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ABSTRACT 22 

Understanding whether and how ecological traits affect species’ geographic distributions is a 23 

fundamental issue that bridges ecology and biogeography.  While climate is thought to be the 24 

major determinant of species’ distributions, there is considerable variation in the strength of 25 

species’ climate-distribution relationships. One potential explanation is that species with 26 

relatively low dispersal ability cannot reach all geographic areas where climatic conditions are 27 

suitable.  We tested the hypothesis that species from different taxonomic groups varied in their 28 

climate-distribution relationships because of differences in life history strategies, in particular 29 

dispersal ability. We conducted a meta-analysis by combining the discrimination ability (AUC 30 

values) from 4317 species distribution models (SDMs) using fit as an indication of the strength 31 

of the species’ climate-distribution relationship.  We found significant differences in the strength 32 

of species’ climate-distribution relationships across taxonomic groups, however we did not find 33 

support for the dispersal hypothesis.  Our results suggest that relevant ecological trait variation 34 

among broad taxonomic groups may be related to differences in species’ climate-distribution 35 

relationships but which ecological traits are important remains unclear.   36 
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INTRODUCTION  42 

Understanding whether and how ecological traits affect species’ geographic distributions is a 43 

fundamental issue that bridges ecology and biogeography (Brown 1995, Wiens 2011). This issue 44 

has become even more relevant as ecologists and biogeographers struggle to understand the 45 

variation in species’ responses to climatic change. For example, recent studies have examined 46 

the relationship between species’ ecological traits, such as dispersal ability and ecological 47 

generalization, and changes in their distributions and phenology with recent climatic changes 48 

(Angert et al. 2011, Diamond et al. 2011). Identifying characteristics of organisms that determine 49 

their sensitivity to environmental change is crucial to ecological forecasting and conservation 50 

planning.  51 

Central to this work is the theory of the niche: the set of abiotic and biotic conditions within 52 

which a species can persist (Hutchinson 1957).  A species’ distribution is limited to geographic 53 

areas where all these conditions meet the species’ niche requirements.  At broad spatial scales, 54 

climate has long been considered the most important factor in determining species’ distribution 55 

limits (e.g. Merriam 1894, Good 1931, Gaston 2003). However, there seems to be considerable 56 

variation in the degree to which species’ distributions are predicted by climate.  There are three 57 

potential reasons for this variation.  First, other abiotic or biotic factors may prevent a species 58 

from persisting even where the climate is suitable (Luoto et al. 2007).  Alternatively, regions of 59 

suitable climate may be separated by areas that are not suitable which the species does not have 60 

sufficient dispersal ability to cross (Blach-Overgaard et al. 2010, Graham et al. 2010).  Finally, if 61 

the species is relatively new and/or the climate has only recently become suitable, the species 62 

may not have had enough time to reach all suitable areas (Paul et al. 2009, Blach-Overgaard et 63 

al. 2010).   64 

Dispersal ability is thought by some to determine how closely a species’ current 65 

distribution matches the geographic distribution where all abiotic and biotic conditions meet its 66 

niche requirements. Species that produce many propagules that travel long distances are more 67 

likely to be able to cross any unsuitable habitat, and thus should be more likely to be found 68 

everywhere the climate is suitable. Therefore, dispersal ability may determine the strength of the 69 

species’ climate-distribution relationship. Indeed, some studies have found evidence that 70 

dispersal ability can strongly affect species’ distributions (e.g. Thuiller et al. 2004, Poyry et al. 71 

2008).  However, others suggest that the dispersal of individuals happens over such small time 72 
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scales relative to the formation of species’ geographic distributions that it has little importance 73 

(Lester et al. 2007).  74 

Many have hypothesized that species in different taxonomic groups should vary in their 75 

species’ climate-distribution relationship because of their different life history strategies, in 76 

particular dispersal ability (e.g. Araújo and Pearson 2005, Wisz et al. 2008). The fit of species 77 

distribution models (SDMs) has often been used to test this hypothesis (Araújo and Pearson 78 

2005, Tsoar et al. 2007). SDMs use various statistical techniques to describe the relationship 79 

between observed environmental variables, such as mean annual temperature, and the recorded 80 

spatial occurrence (presence/absence) of a species (see e.g. Guisan and Zimmermann 2000). The 81 

ability of an SDM based only on climatic factors to predict the presence or absence of a species 82 

can be considered an indication of the strength of the species’ climate-distribution relationship: 83 

the greater the success of a SDM at predicting the species’ presence/absence in a given location, 84 

the stronger the correlation between climatic variables and the presence/absence of the species.  85 

