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Closure solvability for network coding and secret
sharing

Maximilien Gadouleau Member, IEEE

Abstract—Network coding is a new technique to transmit data
through a network by letting the intermediate nodes combine
the packets they receive. Given a network, the network coding
solvability problem decides whether all the packets requested by
the destinations can be transmitted. In this paper, we introduce a
new approach to this problem. We define a closure operator on
a digraph closely related to the network coding instance and
we show that the constraints for network coding can all be
expressed according to that closure operator. Thus, a solution for
the network coding problem is equivalent to a so-called solution
of the closure operator. We can then define the closure solvability
problem in general, which surprisingly reduces to finding secret-
sharing matroids when the closure operator is a matroid. Based
on this reformulation, we can easily prove that any multiple
unicast where each node receives at least as many arcs as there
are sources is solvable by linear functions. We also give an
alternative proof that any nontrivial multiple unicast with two
source-receiver pairs is always solvable over all sufficiently large
alphabets. Based on singular properties of the closure operator,
we are able to generalise the way in which networks can be split
into two distinct parts; we also provide a new way of identifying
and removing useless nodes in a network. We also introduce
the concept of network sharing, where one solvable network
can be used to accommodate another solvable network coding
instance. Finally, the guessing graph approach to network coding
solvability is generalised to any closure operator, which yields
bounds on the amount of information that can be transmitted
through a network.

Index Terms—Network coding, guessing games, closure oper-
ators, secret sharing, matroids.

I. INTRODUCTION

Network coding [1] is a protocol which outperforms routing
for multicast networks by letting the intermediate nodes ma-
nipulate the packets they receive. In particular, linear network
coding [2] is optimal in the case of one source; however,
it is not the case for multiple sources and destinations [3],
[4]. Although for large dynamic networks, good heuristics
such as random linear network coding [5], [6] can be used,
maximizing the amount of information that can be transmitted
over a static network is fundamental but very difficult in
practice. Solving this problem by brute force, i.e. considering
all possible operations at all nodes, is computationally pro-
hibitive. Different alternative approaches have been proposed
to tackle this problem, notably using matroids, information
inequalities, and group theory [7], [8], [9], [10], [11], [12].
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In this paper, we provide a new approach to tackle this
problem based on a closure operator defined on a related
digraph. Closure operators are fundamental and ubiquitous
mathematical objects.

The guessing number of digraphs is a concept introduced
in [13], which connects graph theory, network coding, and
circuit complexity theory. In [13] it was proved that an instance
of network coding with r sources and r sinks on an acyclic
network (referred to as a multiple unicast network) is solvable
over a given alphabet if and only if the guessing number of a
related digraph is equal to r. Moreover, it is proved in [14],
[15] that any network coding instance can be reduced into a
multiple unicast network. Therefore, the guessing number is
a direct criterion on the solvability of network coding. One
of the main advantages of the guessing number approach
is to remove the hierarchy between sources, intermediate
nodes, and destinations. In [15], the guessing number is also
used to disprove a long-standing open conjecture on circuit
complexity. In [16], the guessing number of digraphs was
studied, and bounds on the guessing number of some particular
digraphs were derived. The guessing number is also equal to
the so-called graph entropy [13], [17]. This allows us to use
information inequalities [18] to derive upper bounds on the
guessing number. The guessing number of undirected graphs
is studied in [19]. Moreover, in [20], the guessing number is
viewed as the independence number of an undirected graph
related to the digraph and the alphabet.

Shamir introduced the so-called threshold secret sharing
scheme in [21]. Suppose a sender wants to communicate a
secret a ∈ A to n parties, but that an eavesdropper may
intercept r − 1 of the transmitted messages. We then require
that given any set of r− 1 messages, the eavesdropper cannot
obtain any information about the secret. On the other hand,
any set of r messages allows to reconstruct the original secret
a. The elegant technique consists of sending evaluations of a
polynomial p(x) =

∑r−1
i=0 pix

i, with p0 = a and all the other
coefficients chosen secretly at random, at n nonzero elements
of A; this is evidently reminiscent of Reed-Solomon codes.
The threshold scheme was then generalised to ideal secret
sharing schemes with different access structures, i.e. different
sets of trusted parties. Brickell and Davenport have proved
that the access structure must be the family of spanning sets
of a matroid; also any linearly representable matroid is a valid
access structure [22]. However, there exist matroids (such as
the Vámos matroid [23]) which are not valid access structures.
For a given access structure (or equivalently, matroid), finding
the scheme is equivalent to a representation by partitions [24].

In this paper, we introduce a closure operator on digraphs,
and define the closure solvability problem for any closure
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operator. This yields the following contributions.

• First of all, this framework encompasses network coding
and ideal secret sharing. In particular, network coding
solvability is equivalent to the solvability of the closure
operator of a digraph associated to the network. This
framework then allows us to think of network coding
solvability on a higher, more abstract level. The problem,
which used to be about coding functions, is now a
simplified problem about partitions.

• This approach is particularly elegant, in different aspects.
Firstly, the adjacency relations of the graph, and hence
the topology of the network, are not visible in the closure
operator. Therefore, the closure operator filters out some
unnecessary information from the graph. Secondly, it
is striking that all along the paper, most proofs will
be elementary, including those of far-reaching results.
Thirdly, this framework highlights the relationship with
matroids unveiled in [9], [25].

• Like the guessing number approach, the closure operator
approach also gets rid of the source-intermediate node-
destination hierarchy. The guessing graph machinery of
[20] can then be easily generalised to any closure opera-
tor. In other words, the interesting aspects of the guessing
number approach can all be recast and generalised in our
framework.

• This approach then yields interesting results. First, it was
shown in [20] that the entropy of a digraph is equal
to the sum of the entropies of its strongly connected
components. Thus, one can split the solvability problem
of a digraph into multiple ones, one for each strongly
connected component [20]. In this paper, we extend this
way of splitting the problem by considering the closure
operators induced by the subgraphs. We can easily exhibit
a strongly connected digraph whose closure operator is
disconnected, i.e. which can still be split into two smaller
parts. More specifically, if the graph is strongly connected
but its closure operator is disconnected, then we can
exhibit a set of vertices which are simply useless and
can be disregarded for solvability. Second, we can prove
that any digraph whose closure operator has rank two is
solvable. This means that any multiple unicast with two
source-receiver pairs is solvable, unless there exists an
easily spotted bottleneck in the network. This has already
been proved in [26]; our proof is much shorter and
highlights the relation with coding theory and designs.
Third, we can prove that any network with minimum
in-degree equal to the number of source-receiver pairs
is solvable by linear functions over all sufficiently large
alphabets of size equal to a large prime power. Fourth, we
prove an equivalence between network coding solvability
and index coding solvability. Finally, we show how the
bidirectional union of digraphs can be viewed as network
sharing.

The rest of the paper is organised as follows. In Section
II, we review some useful background. In Section III, we
define the closure solvability problem and prove that network
coding solvability is equivalent to the solvability of a closure

operator. We then use this conversion in Section IV to prove
the solvability of different classes of networks. We investigate
how to combine closure operators in Section V. We finally
define the solvability graph in VI and study its properties.

