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Abstract

We construct a number of explicit examples of hyperbolic monopoles, with various
charges and often with some platonic symmetry. The fields are obtained from instanton
data in R

4 that are invariant under a circle action, and in most cases the monopole
charge is equal to the instanton charge. A key ingredient is the identification of a
new set of constraints on ADHM instanton data that are sufficient to ensure the circle
invariance. Unlike for Euclidean monopoles, the formulae for the squared Higgs field
magnitude in the examples we construct are rational functions of the coordinates.
Using these formulae, we compute and illustrate the energy density of the monopoles.
We also prove, for particular monopoles, that the number of zeros of the Higgs field
is greater than the monopole charge, confirming numerical results established earlier
for Euclidean monopoles. We also present some one-parameter families of monopoles
analogous to known scattering events for Euclidean monopoles within the geodesic
approximation.
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1 Introduction

The Bogomolny equation for SU(2) BPS monopoles in Euclidean space is integrable, but
only in a few special cases has it been actually integrated to yield explicit monopole solutions.
Monopole solutions have a topological charge N , and we refer to them as N -monopoles. The
spherically symmetric 1-monopole is explicitly known, but for the general 2-monopole [1, 2]
and the axially symmetric N -monopole [3] there are explicit formulae for the fields only
on certain symmetry axes. For more general monopoles, the formulae contain parameters
subject to transcendental constraints.

Perhaps the most effective approach to constructing N -monopoles in Euclidean space is
the Nahm transform [4], in which solutions of the Bogomolny equation are obtained from
solutions of the Nahm equation, a set of nonlinear ordinary differential equations for a triplet
of N × N matrices. For N > 2 the general solution of the Nahm equation is not tractable,
as it requires explicit data regarding theta functions associated with a complex spectral
curve of genus (N −1)2 [5], and this data is rather implicit beyond the elliptic case (N = 2).
However, particular solutions of the Nahm equation have been obtained [6, 7] that give rise to
monopoles with some platonic symmetry, that is, symmetry under one of the special discrete
subgroups K of SO(3). Here, the quotient of the spectral curve by the platonic symmetry
is an elliptic curve. Even for these platonic examples there are no explicit formulae for
the monopole fields, as the Nahm transform requires a numerical implementation [8]. The
numerical results display interesting features regarding the distribution of the monopole
energy density and the number of zeros of the Higgs field [9].

In this paper, it is shown that we can improve on the above by turning to the hyperbolic
setting. We make use of Atiyah’s observation [10] that hyperbolic monopoles may be iden-
tified with circle-invariant Yang–Mills instantons, provided that the magnitude of the Higgs
field at spatial infinity is suitably tuned to the curvature of hyperbolic space. Our strategy
for the construction of platonic hyperbolic monopoles is to restrict to Atiyah’s simplest tuned
case and to identify instantons with the required commuting platonic and circle symmetries.
There are two different ways to impose the commuting symmetries, depending upon which
symmetry acts most naturally, and we describe and implement both methods.

Platonic hyperbolic monopoles are qualitatively similar to the Euclidean monopoles with
platonic symmetry. However, many are expected to have fields that are rational functions
of the coordinates, and finding these is the main goal of this paper. For the spherically-
symmetric hyperbolic 1-monopole, in the tuned cases, a direct calculation confirms that the
Higgs field magnitude is rational, and taking the flat space limit reveals why the Euclidean
1-monopole is not rational. Study of hyperbolic monopoles is also motivated by their con-
nection with monopoles in Anti-de Sitter spacetime [11], and by their likely connection with
Skyrmions of minimal energy [12, 13].

There is easy access to a large class of instantons which are rational. These are the
JNR instantons [14], constructed using a formula first investigated by Corrigan and Fairlie
[15]. Some of these have the circle invariance required for obtaining hyperbolic monopoles.
We identify a subset of JNR instantons, and the corresponding monopoles, that also have
platonic symmetry.
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We know from previous studies that there are further instantons with platonic symmetry.
These are obtained using the ADHM formalism [16], from which one can obtain all instantons.
There are quadratic constraints on the quaternionic ADHM matrices, which in general cannot
be solved explicitly. So the general instanton is not rational. However, if the instanton has
platonic symmetry and suitably small charge, then the ADHM constraints simplify and can
be explicitly solved. We have discovered that many of these platonic ADHM instantons are
simultaneously invariant under a commuting circle action. This had not been previously
realised. We can therefore construct platonic hyperbolic monopoles from these instantons,
and their fields are rational. In particular, from the squared Higgs field magnitude the energy
density can be computed by differentiation, so this is also rational.

It is well known that for monopoles rather generally, the number of zeros of the Higgs field,
counted with multiplicity, equals the topological charge. Well-separated single monopoles
have one Higgs zero each, so here the number of Higgs zeros equals the charge. But for more
compact monopoles of higher charge, including those with platonic symmetry, there can be
more zeros than the charge. This is a surprising result, given that a theorem of Jaffe and
Taubes [17] rules out this possibility for the analogous situation of abelian Higgs vortices in
the plane. For N > 2 it often happens that there are N + n zeros of multiplicity 1, for some
positive n, and n zeros of multiplicity −1, which are termed anti-zeros [9]. A simple example
is the tetrahedrally-symmetric, Euclidean monopole of charge 3. Here the symmetry suggests
that there are four zeros of positive multiplicity at the vertices of a tetrahedron, and one zero
of negative multiplicity at the centre. This has been confirmed by numerical calculation.
Zeros are robust, so there are the same five zeros for monopoles close to the tetrahedral
monopole in the 3-monopole moduli space. For our platonic hyperbolic monopoles, we are
able to calculate the locations of Higgs zeros explicitly, using the rational formulae for the
Higgs field. We find the same arrangement of zeros in the hyperbolic monopoles as in their
Euclidean counterparts.

In Section 2 we introduce our notation and review some details of hyperbolic monopoles.
With this in hand, we are then able to present a more detailed outline of this paper and set
our results within the context of previous studies.

2 Hyperbolic monopoles

Hyperbolic monopoles [10, 18, 19] are solutions of the Bogomolny equation

∗F = DΦ . (2.1)

Here F is the field strength of an SU(2) gauge potential A, and DΦ is the covariant derivative
of an adjoint Higgs field Φ. The hyperbolic geometry enters through the Hodge star, ∗. The
boundary condition is that the magnitude of the Higgs field, |Φ|, has a fixed positive value
v at infinity. Here |Φ|2 = −1

2
Tr(Φ2).

We will work on the hyperbolic space H
3 of fixed sectional curvature −1. It will be most
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convenient to represent H
3 by the unit ball model, where the metric is

ds2(H3) =
4(dX2

1 + dX2
2 + dX2

3 )

(1 − R2)2
, (2.2)

with R2 = X2
1 + X2

2 + X2
3 and R < 1. In these coordinates the metric is rational, and

monopoles may be rational too. In terms of standard spherical polars, given by the relations
X1 = R sin θ cos φ, X2 = R sin θ sin φ, X3 = R cos θ, the metric becomes

ds2(H3) =
4(dR2 + R2(dθ2 + sin2 θ dφ2))

(1 − R2)2
. (2.3)

The geodesic distance from the origin, ρ, is related to the radius R by R = tanh(ρ/2). Using
ρ as radial coordinate, the metric (2.3) becomes

ds2(H3) = dρ2 + sinh2 ρ (dθ2 + sin2 θ dφ2) . (2.4)

The final description of H
3 that we will need is the upper half space model,

ds2(H3) =
1

r2
(dx2

1 + dx2

2 + dr2) , (2.5)

with coordinates x1, x2, r, where r > 0. The relations between the upper half space coordi-
nates and the coordinates X1, X2, X3 in the unit ball model are

r =
1 − R2

1 + R2 − 2X3

, x1 + ix2 =
2(X1 + iX2)

1 + R2 − 2X3

. (2.6)

The Bogomolny equation for monopoles in flat space is also (2.1), but with the Hodge
star of Euclidean R

3 [20, 21, 22]. In flat space, the boundary value v sets the (inverse) length
scale, and replacing v by ṽ > v just results in monopoles being scaled down by a factor ṽ/v.
Hyperbolic space, on the other hand, has a built-in length scale, and the value of v affects
the monopole solutions in a non-trivial way.

