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The Japanese Toxicogenomics Project (TGP) provides large amount of data for the toxicology and safety framework.
We focus on gene expression data of rat in vivo and human in vitro. We consider two different analyses for the TGP
data. The first analysis is based on two-way analysis of variance model and the goal is to detect genes with significant
dose-response relationship in both humans and rats. The second analysis consists of a trend analysis at each time point
and the goal is to detect genes in the rat in order to predict gene expression in humans. The first analysis leads us to
conclusions about the heterogeneity of the compound set and will suggest how to address this issue to improve future
analyses. In the second part, we identify, for particular compounds, groups of genes that are translatable from rats to
humans, so they can be used for prediction of human in vitro data based on rat in vivo data.

Introduction

The Japanese Toxicogenomics Project (TGP)1 represents a
unique source of information for toxicology and safety studies.
The main topic that we address in this paper is related to the pre-
diction of drug-induced liver injury (DILI) in humans using rat
in vivo data (henceforth referred to as rat data). The analysis can
be viewed from the perspective of translational research. Transla-
tion between rat and human data is an important topic,2 due to
high costs and ethical considerations of experiments that arise if
development is moved to humans.3 Gaining strong scientific
knowledge in animal models would prevent most risks. Transla-
tional research gets attention in all medical fields (e.g., refs. 4
and 5) and genes are a valuable tool in revealing connections
across species (e.g., refs. 6 and 7).

In our particular case, successful prediction of a compound
being toxic during rat experiments would reduce failure of effica-
cious compounds during the expensive phase III trials. An aver-
age of 10% of marketed drugs is being withdrawn from the
market or requiring black-box warnings because of adverse drug

reactions or toxicity. Moreover, failures in clinical phase III trial
as well as in FDA submission have increased to approximately
50% in recent years.8 In this paper, our aim is to explore the con-
nection between humans and rats in terms of translatability of
gene expression. Particularly, our goal is to model effect of dose
on the gene expression in human in vitro data (henceforth
referred to as human data) using the dose effect on the gene
expression estimated from rat in vivo data. Therefore, our
method would identify genes that enable translation of toxicity
in rats into toxicity in humans.

The core part of the rat data set is gene expression level infor-
mation across multiple compounds at multiple time points and
dose levels. We focus on genes that are orthologous for rats and
humans. Most of these genes are already annotated by biological
processes or diseases (e.g., refs. 9 and 10). The analysis presented
in this paper explores common dose-response pathways between
rat and human genome using gene expression. Identifying a sub-
set of genes that show similar dose-response gene expression pro-
files in rats and humans would support the translation of gene
expression from rat in vivo experiments to human experiments.
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As in the case of DILI, this would enable the prediction of com-
pounds’ toxicity in humans using rats’ in vivo experiments. The
discovery of such genes would create knowledge about underly-
ing mechanisms and connection between species which would
significantly improve how rat toxicology is used as a model for
human toxicology in the later stages of drug development.

Results

Analysis of variance
Figure 1 shows the number of genes with significant interac-

tion effect in both rats and humans and reveals a heterogeneous
pattern across compounds. For example, for the compound sulin-
dac there are 201 genes with significant interaction effect in both

rats and humans while for the compound perhexiline there is only
1 gene in common. In total, only 54 compounds had at least one
significant gene and only 10 compounds had more than 25 sig-
nificant genes on the list. An example of one significant gene is
shown in Figure 2. There exists a small set of genes that are sig-
nificant in both rat and human data consistently across subsets of
compounds, even in case of strict multiplicity corrections. For
the results presented in this paper we applied Bonferroni correc-
tion at significance level of 10%. The subset of compounds, iden-
tified through common significant genes, consists of DILI related
compound only (if we convert the DILI status into binary vari-
able, by pooling together “most concern” and “less concern” cate-
gories). Hence, the significance of the identified genes in rat in
vivo could emphasize possible danger of DILI in humans. These
genes are typically connected with the liver processes. Table 1
shows one of these genes, noted ASF1A (originally Asf1a in rat
and ASF1A in human), that is significant for multiple com-
pounds with DILI concern and not for any compound without
DILI concern. Other genes from the identified set, FABP1,
MCM4, SMC2, TXNRD1, show very similar behavior.