II. PRELIMINARIES

A. Closure operators

Throughout this paper, V is a set of n elements. A closure
operator on V is a mapping cl : 2V → 2V which satisfies the
following properties [27, Chapter IV]. For any X,Y ⊆ V ,

1) X ⊆ cl(X) (extensive);
2) if X ⊆ Y , then cl(X) ⊆ cl(Y ) (isotone);
3) cl(cl(X)) = cl(X) (idempotent).

A closed set is a set equal to its closure. For instance, in a
group one may define the closure of a set as the subgroup
generated by the elements of the set; the family of closed sets
is simply the family of all subgroups of the group. Another
example is given by linear spaces, where the closure of a set
of vectors is the subspace they span.

A closure operator satisfies the following properties. For any
X,Y ⊆ V ,

1) cl(X) is equal to the intersection of all closed sets
containing X;

2) cl(cl(X) ∩ cl(Y )) = cl(X) ∩ cl(Y ), i.e. the family of
closed sets is closed under intersection;

3) cl(X ∪ Y ) = cl(cl(X) ∪ cl(Y )).
4) X ⊆ cl(Y ) if and only if cl(X) ⊆ cl(Y ).

We refer to

r := min{|b| : cl(b) = V }

as the rank of the closure operator. For instance, in a linear
space, this is the dimension of the space. Any set b ⊆ V of
size r and whose closure is V is referred to as a basis of cl.

An important class of closure operators are matroids [28],
which satisfy the Mac Lane-Steinitz exchange property1: if
X ⊆ V , v ∈ V and u ∈ cl(X ∪ v)\cl(X), then v ∈ cl(X ∪
u). A special class consists of the uniform matroids, typically
denoted as Ur,n, where

Ur,n(X) =

{
V if |X| ≥ r
X otherwise.

Clearly, Ur,n has rank r.

B. Functions and their kernels

While network coding typically works with functions as-
signed to vertices, it is elegant to work with partitions (for a
review of their properties, the reader is invited to [29]). Recall
that a partition of a set B is a collection of subsets, called parts,
which are pairwise disjoint and whose union is the whole of
B.For instance, the partition of B into |B| singletons is he so-
called equality partition, and is denoted as EB . We denote the
parts of a partition f as Pi(f) for all i; thus, Pi(EB) = {i}
for all i ∈ B.

1In order to simplify notation, we shall identify a singleton {v} with its
element v
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If any part of f is contained in a unique part of g, we say
f refines g. The equality partition refines any other partition,
while the universal partition (the partition with one part) is
refined by any other partition. The common refinement of two
partitions f , g of B is given by h := f ∨ g with parts

Pi,j(h) = Pi(f) ∩ Pj(g) : Pi(f) ∩ Pj(g) 6= ∅.

We shall usually consider a tuple of n partitions f =
(f1, . . . , fn) assigned to elements of a finite set V with n
elements. In that case, for any X ⊆ V , we denote the common
refinement of all fv, v ∈ X as fX :=

∨
v∈X fv . For any

S, T ⊆ V we then have fS∪T = fS ∨ fT .
Any function f̄ : B → C has a kernel denoted as f :=

{f̄−1(c) : c ∈ f̄(B)}, defined by the partition of B into pre-
images under f̄ . Conversely, any partition of B in at most |C|
can be viewed as the kernel of some function from B to C.
Note that two functions f̄ , ḡ have the same kernel if and only
if f̄ = π ◦ ḡ for some permutation π of C.

C. Digraphs

Throughout this paper, we shall only consider digraphs [30]
with no repeated arcs. Unless specified otherwise, the vertex
set of the digraph will be V , a set of cardinality n. We
shall denote the arc set as E(D), since the letter A will be
reserved for the alphabet. However, we do allow edges in both
directions between two vertices, referred to as bidirectional
edges (we shall abuse notations and identify a bidirectional
edge with a corresponding undirected edge) and loops over
vertices. In other words, the digraphs considered here are of
the form D = (V,E), where E ⊆ V 2. For any vertex v of D,
its in-neighborhood is v− = {u ∈ V : (u, v) ∈ E(D)} and
its in-degree is the size of its in-neighborhood. By extension,
we denote X− =

⋃
v∈X v− for any set of vertices X . Also,

by analogy, the out-neighbourhood of v is v+ := {u ∈ V :
(v, u) ∈ E(D)}. We say that a digraph is strongly connected
if there is a path from any vertex to any other vertex of the
digraph.

The girth of a digraph is the minimum length of a cycle,
where we consider a bidirectional edge as a cycle of length 2.
A digraph is acyclic if it has no directed cycles. In this case, we
can order the vertices v1, . . . , vn so that (vi, vj) ∈ E(D) only
if i < j (this is referred to as an acyclic ordering in [30]).
The cardinality of a maximum induced acyclic subgraph of
the digraph D is denoted as mias(D). A set of vertices X
is a feedback vertex set if and only if any directed cycle of
D intersects X , or equivalently if V \X induces an acyclic
subgraph.

Definition 1: [20] For any digraphs D1 and D2 with
disjoint vertex sets V1 and V2, we denote the disjoint union,
unidirectional union, and bidirectional union of D1 and D2 as
the graphs on V1 ∪ V2 and respective edge sets

E(D1 ∪D2) = E(D1) ∪ E(D2)

E(D1 ~∪D2) = E(D1 ∪D2) ∪ {(v1, v2) : v1 ∈ V1, v2 ∈ V2}
E(D1 ∪̄D2) = E(D1 ~∪D2) ∪ {(v2, v1) : v1 ∈ V1, v2 ∈ V2}.

In other words, the disjoint union simply places the two
graphs next to each other; the unidirectional union adds all

possible arcs from D1 to D2 only; the bidirectional union
adds all possible arcs between D1 and D2.

D. Guessing game and guessing number

A configuration on a digraph D on V over a finite alphabet
A is simply an n-tuple x = (x1, . . . , xn) ∈ An. A protocol
f = (f1, . . . , fn) of D is a mapping f : An → An such that
f(x) is locally defined, i.e. fv(x) = fv(xv−) for all v. The
fixed configurations of f are all the configurations x ∈ An

such that f(x) = x: Fix(f) = {x ∈ An : f(x) = x}. The
guessing number of D is then defined as the logarithm of the
maximum number of configurations fixed by a protocol of D:

g(D,A) = max
f

{
log|A| |Fix(f)|

}
.

We now review how to convert a multiple unicast problem
in network coding to a guessing game. Note that any network
coding instance can be converted into a multiple unicast with-
out any loss of generality [14], [15]. We suppose that each sink
requests an element from an alphabet A from a corresponding
source. This network coding instance is solvable over A if
all the demands of the sinks can be satisfied at the same
time. We assume the network instance is given in its circuit
representation, where each vertex represents a distinct coding
function and hence the same message flows every edge coming
out of the same vertex [15]; again this loses no generality.
This circuit representation has r source nodes, r sink nodes,
and m intermediate nodes. By merging each source with its
corresponding sink node into one vertex, we form the digraph
D on n = r+m vertices. In general, we have g(D,A) ≤ r for
all A and the original network coding instance is solvable over
A if and only if g(D,A) = r [15]. Note that the protocol on
the digraph is equivalent to the coding and decoding functions
on the original network.