Hyperbolic monopoles exist for all positive v, but only if 2v is an integer, denoted by 2p,
can a hyperbolic monopole be interpreted as an SU(2) Yang–Mills instanton in R

4 invariant
under a circle action. Recall that instantons are solutions of the conformally invariant self-
dual Yang–Mills equation in R

4, ∗F = F . The hyperbolic monopoles we will consider are
circle-invariant instantons, and most of them are additionally symmetric under some sub-
group K of SO(3). We therefore need to review the geometry of the commuting SO(2) and
SO(3) actions and the relation between circle-invariant instantons and hyperbolic monopoles.

SO(3) × SO(2) acts isometrically, as a subgroup of SO(5), on Euclidean R
5. Since this

action preserves lengths, it can be restricted to the unit 4-sphere, S4. The generic orbits of
the group on S4 are S2×S1, and there is a one-parameter family of these, with the parameter
lying in an open interval. At the ends of the interval are two special orbits. At one end,
S2 collapses to a point and the orbit is S1; at the other end S1 collapses to a point and the
orbit is S2.
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H
3 is obtained by quotienting by the SO(2) action. To avoid singularities, SO(2) has to

act freely, so the special S2 orbit needs to be removed and then

S4 − S2 ≡ H
3 × S1 . (2.7)

This is, in fact, a conformal equivalence. The standard metric on H
3 × S1 is conformal to

the standard round metric on S4 − S2. The curvature of H
3 is correlated with the length of

the circle. If we normalise the length of the circle to be 2π, then H
3 has curvature −1.

The way to see this is to represent S4 conformally as Euclidean R
4 (compactified by a

point at infinity). Since the self-dual Yang–Mills equation is conformally invariant, instantons
on S4 are equivalent to instantons on R

4 with appropriate boundary conditions. The latter
setting for instantons is easier to implement. Let R

4 have Cartesian coordinates xµ (µ =
1, . . . , 4) and metric

ds2 = dx2

1 + dx2

2 + dx2

3 + dx2

4 . (2.8)

Now let x3 + ix4 = reiχ, so r ≥ 0 and the range of χ is 2π. We can define a circle action on
R

4 by the standard rotation of χ. Its fixed point set is the plane x3 = x4 = 0, which extends
to a 2-sphere in the compactification. We remove this plane from R

4 and quotient by the
circle action. This gives H

3.
Metrically, we re-express (2.8) as

ds2 = dx2

1 + dx2

2 + dr2 + r2dχ2 , (2.9)

and note that for r > 0 this is conformally equivalent to

ds2 =
1

r2
(dx2

1 + dx2

2 + dr2) + dχ2 , (2.10)

which is the product metric on H
3 × S1. Quotienting by SO(2) gives the metric (2.5) on H

3

in the upper half space model. Note that the removed plane (plus the point at infinity) can
be interpreted as the boundary of H

3.
The isometry group of H

3 is 6-dimensional, and has no canonical SO(3) subgroup. How-
ever, if we choose a particular point as the origin of H

3, then there is a unique SO(3) isometry
group with this as fixed point. We select as origin the point with coordinates x1 = x2 = 0
and r = 1. The orbits of the SO(3) action are then the 2-spheres x2

1 +x2
2 + r2 − 2νr +1 = 0,

with ν ≥ 1.
The ball model of H

3 arises from a different, but conformally equivalent, quotient of R
4

by a circle action. The SO(2) action is slightly more complicated, but the SO(3) action is
simpler. We introduce toroidal coordinates (ρ, θ, φ, χ) on R

4 via

xµ =
1

cosh ρ + cos χ
(sinh ρ sin θ cos φ , sinh ρ sin θ sin φ , sinh ρ cos θ , sin χ) . (2.11)

Then the flat metric (2.8) becomes

ds2 =
ds2(H3) + dχ2

(cosh ρ + cos χ)2
, (2.12)
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with ds2(H3) given by (2.4). The flat metric (2.12) is clearly conformally equivalent to

ds2 = ds2(H3) + dχ2 (2.13)

and the quotient by SO(2) is therefore the metric on H
3, in the form of the hyperbolic ball

model (2.4), with 0 ≤ ρ < ∞ the geodesic distance from the origin. The SO(3) orbits are
the 2-spheres of constant ρ, with θ and φ usual polar coordinates.

In terms of the earlier unit ball model, with Cartesian coordinates X1, X2, X3, this Carte-
sian ball can be identified with the unit ball in the hyperplane x4 = 0 of R

4, centred at the
origin. Each circle (parametrised by χ) intersects this once, so we may also regard X1, X2, X3

and χ as toroidal coordinates on R
4. The special SO(3) orbit, where the circles collapse to

points, can again be identified as the boundary of H
3, which is now the 2-sphere, R = 1.

We have seen that the quotient of R
4 by the circle action is conformally H

3, so a circle-
invariant gauge potential in R

4 gives rise to a gauge potential on H
3 together with an adjoint

Higgs field (the component of the gauge potential along the circles), by the standard ideas
of dimensional reduction [21]. The self-dual Yang–Mills equation reduces to the Bogomolny
equation on H

3. Atiyah showed that the instanton charge I and monopole charge N are
related by [10]

I = 2pN . (2.14)

The boundary value p arises from the way the circle action lifts to the bundle carrying the
SU(2) instanton over the fixed S2 of R

4 under the circle action. As discussed above, this S2

is the boundary of H
3. The simplest case is p = 1

2
. For this value of p the monopole charge

and instanton charge are equal.
The spherically-symmetric, hyperbolic 1-monopole is explicitly known for all v. In terms

of the coordinates (2.4), the Higgs field has magnitude [18, 19]

|Φ| =
C

2
coth Cρ − 1

2
coth ρ (2.15)

with asymptotic value v = 1

2
(C − 1). C takes any value greater than 1. Note that |Φ| varies

linearly with ρ near ρ = 0, as the pole terms in ρ cancel. This 1-monopole arises from a
circularly symmetric instanton if and only if C is integral, in which case p (= v) is half-
integral. As shown by the following short calculation, for such values of C, |Φ| is a rational
function of R, the radial coordinate in the rational metric (2.2).

We rewrite |Φ| as

|Φ| =
C(eCρ + e−Cρ)

2(eCρ − e−Cρ)
− eρ + e−ρ

2(eρ − e−ρ)
(2.16)

and note that R = tanh(ρ/2) implies that eρ = 1+R
1−R

. For integer C, expression (2.16) is
then clearly a rational function of R. For the first few values of C, and the corresponding
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p = 1

2
(C − 1), this yields

|Φ| =
R

1 + R2
, C = 2, p =

1

2
(2.17)

|Φ| =
8R(1 + R2)

(3 + R2)(1 + 3R2)
, C = 3, p = 1 (2.18)

|Φ| =
R(5 + 14R2 + 5R4)

(1 + R2)(1 + 6R2 + R4)
, C = 4, p =

3

2
. (2.19)

The linear behaviour of |Φ| near R = 0, and the asymptotic value, |Φ| = p at R = 1, are
both easily verified.

