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ABSTRACT
We propose a phenomenological technique for modelling the emergence of active regions
within a three-dimensional, kinematic dynamo framework. By imposing localized velocity
perturbations, we create emergent flux tubes out of toroidal magnetic field at the base of the
convection zone, leading to the eruption of active regions at the solar surface. The velocity
perturbations are calibrated to reproduce observed active region properties (including the size
and flux of active regions, and the distribution of tilt angle with latitude), resulting in a more
consistent treatment of flux-tube emergence in kinematic dynamo models than artificial flux
deposition. We demonstrate how this technique can be used to assimilate observations and
drive a kinematic three-dimensional model, and use it to study the characteristics of active
region emergence and decay as a source of poloidal field. We find that the poloidal components
are strongest not at the solar surface, but in the middle convection zone, in contrast with the
common assumption that the poloidal source is located near the solar surface. We also find
that, while most of the energy is contained in the lower convection zone, there is a good
correlation between the evolution of the surface and interior magnetic fields.
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1 IN T RO D U C T I O N

The emergence of bipolar magnetic regions (BMRs) on the solar
photosphere, with varying frequency and location, is one of the main
signatures of the solar cycle. These regions are characterized by a
highly complex magnetic field whose catastrophic relaxation leads
to violent releases of energy, making them the main source behind
changes in the interplanetary environment (commonly referred to
as space weather; Schwenn 2006). Besides their important role for
determining the evolution of the magnetic field in the heliosphere,
the collective effect of BMR emergence and decay on the recreation
of the large-scale poloidal field is believed to be a crucial link in the
progression of the solar magnetic cycle (a process also known as
the Babcock–Leighton, BL, mechanism; Babcock 1961; Leighton
1969). For this reason, understanding BMR dynamics is crucial for
understanding the cycle itself.

BMRs are believed to result from emergence of flux ropes orig-
inating at the bottom of the convection zone (Fan 2009), where
magnetic field is thought to be stored and amplified as part of the

� E-mail: anthony.yeates@durham.ac.uk (ARY); amunoz@cfa.harvard.edu
(AM-J)

dynamo mechanism (Charbonneau 2010). However, due to the lack
of direct magnetic field measurements inside the convection zone,
the mechanisms behind the formation and emergence of these flux
tubes are not yet fully understood. So far, two complementary ap-
proaches have been used to improve our understanding of flux-tube
dynamics. The first approach uses the thin flux-tube approximation,
where all physical quantities of the tube are assumed to be aver-
ages over the tube cross-section. This approach takes advantage
of the fact that, in most of the convection zone, the length-scales
involved in flux-tube evolution are much larger than the tube’s cross-
section (Spruit 1981). This limits the scope of these simulations to
points along the flux tube, greatly reducing the computational cost.
Thin flux-tube simulations have been instrumental in developing
the current picture of flux-tube emergence and identifying the fac-
tors that determine the properties of BMRs (D’Silva & Choudhuri
1993; Schussler et al. 1994; Caligari, Schuessler & Moreno-Insertis
1998; Fan & Gong 2000; Weber, Fan & Miesch 2011). The second
approach is the numerical solution of the anelastic magnetohydro-
dynamic (MHD) equations (Fan 2008; Nelson et al. 2011; Fan,
Featherstone & Fang 2013; Jouve, Brun & Aulanier 2013; Pinto
& Brun 2013). These are more detailed simulations in which the
interaction between the flux tube and turbulent convection is stud-
ied directly, while filtering out sound waves to make the simulation
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feasible. Though highly computationally intensive, anelastic MHD
simulations are able to capture better the dynamics of the upper con-
vection zone, where the thin flux-tube approximation is no longer
accurate.

Due to the limited scope of thin flux-tube models and the cost
of anelastic MHD simulations, most of the modelling effort has
focused on reproducing the general properties of BMRs (tilt, lat-
itude of emergence, rise time, etc.) and the details of flux-tube
emergence – finishing the simulation once the flux tube reaches
near surface layers (0.96–0.98 R�). However, the study of multiple
flux-tube emergence in the context of solar cycle propagation, also
including flux-tube decay, has not received the same amount of at-
tention. Typically, solar cycle models use a kinematic formulation
based on the ideal induction equation, where magnetic flux transport
is governed by advection and turbulent diffusion processes (see re-
view by Charbonneau 2010, and references therein). Currently, the
closest approximation used to model BMR emergence, in this type
of models, is to artificially deposit bipolar magnetic structures near
the surface based on the toroidal field in the bottom of the convection
zone (Durney 1997; Nandy & Choudhuri 2001; Muñoz-Jaramillo
et al. 2010; Guerrero et al. 2012; Hazra & Nandy 2013). How-
ever, this approach bypasses the process of flux-tube emergence,
resulting in a physical disconnection between the magnetic field of
BMRs and the toroidal field belts in the lower convection zone. This
makes flux conservation difficult to enforce and alters the process
by which toroidal field belts repair after flux-tube emergence (van
Ballegooijen & Mackay 2007).

When the emergence and decay of BMRs was first proposed as a
mechanism for poloidal field generation (Babcock 1961; Leighton
1969), it was as part of a shallow dynamo which would take place
exclusively near the surface. However, after thin flux-tube simula-
tions demonstrated the need for superequipartition fields (in order
to explain the observed properties of BMRs; see review by Fan
2009), the original BL idea was transformed from a shallow dy-
namo (in which the transition between poloidal and toroidal fields
is restricted to the surface), to a double-layer dynamo in which the
toroidal field is amplified and stored in a stable layer beneath the
convection zone, but in which the regeneration of the poloidal field
remains restricted to the surface.

This physical separation of the toroidal and poloidal sources is
very appealing from a theoretical point of view, because under-
standing the solar cycle becomes a matter of pinning down the flux-
transport mechanisms that communicate between the two source
layers. Nevertheless, the assumption of a poloidal source confined
to the surface is mainly a consequence of the historical development
of the BL idea and, to this date, has never been substantiated be-
cause this requires a three-dimensional simulation featuring realistic
buoyant eruptions in sufficient numbers over cycle time-scales.

In this paper, we propose a new technique that takes advantage
of the kinematic framework to model the full process of three-
dimensional flux-tube emergence in the context of solar dynamo
models. This technique is designed to incorporate the key features
of emerging flux tubes, as determined by thin flux-tube and anelas-
tic MHD simulations, and allows for a more consistent treatment
of flux-tube emergence in kinematic dynamo models than artificial
flux deposition. Additionally, we use this technique to improve our
understanding of the emergence and decay of BMRs as a source for
creating poloidal field out of toroidal field (i.e. the BL mechanism);
by taking advantage of a significant reduction in the amount of
necessary assumptions made by other algorithms for BMR deposi-
tion (specially regarding BMR shape and extent into the convection
zone). Finally, we demonstrate how our technique can be used to

assimilate BMR observations and drive a dynamo model with aims
to better understand observed cycle properties and to seed future
model-based predictions.