Some studies have found species’ climate-distribution relationship differences between 86 

taxonomic groups (Araújo and Pearson 2005, Tsoar et al. 2007), whereas others have not (Pearce 87 

and Ferrier 2000, Wisz et al. 2008). It is unclear whether these varying results are due to the 88 

different geographic regions, groupings of species, or modeling techniques of each study.  89 

Despite the availability of SDMs for thousands of species, a comprehensive comparison of the fit 90 

of SDMs between different taxonomic groups has not been made. 91 

Here, we tested the hypothesis that taxonomic groups varied in the strength of their species’ 92 

climate-distribution relationships. We predicted that taxonomic groups with lower dispersal 93 

ability would have weaker species’ climate-distribution relationships. We used a meta-analysis 94 

approach and combined the discrimination ability metrics that were reported from 4317 SDMs in 95 

twenty studies using only climatic variables to determine whether species varied predictably in 96 

their climate-distribution relationships based on taxonomic affinities. We also compiled dispersal 97 

distances for a subset of these species to determine whether dispersal ability directly influenced 98 

the strength of species’ climate-distribution relationships. To facilitate a quantitative comparison 99 

we used a standardized discrimination ability measure and accounted statistically for 100 

methodological differences among studies.  101 

  102 

MATERIALS AND METHODS 103 
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Data compilation 104 

We conducted a literature search using Web of Science for studies (published before March 105 

2009) that reported statistical measures of goodness-of-fit for SDMs constructed for individual 106 

species based on climatic variables only.  We searched for studies using the terms “ecological 107 

niche model” and “climat*”, “species distribution model” and “climat*”, and “climate envelope 108 

model” and “climat*.  Studies were excluded if: (1) one or more non-climatic variables, such as 109 

soil fertility, land use or land cover, were included in the SDM; (2) model fit was measured only 110 

qualitatively or not reported; or (3) model fit was reported only as averages across species.  In 111 

cases where model fit was not reported for all individual species modeled, we requested these 112 

data from the authors. Due to the small number of studies modeling aquatic species, we limited 113 

our analysis to terrestrial species.  114 

We needed a metric of model fit that was comparable across studies. We found AUC (area 115 

under a receiver operating characteristic curve) to be the most common metric (other metrics: 116 

Cohen’s kappa, sensitivity, specificity, range filling rates), therefore our analysis was limited to 117 

studies that reported AUC. AUC measures the ability of a SDM to discriminate sites where a 118 

species is present from sites where it is absent, rather than goodness-of-fit per se.  It considers 119 

the relationship between false-positives and true-positives and ranges from zero to one, where 120 

perfect discrimination gives a value of one (Fielding and Bell 1997). Hereafter, we use the term 121 

SDM ‘fit’ to indicate ‘discrimination ability’ as measured by AUC.  When studies reported AUC 122 

for both training and test data, test AUC values were used. Although this metric has been 123 

criticised (e.g. Lobo et al. 2008), it was the only measure in common across most of the studies .  124 

Some species’ distributions were modeled several times, either by the same study (using 125 

multiple modeling techniques (n=9) or resolutions (n=1)) or by several studies (most such 126 

species were modeled by only two studies). In all cases, we randomly selected one SDM per 127 

species and used the associated AUC value and methodology. This produced a dataset of 4317 128 

species and their SDMs from twenty studies (Supplementary material Appendix 1-3).  These 129 

studies modeled species in Europe (10 studies, 2301 spp.), North America (2 studies, 67 spp.), 130 

South America (2 studies, 32 species) and Africa (6 studies, 1917 spp.).  We classified each 131 

species into one of five broad taxonomic groups:  mammals (483 spp.), butterflies (116 spp.), 132 

herptiles (reptiles and amphibians; 114 spp.), birds (2099 spp.), and plants (1505 spp.).  133 

Comment [HK2]: We included 

this list in response to a comment by 

one of the reviewers that said we 
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SDM fit can be affected by the type of model used (e.g. Elith et al. 2006), the number of 134 

climatic variables used (e.g. Pearce and Ferrier 2000), the resolution or grain size used (e.g. 135 

Guisan et al. 2007), the total extent over which the species’ range was modeled (e.g. Luoto et al. 136 

2005), and latitude (Brown et al. 1996, Luoto et al. 2005).  Therefore, for each SDM we noted 137 

the modeling technique, number of distinct climatic variables used in the model, resolution 138 