We can get some insight into the difference between hyperbolic and Euclidean monopoles
by rederiving the Euclidean formula for |Φ|. For this we need the expression [18, 19] for |Φ|
in hyperbolic space of curvature −κ2,

|Φ| =
Cκ

2
coth(Cκρ) − κ

2
coth(κρ) . (2.20)

The Euclidean monopole with v = 1 is obtained by taking the limit κ → 0 and C → ∞,
with Cκ fixed to be 2. The result is [23, 24]

|Φ| = coth 2ρ − 1

2ρ
, (2.21)

where ρ is the usual radial coordinate in R
3. This familiar but rather peculiar expression

is rational neither as a function of ρ nor as a function of eρ. This is because it arises from
the limit C → ∞. It is not surprising that Euclidean monopoles of higher charge are not
rational either.

We will discuss circle-invariant instantons and the corresponding hyperbolic monopoles
in some generality. For most of these, the boundary Higgs field will have magnitude p = 1

2
.

We will focus on examples that have an additional invariance under a platonic symmetry
group, K ⊂ SO(3), the symmetry being clearest in the hyperbolic ball model. Instantons
with platonic symmetry have been studied before [25, 26]. There are examples with charge
4 and cubic symmetry, and charge 7 with icosahedral symmetry. What we need to do here
is to find which of them have an additional commuting circle invariance. This is mainly a
matter of determining the correct scale size.

We start with the JNR construction [14] in Section 3, as it is simpler than the general
ADHM construction [16]. The JNR ansatz gives the gauge potential of an instanton in terms
of derivatives of a scalar potential function ζ in R

4. ζ has singularities, called “poles”, at
N + 1 points when the instanton has charge N . The coefficients of the singular terms are
called “weights”. The poles are not singularities of the instanton itself. If these poles lie on a
plane, R

2, then ζ is invariant under the circle action whose fixed-point set is this plane. This
leads straightforwardly to a class of hyperbolic monopoles defined in the upper half space
model of H

3. To investigate whether such a monopole has platonic symmetry, we exploit
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the conformal invariance of the JNR construction to convert to the ball model of H
3. After

the conversion, the JNR potential ζ has its poles on the S2 boundary of H
3, and it is easier

to determine which symmetry group K is present. We also show how to compute the Higgs
field magnitude and energy density. This JNR approach gives, in particular, the 3-monopole
with tetrahedral symmetry, analogous to the 3-monopole with the same symmetry in R

3.
We next discuss circle-invariant ADHM data. A mechanism for imposing circle invari-

ance and obtaining hyperbolic monopoles was established by Braam and Austin [27]. Their
formalism applies to the situation where the circle symmetry acts naturally in the (x3, x4)-
plane, and is therefore best adapted to hyperbolic monopoles in the upper half space model
of H

3, where platonic symmetries are not straightforwardly realised. Their analysis works
for any p, and converts the single quaternionic ADHM matrix equation into a set of coupled
complex matrix equations defined on a linear lattice with 2p sites. As mentioned earlier,
the Euclidean limit emerges as p → ∞. This is the continuum limit of the lattice system,
and the complex matrix equations turn into the Nahm equation for Euclidean monopoles
[4]. The lattice system may therefore be viewed as a discrete Nahm equation [27].

The simplest case of the discrete Nahm equation is when p = 1

2
, where the lattice de-

generates to a single site, and the resulting complex equation is merely the original ADHM
equation with the quaternionic entries of the ADHM matrix restricted to be complex. Braam
and Austin did not explicitly discuss this case, so they did not construct any examples of
hyperbolic monopoles with p = 1

2
, with or without platonic symmetries. It is known how

to relate the JNR ansatz to a subset of solutions of the ADHM equation and our condition
that the poles lie in a plane provides the required restriction from quaternionic to complex
data. JNR data restricted to a plane therefore provides a subset of solutions to the discrete
Nahm equation in the degenerate case of one lattice site.

In contrast to the approach of Braam and Austin, our analysis of circle-invariant ADHM
data is based on the ball model of H

3, so that there is a natural action of SO(3). This
means that the circle action is more complicated than in previous studies of ADHM data. In
Section 4 we introduce a novel version of circle-invariant ADHM data, leading to instantons
invariant under the circle action on R

4 whose quotient manifestly gives the hyperbolic ball.
The associated hyperbolic monopoles have p = 1

2
. The advantage of this approach is that

several examples of ADHM instanton data with platonic symmetry group K have been
constructed previously, using a systematic approach involving representations of K. We have
found, perhaps surprisingly, that many of these examples also satisfy our new constraints
required for circle invariance, provided the instanton scale size is fixed appropriately. ADHM
data that simultaneously have the circle invariance and platonic symmetry are presented in
Section 5. The Higgs field and energy density of the associated hyperbolic monopoles can
be computed explictly with the assistance of MAPLE to perform the quaternionic linear
algebra. The resulting formulae are rational in the unit ball coordinates.

Although our method yields explicit solutions, our analysis is less general than that of
Braam and Austin. In particular we have not pinned down the rational map associated with
a general hyperbolic monopole. This is a map that describes the asymptotic structure of the
monopole on the ball boundary, and is known to completely determine the monopole [27].
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We have not yet understood how this rational map arises for our version of the ADHM data
and constraints. However, in Section 6 we propose a formula for a rational map that works
well for a certain class of hyperbolic monopoles. This map is of the Jarvis type [28], first
defined for monopoles in R

3, and is compatible with the SO(3) action on the hyperbolic ball.
We do not address spectral curves associated with hyperbolic monopoles [29, 30].

In Section 7 we briefly discuss spherically symmetric hyperbolic monopoles for other
half-integer p. Using the upper half space model of H

3, that derives from the planar circle
action, we recall the JNR version of the required instantons given by Nash [19]. We then
present the corresponding ADHM data for the unit ball model of H

3, obtained from the
more complicated circle action. This data is then assessed in the light of our new p = 1

2

constraints.
In Section 8 we present our conclusions.

3 Platonic hyperbolic monopoles via JNR

The JNR ansatz is [14]

Aµ =
i

2
σµν ∂ν log ζ , (3.1)

where σi4 = τi, σij = εijkτk, and τi (i = 1, 2, 3) are the Pauli matrices.
Let ξm, for m = 0, . . . , N, be complex constants and take ζ to have the form

ζ =
N∑

m=0

1 + |ξm|2
|x1 + ix2 − ξm|2 + r2

, (3.2)

where x3 + ix4 = reiχ, and the circle action rotates χ. This gives an N -instanton. The
N + 1 singularities of ζ , the poles, are all on the fixed plane of the circle action, r = 0,
which corresponds to the boundary of H

3 in the half space model. This ensures that the
instanton is invariant under the circle action, and hence produces a hyperbolic monopole.
The poles are located at the points with complex coordinates ξm in this plane. The weights
of ζ , that is, the numerator factors 1 + |ξm|2, have been chosen so that they are all equal
after a conformal transformation to the unit ball model of H

3. This is verified using the
scaling rule for the weights under conformal transformations, pointed out in [14]. After the
transformation, the poles are on the boundary 2-sphere of the hyperbolic ball, and since the
weights are equal, the hyperbolic monopole acquires the symmetry of the configuration of
poles. The location of the m-th pole on the 2-sphere is still ξm, which is now the complex
coordinate obtained by stereographic projection from the Cartesian coordinates on the unit
sphere by the usual formula ξ = (X1 + iX2)/(1 − X3), following from (2.6).