For any digraphs D1, D2 on disjoint vertex sets V1 and V2

respectively, we have

g(D1 ∪D2, A) = g(D1 ~∪D2, A) = g(D1, A) + g(D2, A),

g(D1 ∪̄D2, A) ≤ min{|V1|+ g(D2, A), |V2|+ g(D1, A)},

for all alphabets A [20]. Notably, we can always consider
strongly connected graphs only.

We illustrate the conversion of a network coding instance
to a guessing game for the famous butterfly network in Figure
1. It is well-known that the butterfly network is solvable over
all alphabets, and conversely it was shown that the clique K3

has guessing number 2 over any alphabet. The combinations
and decoding operations on the network are equivalent to
the protocol on the digraph. For instance, if v3 transmits the
opposite of the sum of the two incoming messages modulo
|A| on the network, the corresponding protocol lets all nodes
guess minus the sum modulo |A| of their incoming elements.

E. Parameters of undirected graphs

Most results of this section are not directly interesting for
network coding but will be instrumental in some of the proofs
of the paper. As such, a first reading of the paper can safely
skip this part.



4

s1

d1

s2

d2

v3

(a) Network coding instance
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(b) Guessing game

Fig. 1. The butterfly network as a guessing game.

An independent set in a (simple, undirected) graph is a
set of vertices where any two vertices are non-adjacent. The
independence number α(G) of an undirected graph G is the
maximum cardinality of an independent set. The chromatic
number χ(G) of G is the smallest number of parts of a
partition of its vertex set into independent sets [31]. An
automorphism for a graph G = (V,E) is a permutation φ
of V such that {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E.
A graph G is vertex-transitive if for all u, v ∈ V , there is an
automorphism φ of G such that φ(u) = v. For a connected
vertex-transitive graph which is neither an odd cycle nor a
complete graph, we have [31, Corollary 7.5.2], [32].

|V (G)|
α(G)

≤ χ(G) ≤ (1 + logα(G))
|V (G)|
α(G)

. (1)

We now review three types of products of graphs; all
products of two graphs G1 and G2 have V (G1) × V (G2)
as vertex set. We denote two adjacent vertices u and v in a
graph as u ∼ v.

1) In the co-normal product G1⊕G2, we have (u1, u2) ∼
(v1, v2) if and only if u1 ∼ v1 or u2 ∼ v2. We have
α(G1 ⊕G2) = α(G1)α(G2).

2) In the lexicographic product (also called composition)
G1 ·G2, we have (u1, u2) ∼ (v1, v2) if and only if either
u1 = v1 and u2 ∼ v2, or u1 ∼ v1. Although this product
is not commutative, we have α(G1 ·G2) = α(G1)α(G2).

3) In the cartesian product G1�G2, we have (u1, u2) ∼
(v1, v2) if and only if either u1 = v1 and
u2 ∼ v2, or u2 = v2 and u1 ∼ v1. We have
χ(G1�G2) = max{χ(G1), χ(G2)} and α(G1�G2) ≤
min{α(G1)|V (G2)|, α(G2)|V (G1)|}.

III. CLOSURE SOLVABILITY AND NETWORK CODING

A. Closure operators related to digraphs

Let D be a digraph on V , a set of n vertices.
Definition 2: The D-closure of a set of vertices X is defined

as follows. We let cD(X) = X ∪ {v ∈ V : v− ⊆ X} and the
D-closure of X is obtained by applying it cD repeatedly n
times: clD(X) := cnD(X).

This definition can be intuitively explained as follows.
Suppose we assign a function to each vertex of D, which only
depends on its in-neighbourhood (the function which decides
which message the vertex will transmit). If we know the
messages sent by the vertices of X , we also know the messages

which will be sent by any vertex in cD(X). By applying this
iteratively, we can determine all messages sent by the vertices
in clD(X). Therefore, clD(X) represents everything that is
determined by X .

We give an alternate, easier to manipulate, definition of the
D-closure below.

Lemma 1: For any X ⊆ V , Y = clD(X)\X is the largest
set of vertices inducing an acyclic subgraph such that Y − ⊆
Y ∪X .

Proof: First, it is clear that Y is a set of vertices inducing
an acyclic subgraph such that Y − ⊆ Y ∪ X . Conversely,
suppose Z induces an acyclic subgraph and Z− ⊆ Z ∪ X .
Denoting Z0 = ∅ and Zi = {v ∈ Z : v− ⊆ X ∪ Zi−1} for
1 ≤ i ≤ n, we have Zi ⊆ ciD(X)\X and hence Z = Zn ⊆ Y .

Example 1: Some special classes of digraphs yield famous
closure operators (all claims follow from Lemma 1).

1) If D is an acyclic digraph, then clD = U0,n, i.e.
clD(X) = V for all X . This can be intuitively explained
by the fact that an acyclic digraph comes from a network
coding instance without any source or destination: no
information can then be transmitted.

2) If D is the directed cycle Cn, then clCn = U1,n, i.e.
clD(∅) = ∅ and clD(v) = V for all v ∈ V . Therefore,
the solutions are (n, 1, n) MDS codes, such as the
repetition code. Intuitively, Cn comes from a network
coding instance with one source and one destination, and
a chain of n− 1 intermediate nodes each transmitting a
message to the next until we reach the destination.

3) If D is the clique Kn, then clKn = Un−1,n, i.e
clD(X) = X if |X| ≤ n − 2 and v ∈ clD(V \v)
for all v ∈ V . Therefore, the solutions of clKn

are
exactly (n, n−1, 2) MDS codes, such as the parity-check
code. Intuitively, Kn comes from a generalisation of the
butterfly network, with one intermediate node receiving
from all sources and transmitting to all destinations.

4) If D has a loop on each vertex, then clD = Un,n, i.e.
clD(X) = X for all X ⊆ V . This comes from a network
with a link from every source to its corresponding
destination.

Since clD(X) = V if and only if X is a feedback vertex
set of D, we obtain that clD has rank rD = n−mias(D).

B. Closure solvability

We now define the closure solvability problem. The instance
consists of a closure operator cl on V with rank r, and of a
finite alphabet A with |A| ≥ 2.

Definition 3: A coding function for (cl, A) is a family f of
n partitions of Ar into at most |A| parts such that fX = fcl(X)

for all X ⊆ V .
The problem is to determine whether there exists a coding

function for (cl, A) such that fV has Ar parts. That is, we want
to determine whether there exists an n-tuple f = (f1, . . . , fn)
of partitions of Ar in at most |A| parts such that

fX = fcl(X) for all X ⊆ V,
fV = EAr .
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For any partition g of Ar, we define its entropy as

H(g) := r − |A|−r
∑
i

|Pi(g)| log|A| |Pi(g)|.

The equality partition on Ar is the only partition with full
entropy r. Denoting Hf (X) := H(fX), we can recast the
conditions above as

Hf (v) ≤ 1 for all v ∈ V,
Hf (X) = Hf (cl(X)) for all X ⊆ V,
Hf (V ) = r.

Therefore, cl is solvable if and only if Hf (V ) = r for some
coding function f of cl over A.

The first important case is solvability of uniform matroids,
which is equivalent to the existence of MDS codes.

Proposition 1: For all r, n, and A, Ur,n is solvable over A
if and only if there exists an (n, r, n− r+ 1)-MDS code over
an alphabet of cardinality |A|.