(km2), total spatial extent (km2) and average absolute latitude and then included these as 139 

covariates in our statistical analysis.  140 

Another factor which may lead to differences in SDM fit between species is prevalence 141 

(McPherson et al. 2004, Santika, 2011), the number of grid cells from which a species is 142 

recorded as present expressed as a proportion of the total number of grid cells from which data 143 

are available. We were able to obtain prevalence values for almost all of the SDMs (n=4089), 144 

allowing us to explore any effects of prevalence on SDM fit. 145 

Finally, we scanned the literature to find dispersal distances for as many of our species as 146 

possible to assess whether there were significant differences in measured dispersal ability among 147 

our taxonomic groups.  True dispersal distances are very difficult to measure due to phenomena 148 

such as very rare long-distance dispersal events. Therefore, we used the directly measured ability 149 

of an organism or its propagules to move (i.e. its mobility) as an estimate of a species’ dispersal 150 

distance. We considered both maximum and mean measured dispersal distances but excluded 151 

migratory distances to standardize measures of dispersal distances across taxonomic groups. 152 

Where more than one distance was reported per species or study we used the mean of mean 153 

distances, and the maximum of maximum distances. We found mean dispersal distances for 241 154 

species for which we also had AUC values (birds=103, butterflies=22, mammals=22, plants=94). 155 

For maximum dispersal distance, we found 105 species that also had AUC values (birds=27, 156 

butterflies=18, mammals=30, plants=18).  For further details, see Supplementary material 157 

Appendix 4,5. 158 

 159 

Statistical analysis 160 

There were two parts to the analysis.  The first was to determine whether there were any 161 

significant differences in SDM fit between taxonomic groups and whether those differences were 162 

robust to potential confounding factors (covariates).  The second was to explore the relationship 163 

between SDM fit, taxonomic group and the other covariates.  We used generalized linear mixed-164 
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effects models (GLMM, glmmadmb function in the “glmmADMB” package (Skaug et al. 2012) 165 

in R (R Development Core Team 2012)) with a Beta error distribution with AUC as our response 166 

variable and ‘study’ as a random factor.  AUC values of exactly one, which are not allowed with 167 

the beta distribution, were converted to 0.99 instead (eight significant digits were used to ensure 168 

a unique value and to match the maximum precision of the data, n=117). To allow for model 169 

estimation, we collapsed the six rarest modeling types into one category to reduce the number of 170 

types (from 18 to 12; these six techniques were used for only 0.35% of all SDMs). We took the 171 

logarithm of spatial extent to improve normality (except in the collinearity test), but all other 172 

covariates were used without transformation. Taxonomic group and model type were categorical, 173 

and all other covariates were continuous. 174 

 175 

Relationship between discrimination ability and taxonomic group 176 

To test whether taxonomic group explained significantly more deviance in AUC than 177 

expected at random, we compared a model with only an intercept to a model with only 178 

taxonomic group. We then tested whether differences in discrimination ability across taxonomic 179 

groups explained significant additional deviance after accounting for the combined effect of the 180 

differences in the methodological approach of studies (i.e. the covariates: model type, resolution, 181 

number of climatic variables, spatial extent and latitude). For all model comparisons, we used a 182 

likelihood ratio test. We also calculated AIC for all models to evaluate the relative effects of 183 

individual covariates. 184 

We first inspected bivariate plots of all continuous covariates before constructing 185 

pairwise correlations to identify potential problems with multi-collinearity among covariates 186 

(Supplementary material Appendix 6).  Latitude was highly correlated with spatial extent and 187 

resolution (Spearman’s r = - 0.903, -0.589 respectively, n = 4317, Supplementary material 188 

Appendix 6) and explained less deviance in AUC than spatial extent or resolution (Table 1),  189 

therefore the ‘full model’ included taxonomic group, model type, spatial extent and number of 190 

climatic variables. We considered the effect of ‘study’ by including it as a random factor and by 191 

testing the influence of individual studies that contributed more than half of the total number of 192 

species in one taxonomic group (“large studies”) by comparing results obtained with and without 193 

each of these studies (Huntley et al. 2006, Araújo et al. 2005, Luoto et al. 2005, Supplementary 194 

material Appendix 3). 195 
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 196 

Relationship between SDM fit, covariates and taxonomic group 197 

We tested whether individual covariates (including prevalence) explained significantly more 198 

deviance in AUC than under random expectation and after accounting for all other covariates 199 