The symmetry of the hyperbolic monopole is platonic, if, for example, the poles are at
the vertices of a platonic solid. The points ξm then need to be the roots of the vertex Klein
polynomial of that solid [31, 21].

As ∂χζ = 0, the only χ-dependence in Aµ arises from the χ-dependence of the Cartesian
partial derivatives in the JNR ansatz (3.1). This dependence is removed by the gauge
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transformation

Aµ 7→ GAµG−1 − ∂µG G−1, where G = eipχτ3 with p =
1

2
. (3.3)

In this gauge the Higgs field of the monopole is given by Φ = Aχ. Its magnitude on the
boundary of H

3 is fixed as |Φ|2(= −1

2
Tr(Φ2)) is equal to p2 = 1

4
there. As p = 1

2
, the instanton

number N equals the monopole charge. Below, we will present formulae only for |Φ|, but Φ
itself and the gauge potential can easily be found, if required.

The monopole energy density E can be written as the Laplace–Beltrami operator acting
on the squared magnitude of the Higgs field,

E =
1√
g
∂i(

√
ggij∂j |Φ|2) , (3.4)

in which the metric g is taken to be the ball metric (2.2). This simple expression for the
energy density was first derived in flat space [32], using the Bogomolny equation, but it easily
generalises to any curved background. The total energy is

E =

∫

H
3

E√g dX1dX2dX3 = 4πpN = 2πN . (3.5)

3.1 Spherical 1-monopole

Taking ξ0 = −ξ1 = 1 gives a charge 1 hyperbolic monopole. The poles are antipodal on
the 2-sphere, so ζ is not manifestly spherically symmetric. However, as observed in [14],
this is a case where the poles can be moved along any great circle passing through them to
another antipodal pair of points, just producing a gauge transformation. So the monopole is
spherically symmetric about the centre of the hyperbolic ball. Applying the above formulae
yields

|Φ|2 =
R2

(1 + R2)2
, (3.6)

with an associated energy density

E =
3

2

(
1 − R2

1 + R2

)4

. (3.7)

Clearly, as R → 1, |Φ|2 → 1

4
so p = 1

2
. One sees that this basic monopole in hyperbolic

space is indeed rational, making it simpler than the flat space monopole, whose Higgs field
depends on radius through a combination of rational and hyperbolic functions. An energy
density isosurface is shown in Figure 1.

3.2 Axial 2-monopole

Taking ξm = e2πim/3, with m = 0, 1, 2 and writing ρ2 = X2
1 + X2

2 yields

|Φ|2 =
R2 (1 + R2)

2 − ρ2 (1 + R4) + 1

4
ρ4

(
(1 + R2)2 − ρ2

)2
, (3.8)
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Figure 1: Energy density isosurfaces for the spherical 1-monopole, axial 2-monopole, tetra-
hedral 3-monopole and octahedral 5-monopole. These surfaces are shown in the ball model
of H

3.

with energy density

E =
(1 − R2)

4
(
(1 + R2)

4
+ 22ρ2 (1 + R2)

2
+ 4ρ4

)

2
(
(1 + R2)2 − ρ2

)4
. (3.9)

The poles in this case are on the equator of the 2-sphere, located at the vertices of
an equilateral triangle. This is a triangle that can be rigidly rotated around the equator,
producing only a gauge transformation, so the JNR instanton and the hyperbolic monopole
to which it gives rise have axial symmetry. An energy density isosurface is shown in Figure 1.

3.3 Tetrahedral 3-monopole

The vertex Klein polynomial of the tetrahedron is Tv = ξ4 + 2
√

3iξ2 + 1, with the four roots
±(1 + i)/(

√
3 + 1), ±(1− i)/(

√
3− 1). Using the JNR ansatz with these points ξm as poles

gives a tetrahedrally symmetric monopole of charge 3.
The Higgs field and energy density are best expressed, as before, in terms of the Cartesian

coordinates X1, X2, X3. The ring of tetrahedrally invariant homogeneous polynomials is
generated by the polynomials of degrees two, three and four,

t2 = X2

1 + X2

2 + X2

3 , t3 = X1X2X3 , t4 = X4

1 + X4

2 + X4

3 . (3.10)
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The squared magnitude of the Higgs field can be expressed in terms of these. Explicitly, it
is found that

|Φ|2 = q1/q2 where

q1 = 9t2 + 216
√

3t3 + 132t22 − 24t4 − 24
√

3t3t2 + 294t32 + 48t4t2 + 192t23 − 24
√

3t3t
2

2

+132t42 − 24t4t
2

2 + 216
√

3t3t
3

2 + 9t52 ,

q2 = (9 + 15t2 + 16
√

3t3 + 15t22 + 9t32)
2 . (3.11)

The zeros of the Higgs field have tetrahedral symmetry, and for the tetrahedrally sym-
metric 3-monopole in Euclidean space, it was found (partly numerically) that there are four
zeros of multiplicity 1 forming a tetrahedron, together with one anti-zero at the centre [8].
The same occurs for the hyperbolic monopole. Along the line X1 = X2 = X3 = l/

√
3, which

passes through a vertex of the tetrahedron of poles, the above expression simplifies to

|Φ|2 =
l2 (3l2 + 14l + 3)

2

(3l2 + 4l + 3)2 (3l2 − 2l + 3)2
, (3.12)

which has zeros at l = 0 and l = (2
√

10 − 7)/3, confirming the extra anti-zero of the Higgs
field.

The energy density can be computed by applying the Laplace–Beltrami operator, but the
result is complicated. It is used to obtain the energy density isosurface shown in Figure 1.
Along the special line the energy density simplifies to

E =
81(1 − l2)4

(
27(l8 + 1) + 72l(l6 + 1) + 1140l2(l4 + 1) + 760l3(l2 + 1) + 2402l4

)

2(3l2 + 4l + 3)4 (3l2 − 2l + 3)4
. (3.13)

This expression is plotted in Figure 2.

3.4 Octahedral 5-monopole

The JNR ansatz with six poles at the vertices of an octahedron gives a hyperbolic 5-monopole
with octahedral symmetry. The vertex Klein polynomial of the octahedron is Ov = ξ5 − ξ,
with roots ∞,±1,±i, 0. The fact that one root is at infinity means that the JNR ansatz
reduces to the ’t Hooft ansatz for an instanton [33, 21], where the first term in ζ is replaced
by 1.
The ring of octahedrally invariant homogeneous polynomials is generated by o2 = t2, o4 = t4

and o6 = t23, with t2, t3 and t4 as in (3.10). |Φ|2 can be written in terms of these invariants
as

|Φ|2 = q1/q2 where

q1 = o2 − 32o4 + 24o2

2 + 76o3

2 + 192o6 − 80o4o2 − 32o4o
2

2 + 104o4

2 − 384o6o
2

2 + 64o2

4o2

−96o4o
3

2 + 166o5

2 − 32o4o
4

2 + 104o6

2 − 80o4o
5

2 + 76o7

2 + 192o6o
4

2 − 32o4o
6

2 + 24o8

2 + o9

2 ,

q2 = (3 + 4o2 − 8o4 + 10o2

2 + 4o3

2 + 3o4

2)
2(1 + o2)

2 . (3.14)
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Figure 2: The energy density of the tetrahedral 3-monopole along a line through the origin
and a vertex.