The proof follows the classical argument that a code of
length n with cardinality |A|rand minimum distance n−r+1
is separable (hence the term MDS code). We shall formally
prove a much more general result in Section VI, therefore we
omit the proof of Proposition 1.

In particular, a solution for U2,n is then equivalent to n− 2
mutually orthogonal latin squares; they exist for all sufficient
large alphabets. This illustrates the complexity of this problem:
solving U2,4 (i.e., determining the possible orders for two
mutually orthogonal latin squares) was wrongly conjectured
by Euler and solved in 1960 [33].

Combinatorial representations [25] were recently introduced
in order to capture some of the dependency relations amongst
functions. A solution for the uniform matroid corresponds to a
combinatorial representation of its family of bases; however,
in general this is not true. Indeed, any family of bases has
a combinatorial representation, while we shall exhibit closure
operators which are not solvable.

C. Closure solvability and network coding solvability

We consider a multiple unicast instance: an acyclic network
N with r sources s1, . . . , sr, r destinations d1, . . . , dr, and
m intermediate nodes, where each destination di requests the
message xi sent by si. We assume that the messages xi,
along with everything carried on one link, is an element of an
alphabet A. Also, any vertex transmits the same message on all
its outgoing links, i.e. we are using the circuit representation
reviewed in Section II. We denote the cumulative coding
functions at the nodes as f = (f1, . . . , fn), where the first r
indeces correspond to the destinations and the other m indeces
to the intermediate nodes, and n = r +m.

We now convert the network coding solvability problem
into a closure solvability problem. Recall the digraph D on
n vertices corresponding to the guessing game, reviewed in
Section II.

Intuitively, if the destination di is able to recover xi from
the messages it receives, it is also able to recover any function
σ(xi) of that message. Conversely, if it can recover π(xi) for
some permutation π of A, then it can recover xi = π−1(π(xi))

as well. We can then relax the condition and let di request any
such π(xi). Viewing xi as a function from Ar to A, sending
(x1, . . . , xr) to xi, we remark that π(xi) has the same kernel
as xi for any permutation π. Therefore, the correct relaxation
is for di to request that the partition assigned to it be the same
as that of the source si.

The relaxation above is one argument to consider partitions
instead of functions. The second main argument is that the
dependency relations are completely (and elegantly) expressed
in terms of partitions, as illustrated in the proof of Theorem
1.

Theorem 1: The network N is solvable over A if and only
if clD has rank r and is solvable over A.

Proof: Let f̄ be a solution for N . Then it is easy to check
that f := (ker f̄1, . . . , ker f̄n) is a family of partitions of Ar

into at most |A| parts such that fV = EAr and fv∪v− = fv− .
As such, fX = fcD(X) for all X ⊆ V and hence fX =
fclD(X).

Conversely, let f be a solution for clD over A and let f̄v
on N be any collection of functions with kernels ker f̄si =
ker f̄di

= fi for all 1 ≤ i ≤ r and ker f̄v = fv for all r+ 1 ≤
v ≤ n. Since fv∪v− = fv− , we have that f̄v only depends on
fv− ; the number of parts of fv indicates that f̄v : An → A;
finally, fs1,...,sr = fV = EAr indicates that f̄ is a solution for
N .

We remark that the closure operator approach differs from
Riis’s guessing game approach. Although it also gets rid of
the source/intermediate node/receiver hierarchy and works on
the same digraph, the distinction is in the fact that now f
corresponds to the cumulated coding functions.

IV. MAIN RESULTS

A. How to use closure solvability

So far, we have considered any possible closure operator.
Let us reduce the scope of our study by generalising some
concepts arising from matroid theory.

First, we say that a vertex is a loop if it belongs to the
closure of the empty set. It is clear that removing cl(∅) from V
does not affect solvability (any vertex from cl(∅) is useless).
We therefore assume that cl(∅) = ∅. In particular, we only
consider digraphs with positive minimum in-degree or in other
words, that have a cycle.

Second, we say that cl is separable if for all a, b ∈ V such
that a /∈ cl(b) and b /∈ cl(a), we have cl(a) ∩ cl(b) = ∅.
Any matroid is separable; likewise it is easily seen that any
D-closure is separable too. If cl is separable, we can further
simplify the problem in a more general fashion than the so-
called parallel elements in a matroid. There exists V ′ such
that V is partitioned into parts {cl(v′) : v′ ∈ V ′}; for any
u ∈ V , there exists v′ ∈ V ′ such that cl(u) ⊆ cl(v′).
Again, considering the closure operator cl′ on V ′ defined by
cl′(X ′) = cl(X ′)∩V ′ does not affect solvability (since if cl is
solvable, then there is a solution for cl where fu = fv′ for all
u ∈ cl(v′)). Therefore, we can always restrict ourselves to D-
closures where clD(v) = v for all v. In other words, we have
just removed all vertices of in-degree one and by-passed them
instead. Clearly, these vertices of degree one are useless for
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network coding, as they do not bring any more combinations.
The only thing they can do is forward the symbol they receive.
As such, we might as well by-pass them.

There is a natural partial order on the family of closure
operators of V . We denote cl1 ≤ cl2 if for all X , cl1(X) ⊆
cl2(X). This partial order has maximum element U0,n (with
cl(X) = V for all X ⊆ V ) and minimum element Un,n (where
cl(X) = X for all X).

Any tuple f of partitions of Ar into at most |A| parts
naturally yields a closure operator on V : we define

clf (X) := {v ∈ V : fX∪v = fX}
= {v ∈ V : Hf (X ∪ v) = Hf (X)}.

Proposition 2: f is a coding function for cl if and only if
cl ≤ clf . Therefore, if cl1 ≤ cl2 have the same rank and cl2
is solvable over A, then cl1 is solvable over A.

Proof: If f is a coding function for cl, then fcl(X) =
fX∪v = fX for all v ∈ cl(X) and hence cl ≤ clf . Conversely,
if cl(X) ⊆ clf (X), then denote cl(X) = {v1, . . . , vk} and
fcl(X) = fX∪v1 ∨ fv2,...,vk = fX ∨ fv2,...,vk = . . . = fX .

Since cl2 is solvable, there exists a coding function f for
cl2 with entropy r, where r is the rank of cl1 and cl2. But
then cl1 ≤ cl2 ≤ clf and hence f is also a solution for cl1.

If cl is a matroid, the solvability problem is equivalent to
determining whether they form a secret-sharing matroid, i.e.
whether there exists a scheme whose access structure is the
family of spanning sets of that matroid.

Theorem 2: If cl is a matroid, then cl is solvable over some
alphabet if and only if it is a secret-sharing matroid.

Proof: By definition, a secret-sharing matroid is solvable
over some alphabet. Conversely, let f be a solution for cl. Let
rk be the rank function associated to cl, i.e. rk(X) = min{|b| :
cl(b) = cl(X)} and cl(X) = {v ∈ V : rk(X) = rk(X ∪ v)}
[28]. Then for any X , we have Hf (X) = Hf (b) ≤ |b| =
rk(X). Moreover, there exists Y such that cl(X ∪ Y ) = V
and rk(Y )+rk(X) = r, hence Hf (X) ≥ Hf (V )−Hf (Y ) ≥
r − rk(Y ) ≥ rk(X). Thus, Hf (X) = rk(X) for all X and
clf (X) = {v ∈ V : rk(X) = rk(X ∪ v)} = cl(X).