(including taxonomic group) by comparing each model to a reduced one. Finally, to test whether 200 

there were significant differences in dispersal distance (both mean and maximum) across 201 

taxonomic groups, we used a Kruskal-Wallis rank sum test. We then tested whether dispersal 202 

distance explained significantly more deviance in AUC by comparing a model with and without 203 

dispersal distance. Dispersal distance was log-transformed to improve normality. Lastly, to test 204 

for the possibility that an interaction between dispersal distance and taxonomic group explained 205 

deviance in AUC, we compared a model with and without this two-way interaction.  206 

All statistical analyses were performed using R 2.14.1 (R Development Core Team 2012). 207 

 208 

RESULTS 209 

Relationship between discrimination ability and taxonomic group 210 

Mean AUC across all species was 0.941 (±0.00104 SE, n=4317).  Birds had the highest 211 

mean AUC (0.954 ±0.00145 SE, n=2099) and butterflies had the lowest mean AUC (0.856 212 

±0.0114 SE, n=116; Fig. 1a). However, the ranking and pair-wise comparison of taxonomic 213 

groups changed depending on which “large study” was removed (Fig. 1). 214 

Taxonomic group explained significant deviance in AUC (LRT7,3=46.98, p<0.0001; 215 

Table 1), even after accounting for all covariates (LRT20,16=46.64, p<0.0001; Table 1). The 216 

effect of taxonomic group was also robust to the exclusion of each of the “large studies” 217 

(Supplementary material Appendix 7). 218 

 219 

Relationship between discrimination ability, covariates and taxonomic group 220 

 SDM model type explained significant deviance in AUC (LRT3,13=120.58, p<0.0001; 221 

Table 1), even after accounting for all the other covariates (LRT20,10=120.14, p<0.0001; Table 1).  222 

For the subset of species for which we had prevalence data, prevalence also explained significant 223 

deviance in AUC after accounting for all covariates (including taxonomic group; 224 

LRT12,11=447.62, p<0.0001; Table 1). SDMs with greater prevalence had lower AUC 225 

(Spearman’s r= -0.4937). 226 
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 In our subset of species with dispersal distances, mean dispersal distance was greatest for 227 

mammals (175 km) while birds had the greatest maximum dispersal distance (1305 km; Fig. 2). 228 

Butterflies had the shortest mean and maximum dispersal distance (0.441 km and 2.25 km, 229 

respectively; Fig. 2). The ranking of groups closely matched the ranking of groups of the entire 230 

dataset in terms of AUC for both dispersal measures (Fig. 1a, Fig.2). There was also a significant 231 

difference between taxonomic groups in dispersal distance (mean: df=3, χ2=181.006, p<0.0001; 232 

max: df=4, χ2=291.557, p<0.0001). Taxonomic group explained significant deviance in AUC 233 

(mean: LRT6,3=10.386, p=0.01555; max: LRT7,3=13.022, p=0.01117).  However, dispersal 234 

distance did not explain significant deviance in AUC (mean: LRT4,3=2.068, p=0.1504; max: 235 

LRT4,3=0.144, p=0.7043). There was no significant interaction between taxonomic group and 236 

dispersal distance (mean: LRT10,7=4.508, p=0.2116; max: LRT12,8=4.506, p=0.3418).  237 

 238 

DISCUSSION 239 

We found support for taxonomic differences in SDM fit suggesting a role for ecological 240 

traits in affecting species’ geographic distributions at broad scales. However, prevalence and 241 

methodological issues, such as model type, also influenced SDM fit. Indeed, both factors have 242 

been shown previously to influence SDM fit (e.g. Elith et al. 2006, Santika 2011). We also found 243 

that “large studies” influenced the relationship among taxonomic groups and AUC, for example 244 

the taxonomic group with the highest mean AUC varied with the subset of species considered 245 

(Fig. 1).  Therefore, species’ taxonomic affinities, prevalence and methodological issues, such as 246 

the model type, are all important in influencing species’ climate-distribution relationships as 247 

measured by SDMs. 248 

There are a number of potential explanations for the difference in the strength of species’ 249 

climate-distribution relationships between taxonomic groups. First, taxonomic differences may 250 

reflect differences in dispersal ability among groups. Certainly, we found differences in 251 

measured dispersal distances between broad taxonomic groups that were consistent with the 252 

dispersal hypothesis (Fig. 1a, Fig. 2). However, there were inconsistencies in the ranking and 253 

pair-wise comparisons of taxonomic groups in SDM fit depending on the subset of species 254 

considered (Fig. 1). Moreover, there was no significant relationship between AUC and dispersal 255 

distance. Therefore, our results indicate that greater dispersal ability, at least in terms of 256 