An energy density isosurface is shown in Figure 1.
Along the X3-axis (which passes through two vertices) the above simplifies to

|Φ|2 =
X2

3 (X2
3 + 2X3 − 1)

2
(X2

3 − 2X3 − 1)
2

(3X4
3 − 2X2

3 + 3)
2
(X2

3 + 1)
2

, (3.15)

which has zeros at X3 = 0 and X3 = ±(
√

2 − 1). This is compatible with there being six
zeros of multiplicity 1 forming an octahedron, and an anti-zero at the centre, as in flat space
[7].

Along this same axis,

E =
(1 − X2

3 )4
(
27(X16

3 + 1) + 120X2
3 (X12

3 + 1) + 5812X4
3 (X8

3 + 1) + 14408X6
3(X

4
3 + 1) + 21474X8

3

)

2(X2
3 + 1)4 (3X4

3 − 2X2
3 + 3)4

,

(3.16)
and this is shown graphically in Figure 3.

3.5 Icosahedral 11-monopole

The JNR ansatz with twelve poles at the vertices of an icosahedron gives a hyperbolic 11-
monopole with icosahedral symmetry. In an orientation that has a root at infinity, the vertex
Klein polynomial of the icosahedron is Yv = ξ11 + 11ξ6 − ξ.

At charge 11 and higher, it becomes impractical to calculate explicit expressions for the
magnitude of the Higgs field throughout hyperbolic space, due to the number of terms.
However, the Higgs field of the icosahedral 11-monopole is manageable if restricted to the

13



Figure 3: The energy density of the octahedral 5-monopole along the X3-axis.

X3-axis, and here

|Φ|2 =
X2

3 (25X8
3 + 20X6

3 − 218X4
3 + 20X2

3 + 25)
2

(75X10
3 + 55X8

3 − 2X6
3 − 2X4

3 + 55X2
3 + 75)

2
. (3.17)

Along this axis, which passes through two vertices, there are Higgs zeros at X3 = 0 and

X2
3 = (2

√
17 − 1 − 2

√
11 −

√
17 )/5, compatible with twelve zeros of multiplicity 1 at the

vertices of the icosahedron and an anti-zero at the centre.

4 Circle invariance of ADHM data

The JNR ansatz could be used to construct further hyperbolic monopoles, mostly with
lower symmetry, by having the poles at more generic positions on the boundary surface of
H

3, and changing the weights. However, one cannot obtain all hyperbolic monopoles this
way. The dimension of the moduli space of hyperbolic monopoles of charge N grows like 4N ,
whereas that of the JNR parameter space (with poles restricted to a two-dimensional surface)
grows like 3N . The way to obtain all instantons in R

4 is to use the ADHM construction,
and in this way one can also obtain all hyperbolic monopoles.

In this section we discuss the general class of ADHM data that give rise to hyperbolic
monopoles. That means focussing on circle invariance first, leaving the possibility of platonic
symmetry to later. We will use the toroidal coordinate system in R

4 which leads to the ball
model of H

3. The ADHM matrices need to satisfy a number of simultaneous quadratic
constraints, and these are not generally explicitly solvable.

The ADHM matrices are constant matrices of quaternions, and one also needs to use the
quaternionic representation of a point x in R

4, x = x4 +x1i+x2j +x3k. Then the conformal
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group of R
4 acts as quaternionic Möbius transformations

x 7→ x′ = (Ax + B)(Cx + D)−1 . (4.1)

Platonic ADHM data are symmetric under some finite subgroup K of SO(3) generated
by rotations of the form (

A B
C D

)
=

(
q 0
0 q

)
, (4.2)

where q is a unit quaternion representing (in SU(2)) an element of K. The commuting circle
action is given by the group of rotations

(
A B
C D

)
=

(
cos α

2
sin α

2

− sin α
2

cos α
2

)
. (4.3)

Note that this circle action fixes the 2-sphere given by x a unit pure quaternion. This
becomes the 2-sphere boundary of H

3 in the ball model.
In terms of the coordinates X1, X2, X3 in the ball model, define the pure quaternion

X = X1i + X2j + X3k, with R2 = |X|2. Together with the coordinate χ along the circle one
obtains the toroidal coordinates of R

4. The corresponding expression for the quaternion x is

x =
2X + (1 − R2) sin χ

1 + R2 + (1 − R2) cos χ
. (4.4)

The circle action (4.3) corresponds to the rotation χ 7→ χ + α.
In standard form, the ADHM data for a charge N instanton are a pair of quaternionic

matrices L and M , where L is a row of N quaternions and M is a symmetric N ×N matrix
of quaternions [16]. These are combined into

M̂ =

(
L
M

)
(4.5)

and are required to satisfy the quadratic constraints

M̂ † M̂ = RN , (4.6)

where RN is an invertible, real N ×N matrix. The pure quaternion part of M̂ † M̂ is required
to vanish. From M̂ one constructs the ADHM operator

∆(x) = M̂ − Ux =

(
L
M

)
−

(
0

1N

)
x , (4.7)

where 1N denotes the N × N unit matrix.
Equivalent ADHM data are obtained by applying the transformation

M̂ 7→ QM̂ , U 7→ QU , (4.8)

15



where Q†Q = 1N+1, but then the data are (generically) no longer in standard form.
We now introduce a stronger set of constraints on the ADHM data than (4.6), and show

that these are sufficient for the data to be invariant under the circle action (4.3). The
stronger constraints are

(i) M is pure quaternion and symmetric, (4.9)

(ii) M̂ † M̂ = 1N , (4.10)

(iii) LM = µL , where µ is a pure quaternion, and L is non-vanishing. (4.11)

We refer to µ as a left-eigenvalue of M . Properties (i) and (ii) imply that

L†L = 1N + M2 . (4.12)

Another useful relation is
LL† = 1 − |µ|2 . (4.13)

To verify this, apply M on the right of (iii) to obtain LM2 = µLM = µ2L = −|µ|2L, where
property (iii) has been used again. Eliminating M2 using (4.12) gives (LL†−1+ |µ|2)L = 0,
and the result follows.

Under the general conformal transformation (4.1) the ADHM data transform (up to an
overall factor on the right) as

U 7→ U ′ = UA − M̂C , M̂ 7→ M̂ ′ = M̂D − UB , (4.14)

which are also not in standard form. For the case of the circle action (4.3) the transformation
(4.14) becomes

U ′ = U cos
α

2
+ M̂ sin

α

2
, M̂ ′ = M̂ cos

α

2
− U sin

α

2
. (4.15)

To show that the constrained ADHM data are circle-invariant we need a matrix Q to put
these data back into standard form. Using constraints (i) to (iii) and the relations (4.12)
and (4.13), one finds that the required matrix is

Q =

(
cos α

2
+ µ sin α

2
−L sin α

2

L† sin α
2

1N cos α
2
− M sin α

2

)
. (4.16)

It can be checked that Q†Q = 1N+1, and direct calculation shows that QU ′ = U and

QM̂ ′ = M̂ , so the ADHM data have the required circle invariance, and hence give rise to a
hyperbolic monopole.

