhydrophobicity in any of our blended films, the fact that incompatibility 

appears to lead to greater levels of surface roughness is very interesting as this suggests 

that there may be a route towards superhydrophobic surfaces if the phase separation 

between the polymer components can be harnessed to generate similarly rough surfaces to 

those obtained by solution phase separation32 or crystallisation33 to achieve this effect. 

It is interesting to note that while annealing does lead to significant increases in 

hydrophobicity and decreases in surface energy, both the fluorocarbon functionalised 

3CFdPS11 and its unfunctionalised counterpart, dPS11, impart a significant level of 

hydrophobicity to amPET, even in the unannealed spin-cast films.  This surface activity of 

3CFdPS11 was evident, even in the blended stock solutions in toluene from which the films 

were prepared.  When shaken, the stock solutions developed a short-lived, but appreciable 

level of foaming.  Conversely, the stock solutions containing dPS11 did not foam when 

shaken, confirming the expected absence of surface activity of dPS11 (surface energy ~40 

mJm-2) in toluene (surface tension ~28 mJm-2).  On this basis, the spontaneous surface 

segregation of dPS in amPET from a toluene solution, before annealing, is quite unexpected; 

therefore we turn our attention to the ion beam analysis results which enable the surface 

phenomenology to be linked to the depth distribution of the components.   

 

Depth distribution of surface active components 

Remarkably, we find that for the 10% blends, the functional group has no dramatic effect on 

the total adsorbed quantity of additive, and indeed the increase in surface hydrophobicity of 

spin-cast dPS11 in amPET can clearly be seen to arise from a surface enriched layer of the 

dPS11 additive (figure 6).  The implication of this surface excess, even before the dPS in 

amPET film has been annealed is that that the polymers are able to undergo significant 

rearrangement during the later stages of the spin-coating process, when there is insufficient 

solvent present near the film surface to inhibit the segregation of the marginally surface 

active dPS11.   

The insensitivity of the surface excess to functionality and incompatibility is most clearly 

illustrated in figure 8, where it is evident that there are approximately 0.4 additive polymer 



chains per nm2 for all of the incompatible surface-active polymer blends where there is 

sufficient total additive present to provide this layer.  Given our previous calculation10 that 1 

C8F17 group has an effective footprint of about 0.5 nm2, it appears that up to 60% of the 

3CFdPS11 incompatible blend film surface could be covered with fluorocarbon.  Although 

we observe a slightly larger surface excess in the 3CFdPS11/hPS100 blend, it appears that 

incompatibility has little impact on the surface segregation, except when there is no other 

driver for segregation such as fluorocarbon functionalisation.  The only blend which did not 

show this rather consistent level of surface segregation was the control dPS11/hPS100  

blend, for which any extent of surface segregation was too small to resolve by ion beam 

analysis.  The very small surface excess indicated by figure 8 is insignificant within the 

expected uncertainty. 

For the surface active 3CFdPS11 blends, both the layer fits and the functional form fits 

(figure 4) are highly satisfactory, and show that a single model incorporating a surface 

enriched layer, a near surface region of reduced concentration and a bulk layer successfully 

capture the key features of all of the measured data, and the concentration profile is 

characteristic of  a surface active polymer blended with a homopolymer with which it is only 

partially miscible.5  The large peak near channel 1310 corresponds to the surface layer, 

which is highly enriched with the deuterium labelled 3CFdPS11.  The data at higher channels 

correspond to the concentration of 3CFdPS11 deeper within the film, convolved with energy 

dependent nuclear reaction cross section.  In figure 5, the incompatibility between the 

polystyrene based additives and the amPET matrix is clearly apparent in the form of the 

drastic depletion in composition centred at a depth of approximately 50 nm.  Some 

depletion is also apparent, but to a far lesser extent, for the 3CFdPS11 in hPS blend, but this 

may be attributed to the incomplete equilibration of the surface excess layer rather than 

significant incompatibility between the blend components. 