Trend analysis
As mentioned in the previous section, the second analysis con-

sists of trend analysis per time point. An example of gene com-
plying with monotonicity assumption is shown in Figure 3. Our
aim in this section is to predict the dose effect in humans using
the dose effect in rat in vivo. All tests are based on MCT and P
values are adjusted using Bonferroni correction using significance
level of 10%.

At the first stage of the analysis, we identify, in the rat, the
time point with the strongest signal. Figure 4 presents the

Figure 1. Number of genes with significant interaction in two-way
ANOVA model, for both rat and human. The P values are adjusted using
Bonferroni’s method on significance level of 10%.

Figure 2. Example of gene with significant interaction in two-way ANOVA model, for both rat and human. Compound omeprazole and gene Acsl1 in rat,
respectively ACSL1 in human.
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number of genes with significant dose-response relationship per
time point. It clearly shows that there are much more significant
genes in the last time point, both for rats and humans, than in
any other time point. Hence, for the remainder of this section,
the dose effects in rats at the last time point are used for predic-
tion. Figure 5 reveals that the number of significant genes in rats
does not correspond with the number of significant genes in
humans. For several compounds, there are no genes significant
both in rats and humans. Hence, we focus on two gene sets: 1)
genes significant in rats and, 2) genes significant both in rats and
humans.

The dose effect in both rats and humans were estimated using
isotonic regression. Only 91 compounds having high dose are
considered for the analysis and we used the change in isotonic
means of the rat (from the last to the first, i.e., control, dose level)
in order to predict the change in isotonic means of the human.
The example of resulting gene for the compound omeprazole is
presented in Figure 6. We can see one of the genes where the
translatability of rat data into human data is apparent. The mean
at high dose for the rat represents differential expression of almost
6-fold change increase, while isotonic mean for humans shows

almost 5 log-fold change increase. Prediction of all dose effects
on humans using high dose effect on rats, when only genes signif-
icant in rats are used, are explored in Figure 7. As expected, pre-
diction of control dose shows very low correlation, since all
values for human control dose should be around zero. However,
for higher doses we can see that there are genes with (nearly) the
same value of isotonic means both for rat and human. Still, there
is large amount of genes centered around zero. However, in
Figure 8, where only genes that are significant in both rat and
human in the last time point, the subset of genes around zero
almost disappears. The resulting gene set reveals genes that are
both consistently significant across species and translatable
between species with respect to fold change induced by high dose
of a given compound (omeprazole in this case).

Discussion

According to the ANOVA results, the number of significant
genes varied among the compounds. This finding is not surpris-
ing since the data set contains very distinct compounds, both
with respect to their structural properties and biological effects.
The data set contains vitamin A next to ibuprofen or nicotinic
acid. The analyses presented in this paper suggest that searching
for overall differentially expressed genes can fail due to heteroge-
neity in the data set. Limiting ourselves to smaller subgroups of
similar compounds can lead to more efficient analysis and mean-
ingful results. One of such subsets was identified by our analysis,
by grouping together 23 compounds with significant gene
ASF1A. The presence of subgroups of compounds questions the

Table 1. Relationship between DILI concern status and simultaneous signifi-
cance of interaction for both rat and human data for gene ASF1A

DILI status

ASF1A No concern Some concern

Significant interaction no 8 62
yes 0 23

Figure 3. Example of gene with monotone dose-response profile for all time points in rat. Compound omeprazole and gene Mafg in rat (MAFG in
human).
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meaningfulness of the goal of identifying genes useful for classifi-
cation of compounds as DILI. If within given set of compounds
would exist latent subgroups of compounds (similar with respect
to their overall behavior), then particular genes could be good
predictors of DILI in one subgroup, but not necessarily in other
subgroups. In other words, genes that can be predictors for DILI
within one subgroup will lose its predictive ability by considering
whole data sets with several subgroups of compounds. Besides
the fact that the DILI response is highly unbalanced, only 8

compounds out of 93 show “no
DILI concern.” Therefore, we pro-
pose to use a more specific response
variable instead and simultaneously
focus on possible identification of
subgroups among compounds.
These insights lead us to focus on
translatability and means prediction
in the second part of the analysis.