To proceed with the ADHM construction of the instanton, and hence monopole, we need
to find an (N + 1)-component column vector Ψ of unit length, Ψ†Ψ = 1, that solves the
linear equation

Ψ†∆(x) = 0 . (4.17)
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Note that Ψ is unaffected if ∆(x) is multiplied by a factor on the right. The instanton gauge
potential is then obtained from the formula

Aµ = Ψ†∂µΨ , (4.18)

where this pure quaternion is regarded as an element of su(2).
Eq.(4.4) shows that when χ = 0, then x = X. Hence for circle-invariant data, and setting

α = χ, we deduce that at a point x with toroidal coordinates X and χ,

∆(x) = Q†∆(X) . (4.19)

Here Q is as in (4.16), with α = χ. The required vector Ψ can therefore be written in the
form Ψ = Q†V where V is a unit length column vector, V †V = 1, that depends only on the
pure quaternion X and solves the linear equation

V †∆(X) = 0 . (4.20)

The resulting gauge potential is χ-independent, which is what we need to interpret the
instanton as a hyperbolic monopole. In particular, the Higgs field of the monopole is

Φ = Aχ = V † Ξ V , (4.21)

where

Ξ = Q ∂χQ† =
1

2

(
−µ L
−L† M

)
. (4.22)

Interestingly, the left-eigenvalue µ has a physical meaning, in that it is related to the
value of the Higgs field at the origin. To see this, set X = 0 and observe that at this point
the vector V satisfying (4.20) is simply

V =

(
µ
L†

)
. (4.23)

Substituting this into the expression (4.21) yields Φ(0) = −1

2
µ. The gauge invariant quantity

is |Φ(0)| = 1

2
|µ|.

As mentioned earlier, Braam and Austin have previously discussed hyperbolic monopoles
in terms of ADHM data invariant under a circle action [27]. Their analysis is for all half-
integer p and their approach used the circle action on R

4 that leads to the upper half space
version of H

3. Our analysis, adapted to the hyperbolic ball, is more restricted and only
deals with the case p = 1

2
. Its advantage is that we will be able to explicitly find hyperbolic

monopoles with platonic symmetry. To make a connection to the work of Braam and Austin
would require proving a correspondence between ADHM data that satisfies our constraints
(i) to (iii) and ADHM data with complex entries. This would also clarify the issue of whether
or not our sufficient constraints are also necessary, which at the moment is unknown.

17



5 Hyperbolic monopoles from ADHM data

In this section we give explicit examples of ADHM data satisfying the constraints (i) to
(iii) discussed in Section 4, and which therefore give rise to hyperbolic monopoles. Many
have platonic symmetry. Some of the examples reproduce results obtained using the JNR
ansatz.

For N = 1 and N = 2 we can directly find ADHM data satisfying the constraints.
For larger N , we make use of ADHM matrices that were previously constructed to give
platonically symmetric instantons [25, 26, 34]. These can be written down explicitly, after
some analysis involving the representation theory of the relevant platonic symmetry group,
K. They are seen to satisfy the constraints provided one fixes their normalisation suitably,
which corresponds to fixing the scale of the instanton.

It was not recognised previously that these platonic instantons may have an additional
circle invariance, and hence correspond to hyperbolic monopoles.

5.1 N = 1

An admissible M̂ , satisfying the constraints, is

M̂ =

(√
1 − a2

ai

)
, (5.1)

with |a| < 1 and µ = ai. This gives a hyperbolic 1-monopole with its centre along the X1-axis
at X1 = (1 −

√
1 − a2)/a. The Higgs field at the origin has magnitude |Φ(0)| = 1

2
|µ| = 1

2
|a|.

The squared magnitude of the Higgs field at a general point in the unit ball is given by

|Φ|2 =
4R2 − 4aX1(1 + R2) + a2(4X2

1 + (1 − R2)2)

4(1 + R2 − 2aX1)2
. (5.2)

The simplest example is

M̂ =

(
1
0

)
, (5.3)

with the monopole centred at the origin. The formulae (3.6) and (3.7) for the Higgs field
magnitude and energy density are easily rederived.

All of these monopoles are spherically symmetric about their centres, but only in the last
case is the symmetry group the standard SO(3) that we have been discussing.

5.2 N = 2

An axially symmetric 2-monopole, centred at the origin, is obtained from

M̂ =
1

2





√
2

√
2k

i j
j −i



 . (5.4)
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This can be extended to a one-parameter family of non-axially symmetric monopoles, still
centred at the origin. This family illustrates the 90◦ scattering of N = 2 monopoles, familiar
from monopoles in R

3 [20]. M̂ has the form, satisfying the constraints,

M̂ =
1

2




√
2(1 − a2)

√
2(1 − a2)k

(1 − a)i (1 + a)j
(1 + a)j −(1 − a)i


 , (5.5)

where a ∈ (−1, 1). The axial case is recovered when a = 0. For this family, the left-eigenvalue
of M is µ = −ai, so it vanishes only for the axial example.

|Φ|2 can be computed at all points in the unit ball, and is

|Φ|2 = q1/q2 where

q1 = (a4 + 1)ρ4 − 2a3(X2

1 − X2

2 )((1 − R2)2 + 2ρ2) + a2((1 − R4)2 − 8R2ρ2 + 6ρ4 − 16X2

1X
2

2 )

+2a(X2

1 − X2

2 )(3R4 + 2R2 + 3 − 2ρ2) + 4R2(1 + R2)2 − 4ρ2(1 + R4) ,

q2 =
(
−2a2ρ2 + 4a(X2

1 − X2

2 ) + 2((1 + R2)2 − ρ2)
)2

, (5.6)

and where ρ2 = X2
1 +X2

2 . Note that when a = 0 this expression reverts to the axial form (3.8)
obtained earlier using JNR data. The symmetry under a change of sign of a accompanied
by an exchange of X1 and X2 is clear.

For a ∈ (−1, 0] the two zeros of the Higgs field are on the X1-axis at the positions

X2

1 =
a2 − 3 +

√
(1 − a2)(9 − a2)

2a
. (5.7)

For a ∈ [0, 1) the Higgs zeros are on the X2-axis, as expected from the above symmetry
under a 7→ −a. Energy density isosurfaces for several members of this one-parameter family
are displayed in Figure 4.

Figure 4: Energy density isosurfaces for the 2-monopole with a = −0.5,−0.25, 0, 0.25, 0.5.
The boundary of hyperbolic space is also indicated.
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5.3 Tetrahedral N = 3

The ADHM data with the normalisation required to satisfy the constraints are of the form
[34]

M̂ =
1√
3




i j k
0 k j
k 0 i
j i 0


 , (5.8)

with µ = 0. From this one obtains the Higgs field and energy density of the tetrahedrally
symmetric 3-monopole obtained earlier using JNR data.

5.4 Cubic N = 4

This is the first platonic example that cannot be obtained using the JNR ansatz. Here

M̂ =
1

2
√

2




√
2

√
2i

√
2j

√
2k

0 −j − k −k − i −i − j
−j − k 0 j − i i − k
−k − i j − i 0 k − j
−i − j i − k k − j 0




. (5.9)

This is a special case of the ADHM data found in [25], with the normalisation, and hence
the instanton scale size, fixed to satisfy the constraints. The hyperbolic monopole has

|Φ|2 = q1/q2 where

q1 = −18o2

2 + 54o4 + 54o3

2 + 108o6 + 18o4o2 + 153o4

2 − 216o6o2 + 9o2

4 − 54o4o
2

2 + 18o4o
3

2

+54o5

2 + 108o6o
2

2 + 54o4o
4

2 − 18o6

2 ,

q2 = 4(2o4

2 + 4o3

2 + 3o2

2 + 3o4 + 4o2 + 2)2 , (5.10)

with o2, o4 and o6 the octahedral polynomials as in (3.14). Along the line X1 = X2 = X3 =
l/
√

3 (which passes through two cubic vertices) the above simplifies to

|Φ|2 =
4l6

(l2 + 1)2(l4 + 1)2
. (5.11)

This is zero only at the origin, in agreement with the fact that for the cubically symmetric
4-monopole in R

3 there are no anti-zeros of the Higgs field. Along this line the energy density
is

E =
l2 (9 l12 + 102 l10 + 283 l8 + 396 l6 + 283 l4 + 102 l2 + 9) (1 − l2)

4

2 (l4 + 1)4 (l2 + 1)4
. (5.12)

An energy density isosurface for the cubic 4-monopole is presented in Figure 5.
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Figure 5: Energy density isosurfaces for the cubic 4-monopole and the dodecahedral 7-
monopole.