The layout of this paper is as follows. Our new emergence tech-
nique is described in Section 2, while the background velocity and
diffusion profiles used in our simulations are set out in Section 3.
Simulations of individual flux tubes are discussed in Section 4, and
a full solar cycle simulation is presented and analysed in Section 5.
Conclusions are summarized in Section 6. Details of the numerical
methods used for our three-dimensional simulations are given in
Appendix A.

2 FL U X - T U B E E M E R G E N C E M E T H O D

Kinematic dynamo models are based on the ideal MHD induction
equation

∂B
∂t

= ∇ × (v × B) − ∇ × (η∇ × B), (1)

where the magnetic field B evolves according to the prescribed ve-
locity v and turbulent diffusivity η. Typical velocity fields used in
solar cycle simulations include the axisymmetric effects of differ-
ential rotation v�, meridional flow vM and turbulent pumping vP.
Recent thin flux-tube simulations, embedded in a turbulent convec-
tive background taken from anelastic MHD simulations, have found
that the process of flux-tube emergence is strongly determined by
the tube’s interaction with the convective flows (Weber et al. 2011).
To approximate this in the kinematic framework, we add a time-
dependent non-axisymmetric velocity perturbation u that models
the combined effect of buoyancy and turbulent advection on flux
tubes. This perturbation u is localized in space and time, and in-
cludes three basic components (see Fig. 1).

(i) An outward radial component uτ responsible for transport of
the tube from the base of the convection zone to the surface.

(ii) A vortical component uω that captures the net effect of he-
lical turbulence on the rising tube, imparting a tilt to the resulting
photospheric BMR.

(iii) A diverging component uρ that expands the tube as it rises,
in accordance with the decrease in surrounding density.

Figure 1. Geometry of a velocity perturbation centred at (r̄ , θ̄ , φ̄).
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Next, we give the detailed expressions used for the components
of u, in spherical polar coordinates (r, θ , φ). We denote the tube
centre by (r̄(t), θ̄ (t), φ̄(t)), and write the Euclidean distance of a
point (r, θ , φ) from this centre as

ξ =
√

r2 + r̄2 − 2rr̄(sin θ sin θ̄ cos(φ − φ̄) + cos θ cos θ̄ ). (2)

The velocity perturbation centre is assumed to move radially at
constant speed u0, and also in longitude with the local differential
rotation. We ignore the effect of advection by meridional circula-
tion and turbulent pumping on the perturbation centre, as these are
negligible on the emergence time-scale. The position at each time
step is determined from

dr̄

dt
= u0,

dθ̄

dt
= 0,

dφ̄

dt
= �(r̄(t), θ̄ (t)). (3)

The speed u0 is set to give 25 d travel time from r = 0.7 to R�
(where R� = 6.96 × 1010cm is the solar radius), and once the
centre of the perturbation reaches the photosphere, the perturbation
is removed.

2.1 Outward radial component

The outward radial component of the velocity perturbation takes a
three-dimensional Gaussian form centred at (r̄ , θ̄ , φ̄), namely

uτ = u0e
−ξ2/δ2

êr . (4)

The parameter δ represents the radius of the velocity field u, which
controls the ultimate size of the photospheric BMR.

2.2 Vortical component

The uω component takes the form of an incompressible azimuthal
velocity ω1(r/2)e−ξ2/δ2

around the radial vector, again centred at
(r̄ , θ̄ , φ̄). In spherical coordinates this has components

uωθ = −ω1r

2
e−ξ2/δ2

sin θ̄ sin(φ − φ̄), (5)

uωφ = ω1r

2
e−ξ2/δ2

(sin θ cos θ̄ − cos θ sin θ̄ cos(φ − φ̄)). (6)

For the angular velocity of the helical motion, we set

ω1 = −ω0 cos θ̄ , (7)

where the cosine factor models the effect of the Coriolis force,
giving in particular the opposite sign in each hemisphere, and the
constant ω0 is calibrated to match the observed Joy’s Law (see
Section 4.3).

2.3 Diverging component

Expansion of the rising tube is achieved in two ways: first the tube
radius δ is increased as r̄ increases, and secondly a diverging flow
uρ is applied within the tube. We assume an adiabatic expansion of
the tube so that ρ/ρ0 = δ3/δ3

0 , where ρ0, δ0 are initial values of the
background plasma density and tube radius at r̄ = r̄0, and ρ, δ are
values at some later time. Then assuming a density profile

ρ(r) =
(

R�
r

− 0.95

)3/2

(8)

we find

δ(r̄) = δ0

√
R�/r̄0 − 0.95

R�/r̄ − 0.95
. (9)

Figure 2. Flux-tube radius δ as a function of tube centre radius r̄ .

As shown in Fig. 2, this leads to an approximately three-fold in-
crease in tube radius between the base of the convection zone and
the surface.

To define uρ , we impose a diverging flow of the form

uρ = uρ0

(
ξ

R�

)
1

2

(
1 − erf

(
ξ − δ

0.2δ

))
êξ , (10)

where êξ is a radial unit vector centred at (r̄ , θ̄ , φ̄). The magnitude
of this expansion, uρ0 must be chosen to match the expansion rate
of the tube radius δ in equation (9). To motivate our choice, we
consider the perpendicular expansion of a uniform vertical field Bz.
The induction equation requires that the expansion velocity satisfies

vR = − R

2Bz

∂Bz

∂t
, (11)

where R is the radial vector in the plane perpendicular to Bz. If we
require Bz to remain constant in space, decreasing in time as the tube
expands, then flux conservation in the tube requires Bzδ

2 = Bz0δ
2
0 ,

or

Bz = Bz0

(
R�/r̄ − 0.95

R�/r̄0 − 0.95

)
. (12)

Differentiating and substituting into equation (11) shows that the
required velocity is

vR = (R/R�)u0

2(r̄/R�)2(R�/r̄ − 0.95)
. (13)

Setting R to ξ gives our chosen magnitude

uρ0 = u0

2(r̄/R�)2(R�/r̄ − 0.95)
. (14)

3 BAC K G RO U N D M O D E L IN G R E D I E N T S

Our model includes representative background velocity and diffu-
sion profiles used in other solar cycle simulations. The background
velocity includes contributions from differential rotation, merid-
ional flow and turbulent pumping. The combined velocity compo-
nents from all three contributions are illustrated in Fig. 3.
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Kinematic active region formation 3369

Figure 3. Background velocity profiles, including differential rotation, meridional flow and turbulent pumping. The colour axis of each panel is in units of
cm s−1.