The second part of the analysis
was mainly focused on the translat-
ability of genes between humans and
rats. The genes of interest are such
that the fold change of their gene
expression (precisely its log ratio
against control) has similar values in
rat and human data and moreover,
the dose-response relationship is sta-
tistically significant in both species.
We have shown that for some com-
pounds, no relevant results were

found. This is mostly due to very low overall difference in expres-
sions and high variability. However, for several compounds, we
were able to identify gene sets behaving in the desired way. The
impact of the finding is clear: the value of gene expression
observed in rats can be used as biomarkers for the corresponding
gene expression value in humans. If we are able to connect these
genes with particular toxicological process, the signature made by
these genes can serve us as early warning mechanism. The reli-
ability of such genes as biomarkers will need to be validated, but

Figure 4. Number of genes with significant dose-response relationship per time point. Green compounds
have maximum in last time point, red compounds in any other time point. Rat data results are displayed
in left panel, human data in right panel.

Figure 5. Number of genes with significant dose-response relationship in last time point. Compounds are ordered according to the number of significant
genes in rat and ordering is kept across all three panels. Rightmost panel then shows intersection of two figures on the left.
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the fact that they are significant in
both species may highlight a com-
mon underlying biological mecha-
nism in both species after exposure to
the compounds. This study may pro-
vide a leeway into more extensive
studies on rats and humans toxicoge-
nomics connectivity in early drug
developments.

Materials and Methods

Data sets
The data considered for the analy-

sis presented in this paper consists of
93 compounds that are common in
rat in vivo and human experiments
and have DILI information available.
In total, 4440 Affymetrix microarrays
that measured gene expression pro-
files are available for rats (91 com-
pounds with 48 arrays and 2
compound with 36 arrays) and 1116
arrays are available for humans (12
arrays per compound). We consider
only genes that are orthologous for
rats and humans. Further, we filter
the genes using the I/NI calls crite-
rion.11 The preprocessed and filtered
data set consists of 4359 genes.
Response is computed as log ratio of
the gene expression level against mean
of expression levels under control
dose (vehicle). The gene expression
values are based on FARMS12 sum-
marized data.

For rat in vivo data, there are
for each compound 48 arrays, 3
biological replicates measured at 4
dose levels (including control), each
at 4 different time points (except 2
compounds with 36 arrays missing
highest dose). In this study, human
data set comprises 12 arrays per
compound, 2 replicates measured at
3 doses and 2 time points. For the
analysis presented in this paper we
use the ordinal dose levels, i.e.,
low, middle or high as provided in
original data sets.

Exploratory analysis: Analysis of
variance approach

For the exploratory analysis, a gene specific linear model with
dose and time as covariates is used. Interaction between

covariates is also included. Let Yijk denotes the gene expression
level for the ith compound (i D 1,. . .,93), jth gene (j D
1,. . .,4359) and kth observation (k D 1,. . .,48 or 36) based on

Figure 6. Example of gene translatable between rat and human for compound omeprazole: gene Cyp1a1
in rat, respectively CYP1A1 in human.

Figure 7. Dose effect for the compound omeprazole: estimated isotonic mean in particular dose in
human against estimated isotonic mean in high dose in rat, both for last time point. Genes with signifi-
cant dose-response relationship for rat in last time point (significance in human is not considered).
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time-dose combinations. To test
possible dose effect, time effect and
as well as their interaction, a two-
way analysis of variance (ANOVA)
model is used:

Yijk Da0ij C bDijDoseijk CbTijTijk

C gijDoseijk � Timeijk C eijk :

Parameters a0, bD, bT, g are
gene (within compound) specific
and the measurement error eijk is
considered to follow a Gaussian dis-
tribution eijk »N.0; s2

ij/. The
parameter vectors bDij, bTij, g ij rep-
resent the dose, time and interaction
effects. In practice they comprise
parameters representing particular
level of explanatory variables [e.g.,
bDij D (bDijCONTROL, bDijDOSE 1,
bDijDOSE 2, bDijDOSE 3)]. Note that
the two-way ANOVA model speci-
fied above is fitted as a gene
specific model within each com-
pound. Testing if the parameters
differ from null gives us an indica-
tion if the gene is differentially
expressed for given compound, or
not. However, gene specific omni-
bus test based on F-distribution
can also be used to test if there is
any significant effect at all.