The cubically symmetric data can be extended to a one-parameter family with tetrahedral
symmetry, as in [25],

M̂ =




b
√

2 b
√

2i b
√

2j b
√

2k

a (i + j + k) −b (j + k) −b (k + i) −b (i + j)

−b (j + k) a (i − j − k) b (j − i) b (i − k)

−b (k + i) b (j − i) a (−i + j − k) b (k − j)

−b (i + j) b (i − k) b (k − j) a (−i − j + k)




, (5.13)

where, to satisfy the constraints, b =
√

(1 − 3a2)/8 with
√

3a ∈ (−1, 1). The cubic case is

recovered when a = 0 and b = 1/2
√

2. For this tetrahedral family it can be checked that the
left-eigenvalue is µ = a(i + j + k), so it vanishes only for the cubic example. Energy density
isosurfaces for several members of this one-parameter family are displayed in Figure 6.

Figure 6: Energy density isosurfaces for the 4-monopole with a = −0.4 ,−0.2 , 0 , 0.2 , 0.4 .
The boundary of hyperbolic space is also indicated.
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5.5 Dodecahedral N = 7

The existence of icosahedrally symmetric ADHM data with N = 7 was established in [26].
With a suitable normalisation, the data satisfy the constraints (i) to (iii), with µ = 0, and

give a hyperbolic 7-monopole of dodecahedral form. M̂ is

M̂ =
1

2




1 i j k 0 0 0
0 0 0 0 i j k
0 0 0 0 0 τk τ−1j
0 0 0 0 τ−1k 0 τi
0 0 0 0 τj τ−1i 0
i 0 τ−1k τj 0 0 0
j τk 0 τ−1i 0 0 0
k τ−1j τi 0 0 0 0




, (5.14)

where τ = 1

2
(
√

5 + 1).
The ring of icosahedrally invariant homogeneous polynomials is generated by three poly-

omials of degrees two, six and ten,

y2 = X2

1 + X2

2 + X2

3 , (5.15)

y6 = 2τ(X4

1X2

2 + X4

2X2

3 + X4

3X
2

1 ) − 2τ−1(X4

1X
2

3 + X4

2X
2

1 + X4

3X
2

2 ) − 8X2

1X
2

2X
2

3 ,

y10 = 10X2

1X
2

2X
2

3

(
5X2

1X
2

2 + 5X2

1X
2

3 + 5X2

2X
2

3 − 2X4

1 − 2X4

2 − 2X4

3

)

+2
√

5
(
X2

1X
8

2 − X2

2X
8

1 + X8

1X2

3 − X8

3X
2

1 + X8

3X
2

2 − X8

2X2

3

−τ
(
X4

1X
6

2 + X4

2X6

3 + X4

3X
6

1

)
− τ−1

(
X4

1X
6

3 + X4

2X
6

1 + X4

3X
6

2

))
.

The squared magnitude of the Higgs field can be expressed in terms of these, and is

|Φ|2 = q1/q2 where

q1 = 8y3

2 + 60y6 + 56y4

2 + 180y6y2 + 194y5

2 + 185y6y
2

2 + 25y10 + 392y6

2 − 20y6y
3

2

+500y7

2 − 50y10y
2

2 + 50y2

6y2 − 210y6y
4

2 + 392y8

2 − 20y6y
5

2 + 194y9

2 + 25y10y
4

2

+185y6y
6

2 + 56y10

2 + 180y6y
7

2 + 8y11

2 + 60y6y
8

2 ,

q2 = 2(1 + y2)
2(2 + 4y2 + 6y2

2 + 6y3

2 + 5y6 + 6y4

2 + 4y5

2 + 2y6

2)
2 . (5.16)

An energy density isosurface for the dodecahedral 7-monopole is presented in Figure 5.

5.6 Icosahedral N = 17

Icosahedrally symmetric ADHM data for an instanton with N = 17 are given in [35]. In

this example the matrix M̂ is quite large, so we do not reproduce it here. However it can
be checked that it does indeed satisfy the constraints (i) to (iii) for circle invariance, after
multiplication by a scale factor of 1

2
compared to the normalisation presented in [35]. The

left-eigenvalue µ again vanishes. Although we have not attempted to compute the Higgs
field and energy density of the resulting 17-monopole, the known properties of the instanton
make it clear that the polyhedron associated with this example is the truncated icosahedron,
familiar as the buckyball.
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6 Rational maps

One of the achievements of earlier work on hyperbolic monopoles [10, 27] was the estab-
lishment of a one-to-one correspondence between charge N monopoles and rational maps
(from the Riemann sphere to itself) of degree N .

We have not succeeded in constructing a rational map from a general hyperbolic monopole,
in our formalism. However in the cases where µ = 0 we have a good candidate. This appears
to be an analogue of the Jarvis map for Euclidean monopoles [28]. In particular, the map
has platonic symmetry if the monopole has platonic symmetry.

To proceed, let X be a unit pure quaternion. This can be identified with a point on the
Riemann sphere with complex coordinate ξ by writing

X =
1

1 + |ξ|2
(

2 Re(ξ)i + 2 Im(ξ)j + (|ξ|2 − 1)k

)
. (6.1)

Next, use the ADHM data to define the quaternion function of X,

f(X) = L(M − X)−1L† , (6.2)

where M − X means M − X 1N . Using constraint (i), it is easy to see that f is a pure
quaternion for all X.

If µ = 0, then |f |2 = 1 so f is a unit pure quaternion. To prove this, note first that as f
is a pure quaternion,

|f |2 = −L(M − X)−1L†L(M − X)−1L† (6.3)

and therefore, using (4.12),

|f |2 = −L(M − X)−1(1N + M2)(M − X)−1L† . (6.4)

Next, as X is a unit pure quaternion, (M −X)−1 = (−X(1N + XM))−1 = (1N + XM)−1X,
from which follows the formal series expansion

(M − X)−1 = X − XMX + XMXMX − XMXMXMX + · · · . (6.5)

Inserting this twice in (6.4), using X2 = −1, and collecting terms, we obtain the relatively
simple series

|f |2 = −L(−1N +MX+XM−MXMX−XMXM+MXMXMX+XMXMXM−· · · )L† .
(6.6)

If µ = 0, then LM = 0, using constraint (iii), and by conjugation ML† = 0, so all terms in
this series except the first vanish, and by (4.13), LL† = 1, so |f |2 = 1, as claimed.

The unit pure quaternion f , like X, may be identified with a Riemann sphere coordinate
R via

f =
1

1 + |R|2
(

2 Re(R)i + 2 Im(R)j + (|R|2 − 1)k

)
. (6.7)
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The function f(X) therefore gives a function R(ξ), our candidate rational map, although at
this point R could also depend on ξ̄.

To prove that R(ξ) is holomorphic, we recall the complex structure on the Riemann sphere
of unit pure quaternions. Let X + δX be a unit pure quaternion infinitesimally separated
from X. Since X2 = −1 and (X + δX)2 = −1, to linear order XδX + δXX = 0. This is
the condition for δX to be tangent to the Riemann sphere at X. The complex structure
operation at X is right multiplication by X, δX → δXX, which acts on the tangent space
and whose square is multiplication by −1. Similarly, the complex structure on the target
Riemann sphere is right multiplication by f .