B. Solvable networks

In this subsection, we apply the conversion of network
coding solvability in order to closure solvability to determine
that some classes of networks are solvable. Using general
closure operators allows us to think outside of networks.
In particular, it allows us to use uniform matroids, which
have been proved to be solvable over many alphabets (see
Proposition 1), but which do not arise from networks in general
(see Proposition 3 below).

Proposition 3: The uniform matroid Ur,n is the D-closure
of a digraph D if and only if r ∈ {0, 1, n− 1, n}.

Proof: The cases r = 0, 1, n−1, n respectively have been
illustrated in Example 1. Conversely, suppose a digraph has
D-closure Ur,n, where 2 ≤ r ≤ n− 2. Then any set of n− r
vertices induces an acyclic subgraph, while any set of n−r+1
vertices induces a cycle. This implies that any set of n−r ver-
tices induces a (directed) path. Without loss, let v1, . . . , vn−r
induce a path (in that order), then v1, . . . , vn−r, vn−r+1 induce

a cycle, and so do v1, . . . , vn−r, vn−r+2. Therefore, in the
subgraph induced by v2, . . . , vn−r+2, the vertex vn−r has out-
degree 2 and hence that graph is not a cycle.

We can then prove that all digraphs with minimum degree
equal to the rank, or with rank 2, are solvable. Note that the
case of rank 2 has already been proved in [26] using a much
longer argument.

Theorem 3: Any clD of rank 2 is solvable over all suffi-
ciently large alphabets. Moreover, if the mininum in-degree of
D is equal to its rank, then clD is solvable by linear functions
over all sufficiently large prime powers.

Proof: The simplifications above mean that we can as-
sume clD(v) = v for all v ∈ V . This is equivalent to
clD ≤ U2,n, therefore by Proposition 2, any digraph with rank
2 is solvable whenever U2,n is.

Moreover, suppose the minimum in-degree is equal to the
rank r. Then for any X ⊆ V with |X| ≤ r, we have cD(X) =
X and hence clD(X) = X; therefore, clD ≤ Ur,n. Again
Proposition 2 yields the result.

V. COMBINING CLOSURE OPERATORS

In this section, we let V1, V2 ⊆ V with respective cardinal-
ities n1 and n2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V . For
any X ⊆ V , we denote X1 = X ∩ V1 and X2 = X ∩ V2. We
also let cl1, cl2 be closure operators of rank r1 and r2 over V1

and V2, respectively.

A. Disjoint and unidirectional unions

We first generalise some definitions from matroid theory
[28].

Definition 4: For any closure operator cl and any V2 ⊆ V ,
the deletion of V2 and the contraction of V2 from cl are the
closure operators defined on V1 by

cl\V2(X) := cl(X)\V2

cl/V2
(X) := cl(X ∪ V2)\V2

for any X ⊆ V1.
Proposition 4: If clD is the closure operator associated to

the digraph D, then for any V2 ⊆ D, clD[V1] = clD/V2
,

where D[V1] is the digraph induced by the vertices in V1.
Thus r(clD/V2) = |V1| −mias(D[V1]) for any V1.

Proof: Let X ⊆ V1, then any subset Y of V1\X =
V \(X∪V2) induces an acyclic subgraph of D if and only if it
induces an acyclic subgraph of D[V1]; moreover, Y − ⊆ X∪Y
in D[V1] if and only if Y − ⊆ X ∪ Y ∪ V2. By Lemma 1, we
obtain clD[V1](X)\X = clD(X ∪ V2)\(X ∪ V2) and hence
clD/V2(X) = clD[V1](X).

Definition 5: The disjoint union and unidirectional union of
cl1 and cl2 are closure operators on V respectively given by

cl1 ∪ cl2(X) := cl1(X1) ∪ cl2(X2)

cl1 ~∪ cl2(X) :=

{
V1 ∪ cl2(X2) if cl1(X1) = V1

cl1(X1) ∪X2 otherwise.

For any cl1, cl2 we have cl1 ~∪ cl2 ≤ cl1 ∪ cl2 and

r(cl1 ∪ cl2) = r(cl1 ~∪ cl2) = r1 + r2.
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Recall the definitions of unions of digraphs in Section II. Our
definitions were tailored such that

clD1∪D2 = clD1 ∪ clD2

clD1 ~∪D2
= clD1

~∪ clD2 .

Moreover, if there is a loop on vertex v in the digraph D,
then clD(X) = clD(X\v)∪(X∩v), or in other words, clD =
clD[V \v] ∪ U1,1 = clD[V \v] ~∪U1,1. We also remark that if cl1
and cl2 are matroids, then cl1 ∪ cl2 is commonly referred to
as the direct sum of cl1 and cl2 [28].

The disjoint and unidirectional unions are related to the
contraction as follows.

Proposition 5: For any cl and any V2 ⊆ V , the following
are equivalent

1) cl/V2
= cl\V2 , i.e. for all X ⊆ V , cl(X)∩V1 = cl(X ∪

V2) ∩ V1;
2) cl/V2

~∪ cl/V1 ≤ cl ≤ cl/V2 ∪ cl/V1 ;
3) there exist cl1, cl2 defined on V1 and V2 respectively

such that
cl1 ~∪ cl2 ≤ cl ≤ cl1 ∪ cl2.

Proof: The first property implies the second, due to the
following pair of inequalities: For any V1,

cl\V2 ~∪ cl/V1 ≤ cl ≤ cl/V2 ∪ cl/V1 .

To prove the first inequality, we have

cl\V2 ~∪ cl/V1
(X) = V1 ∪ cl/V1

(X2) = cl(X2 ∪ V1) ⊆ cl(X)

if V1 ⊆ cl(X1) and

cl\V2 ~∪ cl/V1
(X) = (cl(X1) ∩ V1) ∪X2 ⊆ cl(X)

otherwise. For the second inequality, we have

cl(X)\V2 = cl(X1∪X2)\V2 ⊆ cl(X1∪V2)\V2 = cl/V2(X1),

and similarly cl(X)\V1 ⊆ cl/V1
(X2), and hence cl(X) ⊆

cl/V2
∪ cl/V1

(X).
Clearly, the second property implies the third one. Finally,

if there exist such cl1 and cl2, then it is easy to check that
cl1 = cl\V2 = cl/V2 .

B. Application to removing useless vertices
The first property of Proposition 5 indicates that V2 has no

effect on V1; thus suggesting the following notation.
Definition 6: If there exists V2 such that cl/V2 = cl\V2 , we

say that cl is disconnected and that V2 is weak. If V2 is weak
and acyclic, then we say V2 is useless.

The D-closure of a non strongly connected graph is discon-
nected. However, there are strongly connected graphs whose
D-closure is disconnected.

Example 2 (Strongly connected graphs with disconnected
D-closures): The canonical example of a strongly connected
graph with disconnected closure operator is given in Figure 2
(a). On that graph, V2 = {3} is useless, for

clD(∅)\3 = clD(3)\3 = ∅
clD(1)\3 = clD(13)\3 = 12

clD(2)\3 = clD(23)\3 = 12

clD(12)\3 = clD(123)\3 = 12

1

2

3

(a)

1

2

3 45

(b)

1

23

4

5

6

78

9

10

(c)

Fig. 2. Three strongly connected graphs with disconnected D-closures.