3.1 Differential rotation

This takes the analytical form of Charbonneau et al. (1999) with
angular velocity

�(r, θ ) = �C + 1

2

(
1 + erf

(
r − R0

�0

))
(�E − �C + (�P − �E)

× (C cos2 θ + (1 − C) cos4 θ )), (15)

where �C = 2.71434 × 10−6 s−1 is the angular velocity of the
rigidly rotating core, �P = 2.07345 × 10−6 s−1 is that of the poles
and �E = 2.9531 × 10−6 s−1 is that of the equator. The surface
rotation profile is specified by C = 0.483, and the tachocline lies at
depth R0 = 0.7 R� with thickness �0 = 0.025 R�.

3.2 Meridional flow

We use a single-cell meridional flow in each hemisphere that is pole-
ward at the surface and has an equatorward branch that penetrates
beneath the tachocline (Nandy & Choudhuri 2002). We set

vM = 1

ρ(r)
∇ ×

(
(r, θ )êφ

)
, (16)

where the density profile is ρ(r) = (R�/r − 0.95)3/2 and the stream
function (r, θ ) takes the form

(r, θ )r sin θ = −v0

7.633
F (r)G(θ ), (17)

with

F (r) = (r − Rp) sin

(
π

r − Rp

R� − Rp

)
exp

[
−

(
r − R1

�

)2
]

,

G(θ ) = (1 − exp(−1.5θ2))(1 − exp[1.8(θ − π/2)]). (18)

The constants are Rp = 0.62 R�, R1 = 0.1125 R� and
� = 3.47 × 108 m.

3.3 Turbulent pumping

The effect of turbulent pumping in kinematic dynamo simulations
has been discussed by Guerrero & de Gouveia Dal Pino (2008) and
Karak & Nandy (2012). We include pumping in the radial and lati-
tudinal directions using the functional forms suggested by Käpylä,
Korpi & Tuominen (2006). Following those authors, we neglect

longitudinal pumping in comparison with differential rotation. The
pumping contribution has the form of a velocity

vPθ = γ0

(
tanh

(
r − R2

�2

)
− tanh

(
r − R3

�3

))
sin4 θ cos θ, (19)

vPr = −γ0

4

(
tanh

(
r − R2

�2

)
− tanh

(
r − R4

�4

))

×
(

1 + exp

(
(r − R2)2

�2
5

)
| cos θ |

)
(20)

where R2 = 0.71 R�, �2 = 0.015 R�, R3 = 0.875 R�,
�3 = 0.075 R�, R4 = 0.975 R�, �4 = 0.1 R� and �5 = 0.25 R�.
The main features are (i) downward radial pumping at all latitudes,
weaker nearer the equator and (ii) equatorward latitudinal pump-
ing, strongest near the base of the convection zone around 15◦

latitude. Both components vanish in the overshoot region. We take
γ 0 = 100 cm s−1.

3.4 Turbulent diffusivity

We adopt an axisymmetric double-step radial profile that was chosen
by Muñoz-Jaramillo, Nandy & Martens (2011) to approximate the
effect of magnetic quenching on turbulent diffusivity, namely

η(r) = ηC + η0 − ηC

2

(
1 + erf

(
r − R5

�6

))
(21)

+ηS − η0 − ηC

2

(
1 + erf

(
r − R6

�7

))
. (21)

Here ηC = 108 cm2 s−1 is the core diffusivity, ηS = 6 ×
1012 cm2 s−1 the diffusivity at r = R�, and η0 = 1.6 × 1011 cm2 s−1

the diffusivity in the convection zone. The step locations and thick-
nesses are R5 = 0.71 R�, �6 = 0.03 R�, R6 = 0.95 R� and
�7 = 0.025 R�.

4 SI MULATI ON O F ISOLATED FLUX TUBES

We begin by simulating the emergence of isolated flux tubes, using
the method introduced in Section 2. In our simulations, we solve the
ideal MHD induction equation (equation 1), expressed in terms of
the vector potential, using a finite difference scheme (see Appendix
A for details).

 at D
urham

 U
niversity L

ibrary on January 27, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


3370 A. R. Yeates and A. Muñoz-Jaramillo

Figure 4. Velocity perturbation associated with the flux-tube emergence at 30◦N. The meridional cuts are taken at φ = 2π/3 during day 15 of emergence.
The colour axis of each panel is in units of cm s−1. The velocity perturbation is embedded in the background velocity field shown in Fig. 3.

Figure 5. Visualization of two isolated flux-tube emergences at 0◦ latitude and 30◦N on day 25 of emergence (a), and details of the equatorial tube (b, c, d).
In panel (a), coloured surfaces enclose regions of positive (red) and negative (blue) Br. In panel (b), contours on the cuts show Bφ , while those on the spherical
surface show Br (also on day 25). Panels (c) and (d) show magnetic field lines in the equatorial plane at on days 15 and 25, coloured by |B|. All colour axes
are in units of Gauss. The simulation shown here used grid resolution �φ = 2π/384, �r = 0.45 R�/48.

4.1 Boundary and initial conditions

For the simulations of isolated tubes, our initial conditions consist
of a purely toroidal field layer in the tachocline, of the form

B = B0

2

(
erf

(
r − R7

�8

)
− erf

(
r − R8

�8

))
êφ, (22)

where R7 = 0.66 R�, R8 = 0.74 R�, �8 = 0.018 R� and
B0 = 2.5 × 103 G. For our lower boundary condition, we assume
a perfectly conducting core, located at Rmin = 0.55 R�, setting
∂(rBθ )/∂r = ∂(rBφ)/∂r = 0. For our upper boundary condition,
we assume a perfectly radial magnetic field (Bθ = Bφ = 0), a con-
dition found to be necessary for stress balance between subsurface
and coronal magnetic fields (van Ballegooijen & Mackay 2007).

4.2 Formation of bipolar magnetic regions

To illustrate the flux-tube emergence process, we present a sim-
ulation with two simultaneously emerging flux tubes. Both tubes
share the same longitude, but one is located at the equator (with a
colatitude of θ̄ = π/2) and the other at 30◦N (with a colatitude of

θ̄ = π/3). Both are created by velocity perturbations with a width
of δ0 = (5π/180)(0.7 R�), and both are initiated at t = 0. Fig. 4
shows the velocity perturbation associated with the emergence at
30◦N, during day 15 of emergence, embedded in the background
velocity field. The velocity perturbation for both emergences is
stopped after 25 d.