measurable differences in mobility, may not result in stronger overall species’ climate-257 
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distribution relationships at broad scales.  However, dispersal distance is inherently difficult to 258 

measure and our estimate of dispersal ability may not have been the most appropriate for all 259 

species. For example, we did not take into account migratory or rare long-distance dispersal 260 

events. Consequently, we may have underestimated the role of dispersal ability for certain 261 

species. 262 

Alternatively, dispersal may not be an important trait in determining species’ climate-263 

distribution relationships.  The majority of species had low prevalence (77% species had <0.1 264 

prevalence) and species with lower prevalence were more likely to have higher AUC values. If 265 

these low prevalence species are mainly specialists (i.e. restricted range endemics) that are 266 

adapted to uncommon climatic conditions found in small, contiguous areas, they could have 267 

strong climate-distribution relationships regardless of dispersal ability.    268 

Third, other life history traits, for example, body size, generation time or diet breadth, may 269 

influence the strength of species’ climate-distribution relationships between taxonomic groups. 270 

However, determining their relative importance may be difficult across the broad taxonomic 271 

groups considered. Lower-order taxonomic groups, or functional groups of species within or 272 

across taxonomic groups, might be more effective in dividing species according to relevant traits.  273 

Nevertheless, while some recent studies dividing species into finer taxonomic or functional 274 

divisions have found significant differences in species’ climate-distribution relationships (e.g. 275 

Syphard and Franklin 2009), others have not (e.g. Huntley et al. 2004). 276 

On the other hand, taxonomic differences in SDM fit may be a function of the sample 277 

unbalance (across studies and taxonomic groups; Supplementary material Appendix 2) and the 278 

high average discrimination ability. Both of these factors could reflect issues related to fitting, 279 

testing and publishing SDMs. SDMs have been criticized for not using independent data to test 280 

their models (e.g. Hampe 2004, Segurado et al. 2006). Without independent test occurrence 281 

points, well-fitting models could reflect spatial autocorrelation between training and testing 282 

points rather than relationships between species’ presence/absence and climatic variables. 283 

Moreover, SDMs may be overfitted by fitting complex response curves and re-fitting models 284 

until a high AUC is achieved (Araújo et al. 2005, Guisan and Thuiller 2005). We also suggest 285 

that there could be a “file-drawer” problem, whereby species that do not achieve a high enough 286 

AUC value based on the literature standard (Swets 1988) are not published. In particular, when 287 

the objective of fitting the SDM is to predict species’ potential distribution shifts under various 288 
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climate change scenarios, authors (rightly) do not use SDMs with very low discrimination 289 

ability. For example, of the 453 species that Huntley et al. (2008) modeled, 13 native species that 290 

did not yield “useful” models (sensu Swets 1988) were excluded from the synthesis. Taken 291 

together, these issues could inflate AUC values and reduce overall variation, making it difficult 292 

to detect the true relationship between taxonomic groups. While we acknowledge these 293 

limitations of SDMs, to our knowledge, there are no other comparable published metrics to 294 

evaluate individual species’ climate-distribution relationships at such large scales. Moreover, 295 

SDMs are still being used to better understand the relationship between species’ distributions and 296 

climate (e.g. Blach-Overgaard et al. 2010, Graham et al. 2010).  297 

Lastly, because SDMs are fitted to species’ current distributions they reflect both direct and 298 

indirect influences of climate on those distributions. Non-climatic factors that limit a species to 299 

certain broad areas (such as biotic interactions or other abiotic factors) are generally modulated 300 

by climatic conditions.  For example, since its introduction to Hawaii, avian malaria now 301 

restricts native bird species to higher elevations, where temperature halts development of the 302 

malaria pathogen inside its mosquito vector (van Riper et al. 1986). Differences among 303 

taxonomic groups in the ability of climate to directly limit species’ distributions thus cannot be 304 

revealed by our data, given that the SDMs we used cannot differentiate direct from indirect 305 

climatic effects.  However, we have no a priori reason to expect cases where climate acts 306 

principally indirectly to occur more frequently in one taxonomic group than another.  In addition, 307 

even if a species’ distribution is indirectly limited by climate due to the climatic tolerances of a 308 

competitor, predator, or disease, at broad scales, climate is still the ultimate determinant of the 309 

species’ distribution. 310 

There are a number of steps to be taken in the future to clarify how ecological traits 311 

influence species’ climate-distribution relationships. Firstly, more SDMs are needed for some 312 

taxonomic groups, particularly invertebrates and herptiles. Secondly, we should strive to 313 

eliminate issues related to species distribution modeling by using spatially/temporally 314 

independent training and test datasets where possible (e.g. Beerling et al. 1995, Randin et al. 315 