A larger example is given by the graph in Figure 2 (b),
where clD\V2 = clD/V2

for V2 = {4.5}. Each example leaves
a graph which is solvable (a clique). On the other hand, in
Figure 2 (c), the useless set is V2 = {6, . . . , 10}. Therefore,
after removing the vertices 6 to 10, we are left with the
undirected cycle of length 5, C̄5, which is not solvable [15].

Proposition 6: Suppose D is strongly connected, then V2 is
weak for clD if and only if it is useless.

Proof: We first claim that all arcs from V2 to V1 come
from clD[V2](∅). Indeed, let u ∈ V1 such that u− ∩ V1 6= ∅.
Then u ∈ clD/V2(V1\u) = clD\V2(V1\u), and hence u ∈
clD(V1\u). Since u− ⊆ clD(V1\u), the intersection X :=
clD(V1\u) ∩ V2 is not empty. By Lemma 1, X induces an
acyclic subgraph and X− ⊆ V1 ∩ X , which is equivalent to
X ⊆ clD[V2](∅).

Now, suppose V2 is not acyclic, i.e. V2 6= clD[V2](∅). But
then, by the claim above there are no arcs from V2\clD[V2](∅)
to its complement, and D is not strongly connected.

As a corollary, if D is an undirected graph, then clD is
connected if and only if D is connected.

We remark that if V2 is weak, then V2 is closed, for
cl(V2)\V2 = cl(∅)\V2 = ∅. Also, it is easy to check that
the union of two weak sets is weak, hence there exists a
largest weak set. Thus, if D is strongly connected, there exists
a largest useless set, referred to as the useless part of D.

We say a cycle v1, . . . , vk is chordless if there does not
exist i, j ∈ {1, . . . , k}, (i, j) 6= (1, k), such that vi, . . . , vj is a
cycle. In other words, a chordless cycle does not cover another
shorter cycle. Then T (D) is the set of vertices which do not
belong to any chordless cycle.

Theorem 4: Algorithm 1 removes the useless part of a
strongly connected digraph in polynomial time.
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Algorithm 1 Remove the useless part of a strongly connected
digraph D
T ← T (D)
repeat
Found← 0
while v ∈ T and Found = 0 do
Found← |v−|
while u ∈ v− and Found = 1 do {Check that {v} is
useless}

if v /∈ clD(u−\v) then
Found = 0

end if
end while
if Found > 0 then {Remove v}
V ← V \v
T ← T\v

end if
end while

until Found = 0
return D

The proof of Theorem 4 is given in Appendix A.

C. Bidirectional union

Definition 7: The bidirectional union of cl1 and cl2 is
defined as

cl1 ∪̄ cl2(X) :=


V1 ∪ cl2(X2) if X1 = V1

cl1(X1) ∪ V2 if X2 = V2

X1 ∪X2 otherwise.

It is easily shown that cl1 ∪̄ cl2 ≤ cl1 ~∪ cl2 and
r(cl1 ∪̄ cl2) = min{r1 + n2, r2 + n1}. Moreover, for any cl
and any V1 ⊆ V , we have

cl/V2
∪̄ cl/V1

≤ cl ≤ cl/V2
∪ cl/V1

.

The first inequality means that the bidirectional union is
the way to combine cl1 and cl2 which brings the fewest
dependencies; as such it is the union of cl1 and cl2 with the
highest entropy.

The bidirectional union of digraphs does correspond to the
bidirectional union of closure operators:

clD1 ∪̄D2
= clD1

∪̄ clD2
,

and the converse is given below.
Proposition 7: If cl = cl1 ∪̄ cl2, then cl1 = cl/V1

and
cl2 = cl/V2

. Moreover, if D is a loopless graph, then
clD = cl1 ∪̄ cl2 if and only if cl1 = clD[V1], cl2 = clD[V2],
and D = D[V1] ∪̄D[V2].

Proof: The first claim is easy to prove. For the second
claim, if clD = cl1 ∪̄ cl2, then cl1 = clD[V1] and cl2 = clD[V2].
Suppose the arc (v1, v2) is missing between V1 and V2.
Then clD(V \{v1, v2}) = V (since {v1, v2} is acyclic), while
clD/V2

∪̄ clD/V1
(V \{v1, v2}) = V \{v1, v2}. The converse is

trivial.

VI. GUESSING NUMBER AND SOLVABILITY GRAPH

A. Definition and main results

The solvability graph extends the definition of the so-called
guessing graph to all closure operators. Most of this section
naturally extends [20]. Therefore, we shall omit certain proofs
which are very similar to their counterparts in [20].

First of all, we need the counterpart of the guessing number
of a graph for closure operators. Any partition fi of Ar into
at most |A| parts is henceforth denoted as fi = {Pa(fi) :
a ∈ A}, where some parts Pa(fi) are possibly empty. By
extension, for any tuple f = (f1, . . . , fn), the partition fV
is denoted as fV = {Px(fV ) : x ∈ An}, where Px(fV ) =⋂n

i=1 Pxi
(fi). We denote the set of words of An indexing

non-empty parts of fV as the image of f :

Im(f) := {x ∈ An : Px(fV ) 6= ∅}.

Definition 8: The guessing number of cl over A is given by

g(cl, A) := max
f
{log|A| |Im(f)|},

where the maximum is taken over all coding functions f for
cl over A.

A coding function has an image of size |A|r if and only if
it is a solution; therefore, cl is solvable over A if and only if
g(cl, A) = r.

Next, we define the solvability graph of closure operators.
Definition 9: The solvability graph G(cl, A) has vertex set

An and two words x, y ∈ An are adjacent if and only if there
exists no coding function f for cl over A such that x, y ∈
Im(f).

Proposition 8 below enumerates some properties of the
solvability graph. In particular, Property 2 provides a concrete
and elementary description of the edge set which makes
adjacency between two configurations easily decidable.

Proposition 8: The solvability graph G(cl, A) satisfies the
following properties:

1) It has |A|n vertices.
2) Its edge set is E =

⋃
S⊆V,v∈cl(S)Ev,S , where Ev,S =

{xy : xS = yS , xv 6= yv}.
3) It is vertex-transitive.

Proof: Property 1 follows from the definition. We now
prove Property 2. f is a coding function if and only if
fS∪v = fS for all S ⊆ V and any v ∈ cl(S), which in turn
is equivalent to PxS∪v (fS∪v) = PxS

(fS) for all x ∈ Im(f).
Therefore, if xS = yS , v ∈ cl(S) and f is a coding function,
we have PxS

(fxS
) ⊆ Pxv (fxv ) and PxS

(fxS
) ⊆ Pyv (fyv ), or

in other words xv = yv .
Conversely, for distinct xy /∈ E we construct the following

coding function. Let g be a partition of Ar into two nonempty
parts and for all v ∈ V , let fv have two parts Pxv

= P1(g)
and Pyv

= P2(g) if xv 6= yv and fv have one part otherwise.
Then, Im(f) = {x, y}; for all T ⊆ V , PxT

(fT ) = PyT
(fT )

if and only if xT = yT ; and fV = g. We now check that
f is indeed a coding function: let S ⊆ V and v ∈ cl(S). If
xS = yS , then xv = yv and hence fS = fS∪v has one part.
Otherwise fS = g = fV = fS∪v .