The ‘steps’ in the simulation that arise from the sudden changes in composition in the layer 

model are not apparent in the data the resulting layer fit has a slightly higher partial chi-

squared values than were obtained for the analytical functional form.  Although this 

improvement to the fit with the functional form model is welcome, what is more significant 

is that this was achieved with just 5 parameters, (see table 1) as opposed to the 9 

parameters that were necessary to fit 4 finite layers and one thick layer.  While it is possible 

to approximate such a function by a large number of thinner layers, each layer adds as many 

parameters to the analysis as there are components in the material.  (There are n-1 degrees 

of freedom introduced by n components per layer since the total volume fraction must add 

up to unity plus one degree of freedom due to the variable layer thickness.)  Given that 

there is no evidence that the expected functional form is incompatible with the NRA data,  

Ockham’s Razor impels us to reduce the free parameters of the fitting by imposing the 

functional form on the data.   



As well as being more physically reasonable since the expected smooth profile is obtained, 

and preferable since fewer parameters are required, our analysis shows further benefits of 

the analytical functional form over the layer model in fitting the NRA data.  It is noticeable 

from figure 4 that the quality of fit for the functional form is also better in the region of very 

low scattering intensity between the surface excess and the bulk concentration.  This is 

because the model is manifestly valid, and the spectral shape in the low intensity region is 

determined (correctly) from the shape in the adjoining high intensity regions.  The width of 

the second interface, w2, between the depleted region and the bulk material can yield 

important insights into the physical nature of the blends.  For miscible polymer blends, the 

interfacial width can be used to estimate the diffusion coefficient of the additive.34  In this 

case, where the polymers are quite immiscible in the dry film, the interfacial width is a 

function of the interaction parameter between the polymer components.  However, this 

parameter is more directly obtainable from the minimum in concentration between the 

surface excess and the bulk composition if we assume that it is close to its equilibrium 

composition.  Allowing for the possibility for further demixing, the minimum concentration 

measured by ion beam analysis yields an upper limit to the miscibility of the additive in the 

matrix, i.e. the binodal composition.5  Using Flory-Huggins theory, we can estimate the 

strength of the unfavourable interactions between the PET matrix and the dPS additive.  If 

we assume that the amPET is best described by the weight-average molecular weight, we 

obtain an effective Flory-Huggins interaction parameter, (dPS-amPET), of 0.035 with respect to 

a reference volume of 200 Å3; the geometric mean of the repeat unit volumes of each 

polymer.  Furthermore, we can estimate that the binodal at the dPS-rich side of the phase 

diagram would be approximately (amPET)=10-6.  Although we should treat these derived 

values with considerable caution, it is reasonable to conclude that the 3CFdPS11 is only very 

sparingly dispersible in the amPET matrix, and that it is likely that amPET is even less soluble 

in the corresponding 3CFdPS11-rich phase.  This prediction is supported by our neutron 

reflectometry analysis of the influence of annealing on the surface segregation of 3CFdPS11 

on amPET.  It is noticeable that the total adsorbed quantity, z*, given by the integral under 

the composition profile only increases slightly with annealing, and that the major difference 

observed is in the sharpening of the interface between the adsorbed layer and the amPET 

rich layer beneath it.  Furthermore, it appears that in the annealed sample, the amPET 

matrix is almost entirely excluded from the adsorbed 3CFdPS11 surface layer and vice-versa.  

We note that this sharp interface between the adsorbed layer and the amPET sub-phase 

may reduce the mechanical robustness of the interface.  Our previous experiments indicate 

that when comparable length functionalised PMMA is compatible with the matrix, it is quite 

stable with respect to abrasion in water, but less so with acetone.35  However, for maximum 

mechanical stability, brush-like layers need to be well-entangled with the subphase,36 which 

is not possible for PS materials of this molecular weight, particularly with an incompatible 

matrix. 