2006).  Third, analyzing SDM prediction errors might help to shed light on the mechanism 316 

driving the variation in species’ climate-distribution relationships, especially in cases of poor fit 317 

(e.g. Hanspach et al. 2011).  For example, SDMs with more false negatives overall than false 318 

positives could suggest that source-sink dynamics are important:  even where conditions are not 319 
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favourable, individuals may still persist owing to a rescue effect, or temporal variation in 320 

conditions (Gaston 2003, Pulliam 2000). Alternatively, models with greater rates of false 321 

positives might suggest that dispersal limitation or interspecific interactions, such as competition, 322 

are limiting a species’ distribution (Pulliam 2000, Graham et al. 2010). Finally, exploring spatial 323 

variation in model behaviour, for example testing model performance in climatically 324 

heterogeneous regions or through patterns of spatial prediction errors (Hanspach et al. 2011), 325 

could also improve our understanding of model performance and thus species’ climate-326 

distribution relationships. 327 

 328 

CONCLUSION 329 

We found a statistically significant effect of membership in broad taxonomic groups on 330 

SDM fit even after accounting for methodological issues, suggesting a role for ecological traits 331 

in determining the strength of species’ climate-distribution relationships. However, the study 332 

itself, the model type used to build the SDM and species’ prevalence all had significant effects 333 

on discrimination ability. Our results did not the support the hypothesis that dispersal ability 334 

affects the strength of species’ climate-distribution relationships.  However, more work is needed 335 

to determine which ecological traits are important in determining the strength of this relationship, 336 

and at what spatial scale and taxonomic level they are manifested.  337 

 338 
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TABLE Legends 438 

Table 1. Analysis of deviance table for the relationship between discrimination ability, covariates 439 

and taxonomic group. Presented are the differences in degrees of freedom, AIC and deviance 440 

between full and reduced models as well as the associated p value. Models are compared for all 441 

species (n=4317) and for the subset of species with prevalence values (n=4089). Depending on 442 

the model comparison and term of interest, the full model includes all other covariates (number 443 

of variables, log(spatial extent), model type, resolution and taxonomic group). 444 

 445 

446 
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Table 1. 447 

Model for 

comparison 

Data Model terms Difference 

in d.f. 

∆AIC ∆Deviance p 

Just intercept All species Intercept     

  + taxonomic group 4 38.98 46.98 <0.0001 

  + model type 10 100.58 120.58 <0.0001 

  + log(spatial extent) 1 2.58 4.58 0.03235 

  + resolution 1 1.38 3.38 0.0660 

  + number of climatic 

variables 

1 1.20 0.8 0.3711 

  + latitude 1 0.58 1.42 0.2334 

 Subset Intercept     

  + prevalence 1 335.36 337.36 <0.0001 

Full model All species Full model      

  + taxonomic group 4 38.64 46.64 <0.0001 

  + model type 10 101.52 120.14 <0.0001 

  + log(spatial extent) 1 1.12 3.12 0.0773 

  + resolution 1 -1.38 0.62 0.431 

  + number of climatic 

variablesα 

NA NA NA NA 

 Subset Full model     

  + prevalence† 1 445.62 447.62 <0.0001 

α No solution was found 448 

†A model solution could only be found if number of climatic variables was not included449 
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FIGURE LEGENDS 450 

Figure 1. Taxonomic differences in discrimination ability (AUC) across all studies (based on 451 

4317 species from twenty published studies (number of species: birds n=2099; herptiles 452 

n=114; butterflies n=116; mammals n=483; plants n=1505)) (a), without Huntley et al. 2006 453 

(based on 2860 species from nineteen published studies (number of species: birds n=642; 454 

herptiles n=114; butterflies n=116; mammals n=483; plants n=1505)) (b), without Araújo et 455 

al. 2005 (based on 2539 species from nineteen published studies (number of species: birds 456 

n=1942; herptiles n=11; butterflies n=116; mammals n=331; plants n=139)) (c), and without 457 

Luoto et al. 2005 (based on 4238 species from nineteen published studies (number of species: 458 

birds n=2099; herptiles n=114; butterflies n=37; mammals n=483; plants n=1505)) (d). 459 

Taxonomic groups represented are: “BIRD”= birds, “HER”= herptiles, “INV”= butterflies, 460 