For Property 3, we remark that G(cl, A) is a Cayley graph
[31], hence it is vertex-transitive. More explicitly, if we let
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A = Z|A|, then φ(z) = z − x+ y is an automorphism of the
solvability graph which takes x to y for any x, y ∈ An.

Corollary 1: The solvability graph for the uniform matroid
Ur,n has edge set E = {xy : dH(x, y) ≤ n− r}.

The main reason to study the solvability graph is given in
Theorem 5 below.

Theorem 5: A set of words in An is an independent set of
G(cl, A) if and only if they are the image of Ar by a coding
function for cl over A.

Proof: By definition of the solvability graph, the image
of a coding function forms an independent set. Conversely,
let {xi}ki=1 be an independent set of the solvability graph
G(cl, A). Let g be a partition of Ar into k nonempty parts
and let

Pxi
v
(fv) :=

⋃
j:xj

v=xi
v

Pj(g).

Then we have Im(f) = {xi}ki=1; for all T ⊆ V , Pxi
T

= Pxj
T

if and only if xiT = xjT ; and fV = g. We now justify that f
is a coding function. Let v ∈ cl(S), then for all i, Si := {j :
xjS = xiS} = {j : xjS∪v = xiS∪v} and hence

Pxi
S∪v

=
⋃
j∈Si

Pj(g) = Pxi
S
,

which means fS = fS∪v .
Corollary 2: We have log|A| α(G(cl, A)) = g(cl, A) and

hence α(G(cl, A)) = |A|r if and only if cl is solvable over A.
In [20], we remark that the index coding problem asks for

the chromatic number of the guessing graph of a digraph. We
can extend the index coding problem to any closure operator
and we say that cl is index-solvable over A if b(cl, A) :=
log|A| χ(G(cl, A)) = n− r. We have

g(cl, A) + b(cl, A) ≥ n,
lim
|A|→∞

g(cl, A) + lim
|A|→∞

b(cl, A) = n

by (1). Therefore, although determining g(cl, A) and b(cl, A)
are distinct over a fixed alphabet A, they are asymptotically
equivalent. More strikingly, solvability and index-solvability
are equivalent for finite alphabets too, as seen below.

Theorem 6: The closure operator cl is solvable over A if
and only if it is index-solvable over A.

Proof: Let {xi} be an independent set of G and b be a
basis of cl. Without loss, let b = {1, . . . , r}). First, we remark
that xib 6= xjb for all i 6= j, for otherwise xiV \b 6= xjV \b and
xib = xjb means that xi ∼ xj . Secondly, let A = Z|A|, then
for any w ∈ An−r and any i, denote xi + w = (xib, x

i
V \b +

w). Then it is easily shown that Sw = {xi + w} forms an
independent set and that the family {Sw} forms a partition of
An into |A|n−r independent sets.

Conversely, if χ(G(cl, A)) = |A|n−r, then α(G(cl, A)) =
|A|r by (1).

B. Neighbourhood and girth

Note that the relation “having an arc from u to v” cannot be
expressed in terms of the D-closure. Indeed, all acyclic graphs
on n vertices, from the empty graph to an acyclic tournament,

all have the same closure operator U0,n. However, the D-
closure of the in-neighbourhood of a vertex can be described
by means of the digraph closure.

Lemma 2: For any v and any X ⊆ V \{v}, v ∈ clD(X) if
and only if clD(v−) ⊆ clD(X).

Proof: Suppose v ∈ clD(X)\X , then Y = clD(X)\X
induces an acyclic subgraph and Y − ⊆ clD(X); in particular,
v− ⊆ clD(X). Since v ∈ clD(v−), we easily obtain the
converse.

We remark that if there is a loop on v, then there exists no
set X ⊆ V \{v} such that v ∈ clD(X). Note that v− is not
necessarily an inner basis of its own closure, for instance this
is trivial in nonempty acyclic digraphs.

Based on our results about closure operators associated to
digraphs, we can define some concepts to any closure operators
which generalise those of digraphs.

Definition 10: For any vertex v, the degree of v is

dv := min{|X| : v ∈ cl(X)\X}

if there exists such set X , or by convention is equal to 0
otherwise. We denote the minimum degree as δ.

Note that the degree (according to the closure operator clD)
of a vertex of the digraph D is not necessarily equal to the
size of its in-neighbourhood.

Definition 11: We say a subset X of vertices is acyclic if
cl(V \X) = V . The girth γ of the closure operator as the
minimum size of a non-acyclic subset of vertices.

Here, the girth of a digraph is equal to the girth of its closure
operator.

We denote the maximum cardinality of a code over A of
length n and minimum distance d as MA(n, d).

Proposition 9: For any cl, we have

log|A|MA(n, n− δ + 1) ≤ g(cl, A) ≤ log|A|MA(n, γ).

Since δ ≤ r and γ ≤ n− r + 1, we have γ = n− δ + 1 if
and only if cl = Ur,n.

C. Combining closure operators

Recall the definitions of unions of closure operators in
Section V. The following theorem is the counterpart of Propo-
sitions 6, 7, and 8 in [20].

Theorem 7: For any cl1 and cl2 defined on disjoint sets V1

and V2 of cardinalities n1 and n2, we have

G(cl1 ∪ cl2, A) = G(cl1, A)⊕G(cl2, A)

G(cl1 ~∪ cl2, A) = G(cl1, A) ·G(cl2, A)

G(cl1 ∪̄ cl2, A) = G(cl1, A)�G(cl2, A).

Therefore,

g(cl1 ∪ cl2, A) = g(cl1 ~∪ cl2, A) = g(cl1, A) + g(cl2, A)

b(cl1 ∪̄ cl2, A) = max{b(cl1, A), b(cl2, A)}
g(cl1 ∪̄ cl2, A) ≤ min{g(cl1, A) + n2, g(cl2, A) + n1}.

Corollary 3: The following are equivalent:
• cl1 and cl2 are solvable over A
• cl1 ∪ cl2 is solvable over A
• cl1 ~∪ cl2 is solvable over A.
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Fig. 3. The bidirectional union E3 ∪̄ C̄5. The vertices of C̄5 form a basis;
the highlighted disjoint cliques 127, 248, 56 show that it is solvable.

Therefore, when studying solvability, we can only consider
connected closure operators.

Corollary 4: Without loss, suppose n1 − r1 ≥ n2 − r2,
then we have the following list of properties each implying
the next:
• cl1 and cl2 are solvable over A;
• cl1 is solvable over A and b(cl2, A) ≤ n1 − r1;
• cl1 ∪̄ cl2 is solvable over A;
• cl1 is solvable over A and g(cl2, A) ≥ n2 − n1 + r1.

In particular, if n1 − r1 = n2 − r2, then cl1 ∪̄ cl2 is solvable
over A if and only if cl1 and cl2 are solvable over A.

An example where cl2 is not solvable, yet cl1 ∪̄ cl2 is
solvable, is given in Figure 3.

The results on the bidirectional union can be viewed as
“network sharing,” illustrated in Figure 4. Suppose we have
two solvable networks N1 and N2, where N1 has the same
number of or more intermediate nodes than N2. Then N2 can
be plugged in to N1, which can share its links with N2 without
compromising its solvability. In the resulting shared network,
not only each source-destination pair of N2 is there, but also
each intermediate node yields an additional source-destination
pair. As a result, the only intermediate nodes are those coming
from N1.