During the course of our simulation, it can be seen (Fig. 5) that
the rotational shear of the emerging flux tube (due to the radial
gradient in differential rotation) leads to the relative movement
of the flux tube with respect to its roots. This bends the leading
leg of the flux tube over the underlying sheath of toroidal field
and stretches the trailing leg over the depleted area left over by
the eruption. This phenomenon is particularly noticeable near the
equator where the radial shear is strongest, and becomes evident in
Fig. 5(b) as neighbouring regions of opposite polarity toroidal field.
However, as a whole, this process generates no net toroidal flux, but
rather leads to a topological change in the magnetic configuration
near the eruption site. Of particular interest is the fact that the net
displacement of the flux tube (and in particular the stretching of the
trailing leg) leads to the pinching of the eruption site and the partial
disconnection of the emergent flux tube (see Fig. 5d). Although the
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Figure 6. Post-emergence evolution of Br on the photosphere for the two BMRs in Fig. 5 (saturated at ±6 G). The full sphere is shown in Mollweide equal-area
projection.

Figure 7. Butterfly diagrams of longitude-averaged Br(R�) (a) and Bφ(0.7 R�) (b), for the simulation with two BMRs, as shown in Fig. 5. Panel (c) shows
(signed) polar surface flux above 70◦ latitude, and panel (d) the total unsigned photospheric flux over all latitudes.

eruption of flux tubes in a kinematic framework is more a conceptual
tool than a faithful reproduction of the conditions inside the solar
convection zone, this phenomenon can also be observed in anelastic
MHD simulations or rising flux tubes (see fig. 5 of Jouve et al.
2013), and could be playing an important role in post-emergence
connectivity.

Fig. 6 shows the evolution of the surface magnetic field for the
two simultaneous eruptions. The BMR associated with the eruption
at 30◦N is strongly sheared due to the action of differential rotation,
whereas the equatorial eruption results in a BMR that conserves
its integrity due to its lack of tilt and its location in a region of
minimal latitudinal shear. Due to its lack of tilt, the equatorial
BMR shows no signature in a synoptic map of the longitudinally
averaged magnetic field (also known as magnetic butterfly diagram,
see Fig. 7a). In contrast, the BMR associated with the eruption
at 30◦N features prominently; as the signature associated with its
leading and trailing polarities is transported towards the pole by
turbulent diffusion and meridional flow. The net effect is a build-up
of positive polar flux, evident in Fig. 7(c), and the contribution to
the net dipolar moment that lies at the core of the BL mechanism.

In spite of not contributing to the axisymmetric evolution of the
surface magnetic field, it is clear that both eruptions are contributing
to the depletion of toroidal field (Bφ) at the bottom of the convection
zone (see Fig. 7b). This depletion persists for the duration of our
simulation (one year) and drifts slightly equatorward due to the
return meridional flow at this depth. The evolution of total unsigned
flux at the photosphere shows how most of this flux emerges at
the surface within the 25 d set by our velocity perturbation (see

Fig. 7d). However, flux continues to emerge until about day 50 due
to outward diffusion of field from beneath the surface. In a full
model with multiple emergence events, this process of flux removal
and outward transport will contribute to the weakening of the old
cycle’s toroidal field so that it can be replaced with flux of the
opposite sign for the new cycle.

4.3 Calibration of observable properties

In order to develop full solar cycle simulations, it is necessary
to calibrate the parameters of our velocity perturbations so that the
resulting BMRs at the photosphere match the properties of observed
BMRs. For this purpose, we compare simulations of single flux
tubes with measurements of 2211 BMRs obtained from the US
National Solar Observatory/Kitt Peak (NSO/KP) synoptic radial-
component magnetograms between 1996 and 2012 (see Yeates,
Mackay & van Ballegooijen 2007; Yeates 2013). A semi-automated
technique was used to identify the location, size, magnetic flux and
tilt angle of the observed BMRs, upon their first appearance in the
synoptic maps.

First, we consider the size of the resulting photospheric BMRs.
Fig. 8 shows the relation between size and flux of the BMRs, both
for the observations (background scatter plot) and a series of dif-
ferent single tube simulations (large symbols). The flux shown in
Fig. 8 represents that of the leading polarity. The half-separation is
calculated as the half of the spherical angle between the centroid of
the positive polarity (θp, φp for Br > 50 G) and the centroid of the
negative polarity (θn, φn for Br < −50 G). Defining the colatitude of
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Figure 8. Single-polarity flux against half-separation for BMRs. The under-
lying scatter plot shows observations from NSO/KP magnetograms, while
larger symbols show different simulations. Simulations with red squares
used resolution �φ = 2π/768, �r = 0.45 R�/96, while simulations with
blue circles or green triangles used �φ = 2π/384, �r = 0.45 R�/48. In the
simulations with green triangles, differential rotation was turned off. From
left to right the simulations correspond to initial δ0 values of δ0 = α(0.7 R�)
with α = 2.◦5, 3◦, 4◦, 5◦, 6◦,7◦, 7.◦5. The solid line is a quadratic least-squares
fit to the NSO/KP data.

the BMR as θ c = (θp + θn)/2 and its longitude as φc = (φp + φn)/2,
then the half-separation ρ satisfies

cos ρ = sin θc sin θp cos(φc − φp) + cos θc cos θp. (23)

The solid line in Fig. 8 is a quadratic least-
squares fit to the NSO/KP data, which gives
� = (0.24ρ2 + 2.34ρ − 2.10) × 1021 Mx. The flux in all
simulations was scaled by setting B0 = 2500 G. Then it can
be seen that for δ0 ≥ (5π/180)(0.7 R�), the simulated BMRs
lie approximately on the observational best-fitting line. The
BMRs created by smaller flux ropes are seen to fall increasingly
below this line. This is an effect of numerical resolution: the
higher resolution runs (red squares) produce BMRs with smaller
half-separation and greater flux, consistent with the error being
caused by numerical diffusion in the advection scheme (Appendix
A). To check this, we repeated the simulations with differential
rotation turned off (green triangles), since this is our fastest flow.
The consequent increase in BMR fluxes supports the interpretation
that the error is caused by numerical diffusion, which would
be proportional to the grid spacing and the velocity magnitude.
This analysis shows that the smallest flux tubes adequately
resolved by a grid with �φ = 2π/384, �r = 0.45 R�/48 are
about δ0 = (5π/180)(0.7 R�), which is adequate for a full cycle
simulation using larger active regions (Section 5).

Note that there is considerable scatter in the NSO/KP data in
Fig. 8. The simulated BMRs all fall on a line because they were
emerged from the same initial magnetic field. In a full simulation,
the flux tubes will be created from differing initial field, which will
lead to scatter.