“MAM”= mammals, “P”= plants. Taxonomic groups with different letters above them are 461 

significantly different according to pair-wise comparisons.  Outliers were removed to 462 

improve visual contrasts between taxonomic groups. 463 

 464 

Figure 2. Taxonomic differences in log (base 10) maximum dispersal distances (km) for 105 465 

species (birds=27, butterflies=18, mammals=30, plants=18). 466 

467 
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Figure 1. 468 

469 
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Figure 2. 470 

 471 

 472 

 473 

 474 
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Appendix 2 Taxonomic attributes of studies used in the analysis.   480 

Appendix 3 Full references for studies cited in Appendix 1 and 2. 481 

Appendix 4 Attributes of studies that contained dispersal distances for species in our dataset.  482 

Appendix 5 Full reference for studies cited in Appendix 4.  483 
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(n=4317). 485 

Appendix 7 Analysis of deviance table for the relationship between model accuracy, 486 
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number of species in one taxonomic group were removed.  488 
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Appendix 1. Methodological attributes used to build SDMs for each study used in the analysis. Presented are the model types, number of 489 

climatic variables used in the model, resolution (km2) of the model, total spatial extent over which the model was built (km2) and average 490 

absolute latitude of the region for which the model was built. 491 

Study Model type (s) Variables Resolution 

(km2) 

Spatial extent 

(km2) 

Latitude (o) 

Araújo et al. 2005 GAM 7 2500 1.105x107 47 

Huntley et al. 2006 GAM, locally weighted regression 4 12227 2.40x107 0 

Huntley et al. 2008 locally weighted regression 3 2500 1.105x107 47 

Huntley et al. 2004 locally weighted regression 3 2500 1.105x107 47 

Beale et al. 2008 ANN 3 2500 6.04x106 47 

Thuiller et al. 2006 GAM 6 256 3.02x107 0 

McPherson and Jetz 

2007 

autologistic regression 1-28 2975 8.27x106 47 

Elith et al. 2006 Mars, gdm, maxent, brt, domain, bruito, GAM, 

GARP, GLM, bioclim, lives 

11 1 1.465 x107 14 

Heikkinen et al. 2007 GAM 3 100,1600 3.381 x105 64 
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Luoto et al. 2005 GAM 3 100 3.381 x105 47 

Parra and Monahan 

2008 

maxent 19 16 4.240 x105 15 

Phillips et al. 2006 GARP, maxent 13 30.25 19621904 15 

Thuiller 2003 GLM, CART 7 2500 5222500 15 

Freedman et al. 2009 maxent 7 1 475442 6 

Guisan and Hofer 2003 GLM 12 1 4.10 x104 47 

Venier et al. 2004 logistic regression 10 25 8.0 x105 15 

Pearson et al. 2006 ANN, GARP, GAM, CGM 5 2.56 1.22 x106 15 

McPherson et al. 2004 logistic regression, discriminant 61 648 2.77 x106 15 

Thuiller et al. 2004 GAM 4 2500 6.525 x106 15 

Thuiller et al. 2003 GLM 7 2500 1.105x107 15 

 492 

 493 

494 
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Appendix 2. Taxonomic attributes of studies used in the analysis. Presented are the total number of unique species used, the number of birds, 495 

herptiles, butterflies, mammals, and plants.  496 

Study Total number of species Birds Herptiles Butterflies Mammals Plants 

Araújo et al. 2005 1778 157 103 0 152 1366 

Huntley et al. 2006 1457 1457 0 0 0 0 

Huntley et al. 2008 214 214 0 0 0 0 

Huntley et al. 2004 173 36 0 37 0 100 

Beale et al. 2008 42 42 0 0 0 0 

Thuiller et al. 2006 272 0 0 0 272 0 

McPherson and Jetz 2007 176 176 0 0 0 0 

Elith et al. 2006 30 0 0 0 0 30 

Heikkinen et al. 2007 2 2 0 0 0 0 

Luoto et al. 2005 79 0 0 79 0 0 

Parra and Monahan 2008 57 0 0 0 57 0 

Phillips et al. 2006 2 0 0 0 2 0 

Thuiller 2003 2 0 0 0 0 2 
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Freedman et al. 2009 3 0 3 0 0 0 

Guisan and Hofer 2003 8 0 8 0 0 0 

Venier et al. 2004 10 10 0 0 0 0 

Pearson et al. 2006 4 0 0 0 0 4 

McPherson et al. 2004 5 5 0 0 0 0 

Thuiller et al. 2004 1 0 0 0 0 1 

Thuiller et al. 2003 2 0 0 0 0 2 
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Appendix 3. Full references for studies cited in Appendix 1 and 2. 497 
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Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from 503 

occurrence data. - Ecography 29: 129-151. 504 
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Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. - 529 