D. Combining alphabets

Let [k] = {1, . . . , k} for any positive integer k. We define
a closure operator on V × [k] as follows. For any v ∈ V , let
[v] = {(v, i) : i ∈ [k]} and for any X ⊆ V × [k], denote
XV = {v ∈ V : [v] ⊆ X}. Then

cl[k](X) := X ∪ {[v] : v ∈ cl(XV )}.

This closure operator can be intuitively explained as follows.
Consider the solvability problem of cl over the alphabet Ak.
Each element of Ak is a vector of length k over A, then cl[k]

associates k according vertices [v] to each v ∈ V , each new
vertex (v, i) corresponding to the coordinate i. If v ∈ cl(Y )
for some Y ⊆ V , then the local function fv depends on fY .
We can view fv : Akr → Ak (and hence all its coordinate

functions) as depending on all coordinates of all vertices in
Y , hence the definition of the closure operator.

In particular, for D construct D[k] as follows: its vertex set
is V × [k] and its edge set is {((u, i), (v, j)) : (u, v) ∈ E(D)}.
Then it is easy to check that cl

[k]
D = clD[k] .

Proposition 10: We have the following properties:
1) r(cl[k]) = kr(cl).
2) G(cl[k], A) ∼= G(cl, Ak) and hence H(cl[k], A) =

kH(cl, Ak).
3) If cl is connected, then so is cl[k] for all k.

Proof: The proof of the first two claims is similar to
that of [20, Proposition 10]. We now prove the last claim.
For any S ⊆ V × [k], we denote bSc =

⋃
v∈SV

[v], T =
(V × [k])\S, and dT e = T ∪ (S\bSc) = (V × [k])\bSc. Note
that SV = bScV = V \dT eV . Then we claim that if cl[k]|\T =

cl[k]|/T , then cl[k]|\dTe = cl[k]|/dTe. For any Y ⊆ bSc, let
X = Y ∪ (S\bSc); then XV = YV and X ∪ T = Y ∪ dT e.
We then have

{[v] : v ∈ cl(YV )} ∩ S = {[v] : v ∈ cl(XV )} ∩ S
= {[v] : v ∈ cl((X ∪ T )V )} ∩ S
= {[v] : v ∈ cl((Y ∪ T )V )} ∩ S,

and in particular, then intersections with bSc are equal, thus
proving the claim.

Now suppose cl[k] is disconnected, then cl[k]|\T = cl[k]|/T
for some T = dT e (and hence S = bSc and V = SV ∪ TV ).
Then for any X ⊆ S, (X ∪ T )V = XV ∪ TV and we have

{[v] : v ∈ cl(XV ) ∩ SV } = {[v] : v ∈ cl(XV )} ∩ S
= {[v] : v ∈ cl(XV ∪ TV )} ∩ S
= {[v] : v ∈ cl(XV ∪ TV ) ∩ SV },

and hence cl|\TV
(XV ) = cl|/TV (XV ) for all XV ⊆ SV .
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APPENDIX

A. Proof of Theorem 4

First of all, we justify why we only search for useless
vertices in T (D).

Lemma 3: If V2 is useless, then V2 ⊆ T (D).
Proof: Let V2 be a useless set. First of all, if X induces

a chordless cycle, then it cannot entirely lie in V2, for V2 is
acyclic. Suppose X does not lie entirely in V1 either. Since
X1 is acyclic, we have X1 ⊆ clD/V2(Y ) ⊆ clD(Y ), where
Y = V1\X1. Therefore, X2 ⊆ X− ⊆ clD(Y ); gathering, we
obtain X ⊆ clD(Y ). More precisely, X ⊆ clD(Y )\Y and
hence X is acyclic, which is a contradiction.

The following results ensure that we can remove useless
vertices one by one.

Lemma 4: Let V2 be useless in D and v ∈ V2. Once v is
removed from D, V2\v is useless in D[V \v].
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Fig. 4. Example of network sharing

Proof: V2\v is clearly acyclic. For any X ⊆ (V \v), we
have

clD[V \v](X)\(V2\v) = clD(X ∪ v)\V2

= clD(X ∪ V2)\V2

= (clD(X ∪ V2)\v)\(V2\v)

= clD[V \v](X ∪ (V2\v))\(V2\v).

Lemma 5: Let V2 be useless in D and v the last vertex of
V2 according to an acyclic ordering (i.e., v+ ⊆ S). Then {v}
is a useless set.

Proof: We only need to prove that {v} is weak, i.e. for
all X ⊆ V \v, clD(X ∪ v)\v = clD(X)\v. This clearly holds
if v ∈ clD(X), hence let us assume that v /∈ clD(X).

It is easy to show by induction on j that cjD(X)\X =
cjD(X∪v)\(X∪v) if and only if cjD(X∪v)\(X∪v)∩v+ = ∅;
in particular, clD(X)\X = clD(X ∪ v)\(X ∪ v) if and only
if (clD(X ∪ v)\(X ∪ v)) ∩ v+ = ∅.

We have v+∩(clD(X)\X) = ∅. Since V2 is weak, clD(X)∩
V1 = clD(X ∪ v) ∩ V1. Moreover, since v+ ⊆ V1, we have
clD(X) ∩ v+ = clD(X ∪ v) ∩ v+. Combining, we obtain
(clD(X ∪ v)\(X ∪ v))∩ v+ = ∅ and by the paragraph above,
clD(X)\X = clD(X∪v)\(X∪v), which yields clD(X)\v =
clD(X ∪ v)\v.

Next, we indicate an efficient way to check that a singleton
is useless.

Lemma 6: For any vertex v, {v} is useless if and only if
for any u ∈ v+, v ∈ clD(u−\v).

Proof: Suppose there exists u ∈ v+ such that v /∈
clD(u−\v). There is an edge from v to u, hence u /∈
clD(u−\v)\(u−\v) and u /∈ clD(u−\v)\u−. Since u ∈
clD(u−)\u−, we obtain clD(u−)\v 6= clD(u−\v)\v and {v}
is not weak.

Otherwise, suppose there exists X such that clD(X)\v 6=
clD(X ∪ v)\v; clearly v /∈ clD(X). It is easy to show by
induction on j that cjD(X)\X = cjD(X ∪ v)\(X ∪ v) if
and only if

(
cjD(X ∪ v)\(X ∪ v)

)
∩ v+ = ∅. Let i =

min{j : cjD(X)\X 6= cjD(X ∪ v)\(X ∪ v)}, then there exists
u ∈ (ciD(X ∪ v)\ci−1

D (X ∪ v)) ∩ v+. We have u−\v ⊆
ci−1
D (X)clD(X), and hence v ∈ clD(u−\v) ⊆ clD(X), which

is the desired contradiction.
We can now prove the correctness of Algorithm 1. Clearly,

the running time is polynomial.
Proof: First of all, Lemma 3 guarantees that the set of

useless vertices lies in T (D). At every iteration of the Repeat
loop, if there exists a set of useless vertices in the new graph,
then there exists a singleton {v} which is useless by 5. By
Lemma 6, the algorithm will find a useless vertex v if there
exists one. Lemma 4 guarantees that after all the iterations, all
the useless vertices will be removed.
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