Next, we turn to a property of BMRs that is critical for the BL
mechanism: the tilt angle τ of their opposite photospheric polarities

Figure 9. Tilt angle against latitude for the BMRs. The underlying scat-
ter plot shows observations from NSO/KP magnetograms (see the text),
while blue circles show the simulations at resolution �φ = 2π/384,
�r = 0.45 R�/48. The mean and standard deviation of the observed data
in 5◦ latitude bins are shown in magenta. Thin black lines show analytical
fits.

with respect to the equator, which we define as

tan τ = θc − θn

sin θc(φn − φc)
. (24)

As described in Section 2, the simulated BMRs acquire their tilt
through the vortical component uω of the flux-tube velocity. Fig. 9
shows the distribution of τ against latitude for the NSO/KP data,
along with a series of simulated BMRs at different latitudes (blue
circles). The magenta lines/symbols show the mean and standard
deviation of fitted normal distributions to the NSO/KP data within
5◦ latitude bins (leaving out the outermost bins because they are
too sparsely populated). Although there is considerable scatter, the
bin means show a clear latitudinal trend, which is well established
and known as Joy’s Law (Hale et al. 1919). A least-squares fit of
the form a sin λ to these means gives 〈τ 〉 = 0.55sin λ (shown by the
middle solid line), which is comparable to previous studies (Wang
& Sheeley 1989; Stenflo & Kosovichev 2012).

The blue circles in Fig. 9 show the resulting tilt angles of pho-
tospheric BMRs in a sequence of simulations with flux tubes ini-
tiated at different latitudes. All of the flux tubes were given size
δ0 = (5π/180)(0.7 R�). By repeating the simulations with varying
ω0, the best-fitting value (illustrated here) of ω0 = 0.08 × 10−5 s−1

was selected to match the observed 〈τ 〉 curve. Using the same ω0

value for all flux tubes will obviously not reproduce the scatter evi-
dent in the observed tilt angles, but this could readily be incorporated
in future simulations by statistically varying ω0 between tubes. To
estimate the spread of the observed pattern, we note that the stan-
dard deviation is approximately equal in all latitude bins, with an
average of 19.◦0. The outer solid lines in Fig. 9 show 〈τ 〉 ± 19◦.

5 SI M U L AT I O N O F A F U L L S O L A R C Y C L E

At a conceptual level, the solar cycle is understood as a process that
alternates between poloidal and toroidal field phases. These phases
are connected by sources of poloidal or toroidal magnetic field that
help transform one type of magnetic field into the other (while in-
jecting energy into the system). Current understanding attributes
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the generation of toroidal field to the shearing of poloidal field by
differential rotation, but there is still uncertainty as to which mecha-
nisms (or mechanisms) are playing a critical role in the generation of
poloidal field out of toroidal field (see review by Charbonneau 2010
for a comprehensive list of the different poloidal sources proposed
so far).

So far, we have demonstrated that our eruption model is in quali-
tative agreement with more detailed simulations of individual emer-
gent flux tubes, and that it is capable of producing surface BMRs in
agreement with observations. Now we use this framework to make
a global simulation of the solar magnetic field involving hundreds
of flux-tube eruptions across an entire solar cycle. This places us in
a privileged position to better understand the emergence and decay
of BMRs as the main mechanism for creating poloidal field out of
toroidal field, i.e. the BL mechanism.

For this purpose, we have used the locations and times of observed
BMRs (from 1996 to 2008) in the NSO/KP data set from Section 4.3
to initiate flux-rope eruptions from an underlying sheath of toroidal
field at the bottom of the convection zone. This approach has the
added advantage of laying the foundations for the assimilation of
BMR data into our model, which is necessary for the study of
observed cycle properties and the practical application of models to
solar cycle prediction.

5.1 Setup

We use an initial condition comprising (i) a toroidal field belt of
strength B0 = 250 G (as in equation 22), and (ii) a poloidal field
generated by a confined dipole of the form

B = ∇ × (Aφ êφ), Aφ = Bd
sin θ

r3

(
r − 0.7 R�

R� − 0.7 R�

)
, (25)

where Aφ is set to zero for r < 0.7 R� (cf. Jouve et al. 2008). The
strength of the dipole is set to Bd = −0.008B0. The grid resolution

in this simulation was set to �φ = 2π/384, �r = 0.45 R�/48, and
the same boundary conditions were used as in Section 4.1.

During the evolution (from 1996 to 2008), new flux-rope emer-
gences were initiated at the times and latitude–longitude locations
of observed BMRs (irrespective of the local field strength at the
tachocline). The same initial width of δ0 = (5π/180)(0.7 R�) was
used for all velocity perturbations, chosen because it was the mini-
mum size resolved adequately at our chosen grid resolution (Fig. 8).
Accordingly, only those observed BMRs with flux greater than
1022 Mx were included, resulting in 168 BMRs in the Northern
hemisphere and 186 in the Southern hemisphere. The same value
ω0 = 0.08 × 10−5 s−1 was used for all flux tubes (Section 4.3), rather
than attempting to reproduce the observed scatter of tilt angles about
Joy’s Law.

5.2 Global magnetic configuration

Fig. 10 illustrates the resulting magnetic field configuration at two
particular times: early in the simulation when few flux tubes have
emerged (top row), and then at the peak of emergence activity (bot-
tom row). Early in the simulation, Fig. 10(a) shows that the toroidal
field Bφ reflects the initial conditions, with oppositely signed belts at
the base of the convection zone in each hemisphere. However, there
is a clear depletion in Bφ which corresponds to a recently emerged
flux tube. The poloidal components of this flux tube are visible in
Fig. 10(b), and as a BMR at the surface in Fig. 10(c). Looking at the
longitudinally averaged components of the magnetic field (Figs 11a
to c) clearly shows the combination of the dipolar field with the
toroidal sheath, and how the first eruption is already starting to give
added structure to the magnetic field inside the convection zone.