Whatever test is used, multiplicity
adjustment have to be applied due to
extensive number of tests performed
(4359 per compound). Correction
for multiplicity was applied within
each compound. In general, either
Family Wise Error Rate (FWER)13

or False Discovery Rate (FDR)14 can
be used. Controlling FWER trans-
lates into level of certainty that there
is no false positive finding among all
our findings, but controlling FDR

Figure 9. Examples of isotonic regression. Red triangles represent sample means and blue and green
lines resulting isotonic means, under either upward or downward monotone assumption.

Figure 8. Dose effect for the com-
pound omeprazole: estimated isotonic
mean in particular dose in human
against estimated isotonic mean in
high dose in rat, both for last time
point. Genes with significant dose-
response relationship for both rat and
human in last time point.
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assumes there is at least one false positive finding while control-
ling for portion of false positive among all findings. Hence,
FWER is a more conservative method than FDR. In our analysis,
we apply Bonferroni method to control FWER to prevent false
positives entering later stages of the analysis.

The whole procedure is conducted for both rat in vivo
and human data. Only those genes that are found to be sig-
nificant (according to test we choose) for both humans and
rats are kept for further analysis. The resulting lists of signif-
icant genes are compared across compounds to identify genes
that are significantly expressed in multiple compounds.
Indicators of significance of a particular gene can be com-
pared with DILI status of compounds to find out if the gen-
es’ appearance is connected with potential danger for the
liver. In general, any information about compounds can be
used in this stage and can be compared with indicator of
genes significance. For example, pathological data available
in the study can be used, information about compound
chemical structure or grouping of compounds based on their
phenotypic effect.

Main data analysis: Trend analysis approach
A trend analysis is a common analysis in toxicology. The aim

of such analysis is to identify a subset of genes for which a
monotone relationship with an increasing dose of a compound
can be detected.15 Such an assumption of monotonicity allows
us to gain power and it is scientifically reasonable. For toxico-
logical studies, this assumption is typically used, since toxic
effect usually gets stronger with increasing dose. Monotone
means are computed for each gene using isotonic regression
method.16-18 Isotonic regression pools together the means that
violate assumption of monotonicity and makes these means
equal. Figure 9 shows examples of the isotonic means m D (m0,
m1, m2, m3) for an experiment with control dose and three
active dose levels.

Hence, within the second modeling approach the null
hypothesis of no dose effect is tested against an ordered alterna-
tive in the following way:

H0 : m0 Dm1 Dm2 Dm3

H1 : m0 �m1 �m2 �m3

or

H0 : m0 Dm1 Dm2 Dm3

H1 : m0 �m1 �m2 �m3

with at least one inequality strict. We start with simple
ANOVA model:

Yijkl Dm0ijl C @ijlDoseijkl C eijkl;

where i stays for compound, j for gene, l for specific time
point and k for observation within each time point (within gene,
within compound). The vector of parameters @ijl D (@1ijl, @2ijl,
@3ijl) represents the change of the mean in particular dose (com-
pared with control dose) and parameters are either non-negative
or non-positive (according to direction of monotonicity assump-
tion). The measurement error follows a Gaussian distribution,
eijkl »N.0; s2

ijl/. An advantage of the model is absence of any
parametrical assumption on dose response relationship shape.
Dose-specific means are modeled separately, connected through
deltas’ values.

The analysis is done per compound and per time point (and
separately for human and rat). A multiple contrast test with
Marcus’ monotone contrast (MCT)19 is used to identify signifi-
cant genes. The MCT is designed to cover all the possible param-
eter space of each model while using as few tests as possible (and
so keeping power as high as possible). It comprises of several sin-
gle contrast tests, while different combination of contrasts can
also be used. We follow implementation arising from Marcus’
test statistic20 proposed for MCT by Bretz.21 Multiplicity adjust-
ment is conducted within each compound and time point combi-
nation using FWER approach (with Bonferroni correction)
within a gene and FDR adjustment across the genes.22

Finally, for each compound and time point combination, we
create lists of genes that show significant dose-response relation-
ship. The time points with highest rate of significant genes (if
such exist) are identified and we focus on them. Then, such genes
are listed that show significant dose-response relationship for
such time points simultaneously in both rats and humans. For a
particular gene on the resulting list, isotonic means at all doses
are estimated and their values are compared between humans
and rats. Hence, we can identify such genes in rats that can be
used in order to predict the gene expression level in humans.
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