From the practical point of view the binodal composition of additive in the polymer matrix is 

important to characterise accurately as it defines the minimum concentration required to 

achieve the maximum equilibrium surface excess.  For a thick film of amPET our analysis 

indicates that just 0.4% 3CFdPS11 would be required in the bulk to be in equilibrium with a 

saturated surface layer of this additive.  (Results for the analytical function fits to both the 

5% blend and the 10% blend give very similar values.)  However, to achieve such a 

spectacular efficiency of surface modification from such a low average bulk loading of 

additive requires a high proportion of the additive buried within the film to be able to 

migrate to the surface.  With the knowledge of the surface excess concentration and 

minimum bulk loading it is straightforward to estimate the mobility required under typical 

process conditions.  For 3CFdPS11 in amPET, the adsorbed surface excess layer would be 

approximately 6 nm thick.  At 0.4 % bulk loading of additive, it would require all of the 

3CFdPS11 in the uppermost 1.5 microns of film to migrate to the film surface to create such 

a surface excess.  On a production line, blend additives can only migrate to the film surface 

during the limited period of time that the film is held above its glass transition temperature.  

In a typical process, this time might be less than one minute; therefore we can estimate that 

the minimum diffusion coefficient required to achieve surface modification is approximately 

3×104 nm2s-1.  Although we have not measured the diffusion coefficient in amPET due to the 

very low solubility of the 3CFdPS11 additive, we note that this diffusion coefficient is of the 

order that would be predicted for tracer diffusion of dPS11 in PS by WLF calculations at 

approximately 200 °C.37  While this temperature is not unreasonable for film processing 

conditions, it should be noted that it comes close to the limit of thermal stability measured 

for this type of additive. 

 

Conclusion 

We have shown that in solution cast films, it is possible for extremely efficient surface 

modification to occur in a blended film, even when the surface active additive is quite 

incompatible with the matrix polymer.  It is apparent that when the blend components are 

incompatible, even a marginal preference for one component to locate at the film surface 

over another leads to a complete wetting layer of that component, and surprisingly this 

occurs even without annealing above the glass transition temperature.  From this we 

conclude that the blend components are able to reorganise according to their marginally 

different surface energies even in the presence of a solvent which has a lower surface 

energy than either polymeric component.  The more strongly surface active fluorinated 

additive gives rise to similar levels of hydrophobicity and lipophobicity, regardless of its 

compatibility with the matrix. 

Ion beam analysis (IBA) allows the direct determination of the vertical composition profiles 

which reveal how the additive surface segregation contributes to the hydrophobicity and 

lipophobicity observed by contact angle analysis.  Further,  IBA facilitates data interpretation 



which fully parameterises the system,  using both a reasonable chemical model of 

immiscibility and a chemical (molecular,  not elemental) description of the binary system.  

This in turn facilitates the use of Bayesian methods to extract parameter uncertainties,  

given the Flory-Huggins model.  The data themselves affirm the validity of the functional 

form of the depth profile, and since this function can be validly imposed on the data the 

function parameters are all determined by the whole dataset with a consequent 

improvement in precision.  More information can be extracted from the data, given a 

model, and here we have been able to infer further valuable information on the system, 

including the Flory Huggins interaction parameter and the minimum additive concentration 

likely to be required in a bulk coating of these components.  This parameterisation of the 

extent of incompatibility is further supported by our neutron reflectometry analysis of the 

fine structure of the surface enriched layer of 3CFdPS11 which was found to become highly 

segregated from the amPET subphase with a very narrow interface between these phases 

after annealing.  This detailed analysis enables estimation of the minimum combination of 

processing time and temperature necessary to populate achieve surface modification by an 

additive migrating to a film surface. 
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Supporting Information 

S.I.1. 

Datafurnace fitting was carried out using the reaction cross-sections of Möller and 

Besenbacher28,
 
25 where NDF implements the anisotropy coefficients tabulated in this paper.  

The depth scale was calibrated to nanometers by assuming ideal mixing and densities of 

1.38 and 1.10 g/cm3 for amPET and dPS respectively.  The fitted parameters were extracted 

together with an estimate of their uncertainty given by Bayesian inference methods.30 

Note that fitting the IBA data for these binary mixtures is able to use molecules (not 

elements, that is, involving only two and not five or more parameters) to specify 

composition38.  The experimental protocols for obtaining comparable ion beam analysis and 

neutron reflectometry experiments has been well established for other similar types of 

sample in our earlier work.5 

S.I.2 
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S.I.1.  NRA proton yield and DataFurnace fits using equation 2 for functional PS in hPS or 

amPET corresponding to the profiles shown in figure 6.  Data have been offset by successive 

decades for clarity.  

 

 