By comparison, at the maximum phase of emergence activity,
the toroidal field shows the coexistence of multiple belts (Fig. 10e),
although there is a generally preferred polarity at active latitudes.
These coexisting belts are also evident in the longitudinally av-
eraged toroidal magnetic field (Fig. 11d), which shows the next

Figure 10. Visualizations of B in the full solar cycle simulation: near cycle minimum (1 yr, panels a–d) and at cycle maximum (5.4 yr, panels e–h). Panels (a)

and (e) show Bφ between 50 and 125 G (red positive, blue negative). Panels (b) and (f) show
√

B2
r + B2

θ over the same range, with the colours indicating the

sign of Br. Panels (c) and (g) show Br(R�) (saturated at 25 G), while panels (d) and (h) show potential-field source-surface extrapolations taken from this Br

distribution. The field lines are coloured by |B|.
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Figure 11. Longitude-averaged components of B at the same two times as in Fig. 10. All colour axes are in Gauss and are saturated to show the distribution
of weaker magnetic field. Actual maximum values (at 5.4 yr) are ∼3000 G for Bφ , ∼1000 G for Bθ and ∼50 G for Br.

cycle’s toroidal belt being formed at high latitudes. The many flux-
tube eruptions that have taken place have interacted to create wide
regions of poloidal field (Fig. 10f). While recently emerged active
regions are localized, older regions are spread out by the back-
ground flow. This spreading is reflected also at the photosphere
(Fig. 10g). From an axisymmetric point of view (Figs 11e and f),
the consequence is the formation of a large-scale poloidal field of
the opposite polarity that gradually displaces the old polarity and
will set the stage for the next cycle.

By assuming a current-free corona, we can calculate a first-order
approximation to the coronal magnetic field that would result from a
given photospheric distribution of Br. Figs 10(d) and (h) show such
potential-field extrapolations, using a source surface at r = 2.5 R�,
where B is forced to be radial (Altschuler & Newkirk 1969). The
additional magnetic activity leads to a clear difference in coronal
magnetic structure between the two epochs; consisting of equatorial
streamers embedded in a predominantly bipolar field during mini-
mum, and a more complex array of streamers and closed field lines
during maximum.

5.3 Evolution of toroidal and poloidal magnetic fields

Fig. 12 shows the evolution of the toroidal and poloidal magnetic
field components over the full simulation. First, Fig. 12(a) shows
a longitude-averaged ‘butterfly diagram’ of Bφ at the base of the
convection zone, while Fig. 12(b) shows a similar plot of Br at the
surface. The symbols in Fig. 12(a) show the locations of observed
BMRs that were used to initiate flux-tube eruptions. Our simulations

show that it is possible to achieve good agreement between the time
and latitude distribution of observed eruptions and the evolution of
the toroidal field at the bottom of the convection zone. The colour
of the symbols shows the sign of Bφ at the initial centre of the
velocity perturbation. This generally follows the Hale polarity law;
the occasional exceptions are repeat eruptions in locations where
the toroidal field has already been removed by a previous eruption,
and do not add significant flux to the photosphere.

To better illustrate the interplay between the toroidal and poloidal
magnetic fields, we look at the magnetic energy density separated
into toroidal and poloidal parts

Etor = B2
φ

8π
, Epol = B2

r + B2
θ

8π
. (26)

Figs 12(c) and (d) show the radial distribution of Etor and Epol (aver-
aged in longitude and latitude) as a function of time, computed from
snapshots of B taken at 28 d intervals. Due to the high concentration
of toroidal energy at the base of the convection zone, a logarithmic
colour scale is used. It is evident that throughout the simulation
the vast majority of the energy is in the toroidal component; even
during the height of surface activity less than 2.5 per cent of the
magnetic energy is in the poloidal components of B.

Two distinct belts of Etor are apparent at the base of the convection
zone in Fig. 12(c). The first is transported beneath the tachocline
allowing the second to form above it from year 8. These are gen-
erated by toroidal field belts of opposite sign, as is apparent in
the toroidal field butterfly diagram (Fig. 12a). The early formation
of the second belt may also be seen in Fig. 11(d), which shows
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Figure 12. Toroidal and poloidal fields in the full solar cycle simulation. Panel (a) shows longitude-averaged Bφ at r = 0.7 R� and panel (b) shows longitude-
averaged Br at r = R�. Panels (c) and (d) show the radial distributions of toroidal and poloidal magnetic energy density (B2

φ/(8π) and (B2
r + B2

θ )/(8π),
respectively), averaged over θ and φ, as a function of time. In panel (a), the symbols show the locations of flux-rope eruptions, with the colour denoting the
sign of Bφ at (r̄(0), θ̄(0), φ̄(0)) (red positive, blue negative). Panels (c) and (d) use a logarithmic colour scale. Units are Gauss in (a), (b) and ergs cm−3 in (c),
(d).

the longitude-averaged Bφ component after 5.4 yr. This second belt
has opposite sign to the initial toroidal field, and is generated by
differential rotation of new poloidal field created by the flux-tube
emergences. Indeed, the re-generation of toroidal field by decaying
BMRs is visible in Fig. 12(c), particularly during the rising phase.
There is an evident creation of Etor within the convection zone,
which is subsequently transported downward to the tachocline (by
diffusion and pumping).

In contrast to Etor, which has a rather smooth distribution, Epol

tends to appear in ‘bursts’ as flux tubes emerge, before decaying.
The time-scale of this decay is roughly 1 yr, as can be seen in
Fig. 12(d) following the final, lone, flux-tube emergence in year
11. This decay is partly due to diffusion in the convection zone.
However, the decay takes place more rapidly than the diffusion
time-scale, which for a structure of size 0.1 R� at rate η0 is about
10 yr. The additional decay is caused by differential rotation, which
shears poloidal field to make it toroidal again (thus putting energy
back into the toroidal component).

In addition to the main concentration of Epol within the convection
zone, Fig. 12(d) shows two downward-propagating bands of Epol

that coincide with the two toroidal field belts at the base of the
convection zone. In fact, these are two oppositely signed bands of
Bθ located at high latitudes, visible in Fig. 11(e) when the second
band has started to form. These bands of Bθ are created at the high-
latitude tachocline from earlier build-up of strong Br of the opposite
sign. This Br is located near the pole at all depths in the convection
zone (manifested as the polar field at the surface). The bottom ends
of these radial field lines are advected equatorward with respect to
the surface (due to meridional flow and turbulent pumping), thus
creating a Bθ component of opposite sign in the tachocline. This
latitudinal field is in turn sheared by differential rotation to generate
a toroidal component Bφ .

5.4 Toroidal and poloidal source separation

As can be seen in Figs 12(c) and (d), the evolution of the toroidal Etor

and poloidal Epol energies have rather different radial distributions.
We find that whereas the toroidal energy Etor is concentrated in belts

at the base of the convection zone, Epol is the strongest in the region
containing the legs of the rising tubes (around r = 0.75 to 0.9 R�),
and weaker both at the bottom of the convection zone and at the
surface. Weak poloidal fields near the bottom of the convection
zone are a consequence of the gradual development of tilt in the
rising flux tube as it is transported through the convection zone.
Weak poloidal fields near the photosphere are a consequence of
the flux-tube expansion and the enhancement of diffusivity in the
topmost part of the convection zone (a common feature of modern
mean-field dynamo models). The result is a BL poloidal source that
is localized in the midst of the convection zone, rather than at the
surface as it is commonly assumed.