Ecol. Model. 190: 231-259. 530 

Thuiller, W. 2003. BIOMOD - optimizing predictions of species distributions and projecting 531 

potential future shifts under global change. - Global Change Biol. 9: 1353-1362. 532 
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440. 539 
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Appendix 4. Attributes of studies that contained dispersal distances for species in our dataset. 542 

Study Taxonomic Group Details 

Bowman et al. 2002 mammals Conducted a literature review to find maximum distance moved by adult mammals after 

translocation. 

Cain et al. 1998 plants Measured dispersal distance for Asarum canadense via direct observations of seed movement 

by ants; searched the literature for measured dispersal distances for other woodland herbs.  

Some of these were directly observed and others were based on measured fall rates of seeds 

combined with typical wind speeds. 

Paradis et al. 1998 birds Used survey data from the ringing scheme of the British Trust for Ornithology 1909-1994.  

Included only birds ringed and recovered during the breeding season (i.e. excluded migration 

distances).  Estimated both natal and breeding dispersal distances. 

Schneider 2003 butterflies Compiled mean distances reported in mark-release-recapture studies. 

Smith and Green 2005 amphibians Compiled a list of the longest distances moved in both mark-recapture and displacement 

studies. 

Sutherland et al. 2000 mammals and birds Compiled data on natal dispersal distances from a literature search.  Most data were based on 

incidental observations.  Did not accept data from “likely migrants”. 
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Appendix 5. Full references for studies cited in Appendix 4.  543 

Bowman, J. et al. 2002. Dispersal distance of mammals is proportional to home range size. - 544 

Ecology 83: 2049-2055. 545 

Cain, M. L. et al. 1998. Seed dispersal and the Holocene migration of woodland herbs. - Ecol. 546 

Monogr. 68: 325-347. 547 

Paradis, E. et al. 1998. Patterns of natal and breeding dispersal in birds. - J. Animal Ecol. 67: 548 

518-536. 549 

Schneider, C. 2003. The influence of spatial scale on quantifying insect dispersal: an analysis 550 

of butterfly data. - Ecol. Entomol. 28: 252-256. 551 

Smith, M. A. and Green, D. M. 2005. Dispersal and the metapopulation paradigm in 552 

amphibian ecology and conservation: are all amphibian populations metapopulations? 553 

- Ecography 28: 110-128. 554 

Sutherland, G. D. et al. 2000. Scaling of natal dispersal distances in terrestrial birds and 555 

mammals. - Conserv. Ecol. 4: 44. 556 

 557 

 558 

559 
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Appendix 6. Collinearity (Spearman r coefficients) between all continuous covariates 560 

(n=4317). 561 

 562 

 latitude area resolution 

area -0.903   

resolution -0.589 0.503  

variables 0.277 -0.290 -0.479 
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Appendix 7. Analysis of deviance table for the relationship between model accuracy, 563 

covariates and taxonomic group when studies that contributed more than half of the total 564 

number of species in one taxonomic group were removed. Presented are the differences 565 

in AIC and deviance between full and reduced models as well as the associated p value. 566 

The difference in degrees of freedom between full and reduced models was four for all 567 

comparisons and subsets. The full model includes number of variables, log(spatial 568 

extent), resolution and model type. When Huntley et al. 2006 is removed there are 2860 569 

species from nineteen published studies, without Araújo et al. 2005 there are 2539 species 570 

from nineteen published studies and without Luoto et al. 2005 there are 4238 species 571 

from nineteen published studies. 572 

573 
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 574 

Studies subset Model for 

comparison 

Model terms ∆AIC ∆Deviance p 

Without Huntley et 

al. 2006 

Just intercept +Taxonomic 

group 

33.46 41.46 <0.0001 

 Full model +Taxonomic 

group 

31.88 39.88 <0.0001 

Without Araújo et al. 

2005 

Just intercept +Taxonomic 

group 

14.96 22.96 0.000129 

 Full model* + Taxonomic 

group 

15.18 23.18 0.000117 

Without Luoto et al. 

2005 

Just intercept +Taxonomic 

group 

41.6 49.6 <0.0001 

 Full model +Taxonomic 

group 

41.76 49.76 <0.0001 

 575 

* Only includes spatial extent and resolution, none of the other covariates in the model 576 

led to estimation 577 

 578 