Now consider δf , effectively the derivative of f(X), defined as f(X+δX)−f(X) truncated
at linear order in δX. From (6.2), we find

δf = L(M − X)−1δX(M − X)−1L† . (6.8)

R(ξ) will be holomorphic if the effect of replacing δX by δXX is to replace δf by δff . So
we need to show that

L(M − X)−1δXX(M − X)−1L† = L(M − X)−1δX(M − X)−1L†L(M − X)−1L† . (6.9)

The first few factors on each side are the same, so it is sufficient to show that

X(M − X)−1L† = (M − X)−1L†L(M − X)−1L† . (6.10)

Using the series (6.5) again, and the relations (4.12) and X2 = −1, this reduces to

(−1N+MX−MXMX+· · · )L† = (−1N+MX+XM−MXMX−XMXM+· · · )L† . (6.11)

As ML† = 0, the left and right hand sides are equal, so R(ξ) is indeed holomorphic.
In fact, for all our platonic monopole examples with µ = 0, we find that R is a rational

function of ξ whose degree equals the monopole charge. In detail, for the spherical 1-
monopole and the axial 2-monopole the maps are R = ξ and R = ξ2, respectively. More
complicated examples are provided by the tetrahedral 3-monopole and the dodecahedral
7-monopole, where the above construction yields the rational maps

R =

√
3iξ2 − 1

ξ3 −
√

3iξ
and R =

7ξ6 − 7
√

5ξ4 − 7ξ2 −
√

5√
5ξ7 + 7ξ5 + 7

√
5ξ3 − 7ξ

. (6.12)

These maps agree with the Jarvis maps presented in [36] for the corresponding platonic
monopoles in Euclidean space.

7 Beyond p =
1
2

The JNR construction of hyperbolic monopoles, presented in Section 3, applies only to
the case p = 1

2
. To obtain hyperbolic monopoles with other half-integer values of p requires
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a placement of the poles out of the plane r = 0. However, once the poles do not lie in this
fixed set of the circle action then it is more difficult to arrange for circle invariance. In fact
the poles must all have the same weight and be equally spaced on a circle. This arrangement
was first identified by Nash [19], who noted that the 1-monopole is obtained from a JNR
instanton of charge 2p by placing equal weight poles at the vertices of a regular (2p+1)-gon
inscribed in the circle r = 1 with x1 = x2 = 0. Note that the case p = 1

2
is again special here,

in that this description of the 1-monopole involving two poles is equivalent to the earlier
description, where two poles are placed in the r = 0 plane. This dual description follows
from the SO(4) symmetry of the 1-instanton.

For p 6= 1

2
the above polygonal arrangement is the only option for circle invariance, so

more complicated monopoles with platonic symmetry are beyond this JNR ansatz. The
ADHM construction, or its circle-invariant formulation by Braam and Austin, is then re-
quired. The possibility of an explicit construction of platonic monopoles is therefore not
guaranteed, and certainly requires a full description of the non-standard action of SO(3) on
such data.

We now return to the discussion of circle-invariant ADHM data, as described in Section 4,
and make some comments regarding its extension beyond p = 1

2
. First of all, it is not apparent

from the constraints (i) to (iii), that these apply to hyperbolic monopoles with p = 1

2
. This is

only evident upon examination of the associated compensating matrix (4.16), which reveals
that it involves only the half-angle α/2, hence p = 1

2
. To illustrate the challenges that arise

in attempting to go beyond p = 1

2
within this formalism, we present the construction of the

1-monopole with p = 1.
Consider the 2-instanton given by the following ADHM data,

M̂ =
1√
3




2
√

2 0
0 1
1 0


 . (7.1)

M̂ is obviously SO(3) symmetric, as it contains only real entries and hence is invariant
under rotations given by (4.2) for all unit quaternions q. To show that this data is also
circle-invariant, we need to demonstrate that the circle action (4.15) can be compensated.
This requires that

QU ′P = U and QM̂ ′P = M̂, (7.2)

for some 3×3 matrix Q with Q†Q = 13, and some invertible 2×2 matrix P. In the case that
p = 1

2
, the corresponding transformation (4.8), mapping to equivalent ADHM data, did not

explicitly include the matrix P because it simplifies to the identity matrix. For p 6= 1

2
this

simplification is no longer possible.
It may be verified that the required matrices are given by

Q =




1

3
(1 + 2 cosα) −

√
2

3
sin α

√
2

3
(1 − cos α)√

2

3
sin α cos α − 1√

3
sin α

√
2

3
(1 − cos α) 1√

3
sin α 1

3
(2 + cosα)


 and P =

(
cos α

2

1√
3
sin α

2

−
√

3 sin α
2

cos α
2

)
.

(7.3)
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As before, the value of p is not apparent in the ADHM data (7.1), but is evident in the
compensating matrix Q, which involves functions of the angle pα with p = 1. This contrasts
with the p = 1

2
compensating matrix (4.16), which involves functions of the half-angle α

2
.

The ADHM construction of the hyperbolic monopole proceeds as before by setting α = χ
so that

Φ = Aχ = V † Ξ V , (7.4)

where

Ξ = Q ∂χQ† =
1√
3




0
√

2 0

−
√

2 0 1
0 −1 0


 (7.5)

and V is a unit length solution of (4.20). Ξ has a different form to the p = 1

2
expression

(4.22). The corresponding magnitude of the Higgs field reproduces the p = 1 spherically
symmetric 1-monopole formula (2.18).

The p = 1 ADHM data (7.1) does not satisfy any of our three constraints (i) to (iii)
applicable to p = 1

2
monopoles. For example,

M̂ †M̂ =

(
3 0
0 1

3

)
. (7.6)

This demonstrates that our new constraints are specific to p = 1

2
monopoles, and it is not

known whether there is an appropriate generalisation to other half-integer values of p.

8 Conclusion

We have described methods to construct explicit examples of hyperbolic monopoles using
circle-invariant instantons, both within the JNR and ADHM approaches. Several examples
have been presented in detail, including a number with platonic symmetry. These solutions
provide analytic information about hyperbolic monopoles that complements similar (though
sometimes numerical) results known for monopoles in flat space.

The platonic examples discussed in this paper are singled out by their symmetry prop-
erties, but energetically they are simply points in a large moduli space of BPS hyperbolic
monopoles. However, an additional motivation to study these symmetric examples is pro-
vided by the related problem for monopoles in four-dimensional Anti-de Sitter spacetime,
which has three-dimensional hyperbolic space as its constant time slices. In the Anti-de
Sitter case there is essentially a unique minimal energy monopole for each charge, rather
than a moduli space, and numerical results [11] suggest that the minimal energy monopole
is often of the symmetric type considered here. Analytic formulae in the hyperbolic case may
therefore be useful in understanding the features of monopoles observed in the less tractable
Anti-de Sitter situation.

There are many similarities between monopoles and Skyrmions [21], and this work pro-
vides the opportunity to investigate a new connection. It has been observed [13] that
Skyrmions with massive pions may be approximated by Skyrmions with massless pions in
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hyperbolic space, which in turn can be approximated by the holonomy along circles of suit-
able instantons. If the instantons are taken to be circle-invariant, as in the present paper,
then the computation of the holonomy involves no integration, and the result is an approx-
imation of Skyrmions by the exponential of the Higgs field of a hyperbolic monopole, in
a suitable gauge. The explicit hyperbolic monopoles presented in this paper will allow a
detailed investigation of this issue.
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