Further evidence of the localization of the BL source of poloidal
field can be seen in the left-hand panel of Fig. 13, showing the time
evolution of the integrated poloidal energy in the lower, middle and
top thirds of the convection zone. During most of the cycle, poloidal
energy is largely located in the lower two thirds of the convection
zone; with roughly 35 and 45 per cent of the total in the lower and
middle thirds of the convection zone, and only about 7 per cent
in the top third. A time and latitudinal average of poloidal energy
during the entire cycle (see Fig. 13b), shows how this concentration
of poloidal energy would look in an axisymmetric simulation. Note
that the localization of the BL source does not match the profile
assumed conventionally (Mason, Hughes & Tobias 2002; Dikpati
et al. 2004; Guerrero & de Gouveia Dal Pino 2008; Yeates, Nandy
& Mackay 2008; Mann & Proctor 2009).

5.5 Relationship between surface and internal magnetism

From a practical point of view, one of the most appealing features
of the BL mechanism, as the main source of poloidal field, is the
strong link it establishes between observable phenomena at the pho-
tosphere and the global evolution of the solar magnetic field. This
gives the surface of the Sun a crucial role in the progression of
the solar cycle, instead of simply responding to internal magnetic
processes that are currently unobservable. If this is true, then our
data-driven simulation can be used to gain insight into the relation-
ship between surface and interior magnetic field.
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Figure 13. Evolution of poloidal magnetic energy Epol at different depths in the full solar cycle simulation. In (a), the thick curve shows the total Epol integrated
over the full computational domain (0.55 R� ≤ r ≤ R�), while the other curves show integrals over successive radial shells (see legend). Panel (b) shows a
longitude and time average of the poloidal magnetic energy density (in ergs cm−3, logarithmic scale).

A comparison between the observed and simulated total unsigned
flux (see Fig. 14a), shows that total unsigned flux in our simulation
is in good agreement with observations (down to the presence of
specific features, if not their relative strength). Note that since arbi-
trary changes in the strength of the initial toroidal field would allow
the simulation to match the amplitude of the observed unsigned
flux at the photosphere, we are showing both fluxes normalized.
The main difference between the two is a higher base level in obser-
vations compared to simulations. This difference is to be expected,
given that we only use data from BMRs with fluxes above 1022 Mx.
Fig. 14(b) shows a scatter plot of observed versus simulated total
unsigned flux where this offset is evident. A linear fit of the relation-
ship between the result of the simulations and observations suggests
that the top 21 per cent of all BMRs (by flux) in the Yeates (2013)
data set can be used to account for 87 per cent of the cyclic mod-
ulation of total unsigned flux, but more BMRs need to be included
to account for the remaining 13 per cent.

After demonstrating that our data-driven simulation is in agree-
ment with observations, we finally turn to the relationship between
surface and internal magnetism. The question is whether the mag-
netic fields observed at the surface are a good indicator of what
is happening underneath. Fig. 15 shows a scatter plot of total
poloidal energy inside the convection zone against total unsigned
surface flux. We find that there is a clear monotonic relationship
between them, described well by a power law (with a goodness
of fit R2 = 0.95). We take this as an indicator that, in spite of the
relative weakness of surface magnetism, it is a good indicator (in
broad terms) of what is going on underneath.

6 C O N C L U S I O N S

In this paper, we have introduced a new technique for mod-
elling the emergence of flux tubes in three-dimensional kine-
matic dynamo models. We have shown that an appropriate velocity

Figure 14. Comparison between simulated and observed (NSO/KP) surface magnetic flux, showing (a) normalized fluxes against time and (b) scatter plot of
observed against simulated fluxes. Both fluxes are normalized to unity.
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Figure 15. Scatter plot of poloidal energy Epol inside the convection zone
against total unsigned surface flux, for the full solar cycle simulation.

perturbation can reproduce the main observed features of BMRs at
the photosphere. Furthermore, by emerging flux tubes through this
perturbation, our technique avoids the problems associated with ar-
tificial flux deposition – that has previously been used to model the
emergence of BMRs – such as uncertainties in the process of flux
removal, the underlying shape of BMRs, and the sudden insertion of
flux in the upper convection zone. However, as we have mentioned
before, the real objective of this work is not to supersede detailed
simulations of single emerging flux tubes (both using thin flux-tube
and anelastic MHD approximations), but rather to incorporate their
results into a global simulation where a multitude of emergent flux
tubes during a solar cycle help shape the evolution of the solar
magnetic field.

The results presented in Section 5 are the outcome of a data-
driven simulation where the time, location and properties of ob-
served BMRs are used to generate the simulated pattern of eruptions.
However, this represents only the first step towards the development
of a three-dimensional self-excited dynamo model, where the loca-
tions of emerging flux tubes are chosen based on the distribution of
magnetic field at the bottom of the convection zone. In future, we
intend to extend the full solar cycle simulation presented in Section
5 to multiple cycles. The main objective will be to determine the
necessary criteria for establishing a viable set of eruptions leading
to a self-propagating cycle. Another important outstanding issue
is the question of whether a model incorporating flux emergence
of only large BMRs is able to sustain a self-excited cycle. Surface
flux-transport simulations performed by Wang & Sheeley (1991)
suggest that the largest active regions are the strongest determinants
of the evolution of the dipolar field. However, if they are not suffi-
cient to produce a self-excited cycle, it will be necessary to improve
the capability of our model to simulate small BMRs and/or include
additional sources of poloidal field.

The more realistic flux-tube emergence process in our model
leads to some interesting conclusions. In particular, we find that the
pinching and reconnection of a flux tube’s legs can occur due to
rotational shear. Theoretical considerations suggest that emerging
flux tubes need to disconnect from their roots deep down into the

convection zone, in order to explain the observed tilts and surface
evolution of BMRs (Fan, Fisher & McClymont 1994; Longcope &
Choudhuri 2002). A possible mechanism for disconnection is the
debilitating effect of the flux tube’s magnetic field due to pressure
and temperature changes in the rising flux tube in reference to
the surrounding media (Schüssler & Rempel 2005). However, our
results suggest that rotational shear can also in principle promote
the creation of a reconnection site near the bottom of the convection
zone where the disconnection can take place; a process that could
be further enhanced by converging flows caused by the eruption
of magnetic flux from the stable layer into a superadiabatically
stratified convection zone (see Hotta, Rempel & Yokoyama 2012).
It will be interesting if detailed anelastic MHD simulations of the
emergence of a buoyant flux tube into a region of strong radial shear
can validate this idea; as the results of Jouve et al. (2013) seem to
suggest.

Next, our simulation of a full solar cycle with multiple tubes
challenges the frequent assumption in many flux-transport dynamo
models that the poloidal field source is located at (or very near to)
the solar surface. In fact, we find that the poloidal magnetic field
is strongest not at the surface but in the middle of the convection
zone, among the legs of the rising flux tubes. Our results suggest that
the physical separation of sources is not radial, but latitudinal (cf.
Figs 11d and 13b). This means that the mechanisms responsible for
latitudinal flux transport, together with the process of flux removal
and cancellation, are probably the most important for setting the
cycle timing. Future work will need to assess the consequences of
this shortening of the flux-transport loop.

Additionally, we find good agreement between the simulated and
observed surface evolution of the magnetic field. If this agreement
can be extended to the rest of the convection zone, then the energy
contained in the near-surface magnetic field is much weaker than
that in the interior. However, we find surface magnetism to be
well correlated with the evolution of the internal magnetic field,
suggesting that surface observations can be used as an indicator of
the state of the magnetic field in the interior of the Sun.

Finally, our new technique for the eruption of flux tubes in a kine-
matic framework, and our method for BMR data assimilation, lay
the foundations for a new generation of kinematic models that will
prove instrumental for furthering our understanding of the solar
cycle and improving our capabilities for cycle prediction. How-
ever, in contrast to the previous generation of axisymmetric mod-
els, the three-dimensional nature of our simulations will allow our
dynamo model to couple to three-dimensional simulations of the
Sun’s coronal magnetic field (as demonstrated in Figs 10d and h),
paving the way for the simultaneous study of the evolution of the
magnetic field in the solar interior as well as its impact on the
heliosphere.
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A P P E N D I X A : N U M E R I C A L M E T H O D S

To solve equation (1) numerically, we write B = ∇ × A and solve
for the fully three-dimensional vector potential A(r, θ, φ, t) in

Figure A1. The variable grid in (x, y), for �φ = 2π/48. Different subblocks
towards the north pole are indicated by colour shading.

spherical coordinates. We choose the gauge of A so that

∂A
∂t

= −E, (A1)

where E is the mean electromotive force

E = −v × B + η∇ × B. (A2)

Equation (A1) is solved for A using finite differences in a spherical
shell Rmin < r < R�, θmin < θ < π − θmin and 0 ≤ φ < 2π, where
we set the latitudinal boundaries near to the pole, e.g. θmin = 0.◦5.
The pole itself is incorporated through special boundary conditions
on this boundary, where we set Bφ = 0 and choose Br to satisfy
Stokes’ Theorem given the integral of Aφ around the latitudinal
boundary at each radius. To minimize numerical error in the advec-
tion terms, we solve in a frame rotating at constant angular velocity
�C (the induction equation remains unchanged).

Rather than solving in (r, θ , φ) coordinates, we use stretched
coordinates (x, y, z) which are not Cartesian but are defined by

x = φ/�φ, (A3)

y = − log (tan (θ/2)) /�φ, (A4)

z = (r − Rmin)/�r, (A5)

where �φ is the azimuthal cell size (in radians) at the equator and �r

is the radial cell size (cf. van Ballegooijen, Priest & Mackay 2000).
These coordinates have the advantage that the horizontal coordinate
scalefactors are equal, hx = hy = �φr sin θ .

Furthermore, to avoid severe time step restrictions caused by con-
vergence of the grid points near the poles (the horizontal cell area is
�2

φr2 sin2 θ ), we adopt a variable grid spacing in x and y. The grid
is decomposed into individual subblocks in the latitudinal direction
(Fig. A1). Within each subblock, the cell sizes dx and dy are con-
stant. For the subblock covering the equator, dx = dy = 1, while
dx and dy are doubled in each poleward subblock. The subblock
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boundaries are placed at the lowest latitude possible such that no
cell has area hxhy dxdy greater than the equatorial cell area �2

φr2.
All subgrids have dz = 1. For example, with a longitudinal resolu-
tion of �φ = 2π/192 at the equator, we obtain nine subblocks and
a total of 18 936 grid cells in (x, y), as opposed to 63 744 for a uni-
form single-block grid. Alternative solutions to the grid convergence
problem include the use of spectral methods, unstructured grids, or
of multiple overset grids such as the Yin–Yang (Kageyama & Sato
2004) or cubed-sphere (Ronchi, Iacono & Paolucci 1996) grids. Our
method has the advantage, since we used the constrained-transport
formulation, of readily incorporating magnetic flux conservation at
the subblock boundaries.

Within each subblock, we employ the constrained transport for-
malism (Evans & Hawley 1988), whereby the components of B are
treated as fluxes through the x, y and z cell faces. These are evolved
by E on the cell edges, where the components of A are also located.
The advection terms v × B are treated using an upwind average of
B to the edges. We use the superbee flux limiter to obtain second-
order accuracy away from sharp jumps in B while switching to
the first-order donor cell scheme at sharp jumps, thus preventing
spurious oscillations. Time stepping uses the second-order trape-
zoidal scheme, which requires two evaluations of E per time step.
If An denotes the value of A at t = tn, then the value of An+1 at
tn+1 = tn + dt is obtained in two stages by

Ã = An + dt E(An, tn), (A6)

An+1 = An + dt

2
E(An, tn) + dt

2
E( Ã, tn+1). (A7)

The variable grid requires two modifications at subblock bound-
aries. First, ghost-cell values of Bx and Bz need to be transferred
between neighbouring subblocks. This is analogous to the interlevel
communications in adaptive mesh refinement (AMR) codes, except
that our grid is fixed in time. The simpler process is ‘restriction’, for
which we use an area-weighted average of finer grid values to give
the ghost-cell values on the coarser grid (Balsara 2001). To obtain
ghost-cell values on the finer grid, we need to interpolate values
on the coarser grid, a process called prolongation (Balsara 2001;
Tóth & Roe 2002). We follow a method similar to van der Holst &
Keppens (2007) based on Taylor expansion. The other modification
required is a correction to E on the boundaries of coarser grids
before updating A, to ensure that it matches the values computed
by finer grids on the same boundary. This is analogous to the ‘flux
correction’ of Berger & Colella (1989), and done in a weighted
sense.

The code is parallelized with OPENMPI and the simulation de-
scribed in Section 5, with �φ = 2π/384, �r = 0.45 R�/48 took
6.25 h on a modest 48 cores. In particular, it will be practical to run
simulations of multiple solar cycles at this resolution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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