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ABSTRACT 16 

 17 

Injecting CO2 into deep saline formations represents an important component of many greenhouse 18 

gas reduction strategies for the future. A number of authors have posed concern over the thousands 19 

of injection wells likely to be needed. However, a more important criterion than the number of wells 20 

is whether the total cost of storing the CO2 is market bearable. Previous studies have sought to 21 

determine the number of injection wells required to achieve a specified storage target. Here an 22 

alternative methodology is presented whereby we specify a maximum allowable cost (MAC) per 23 

tonne of CO2 stored, a priori, and determine the corresponding potential operational storage 24 

capacity. The methodology takes advantage of an analytical solution for pressure build-up during 25 

CO2 injection into a cylindrical saline formation, accounting for two-phase flow, brine evaporation 26 

and salt precipitation around the injection well. The methodology is applied to 375 saline 27 

formations from the UK Continental Shelf. Parameter uncertainty is propagated using Monte Carlo 28 

simulation with 10,000 realisations for each formation. The results show that MAC affects both the 29 

magnitude and spatial distribution of potential operational storage capacity on a national scale. 30 

Different storage prospects can appear more or less attractive depending on the MAC scenario 31 

considered. It is shown that, under high well injection rate scenarios with relatively low cost, there 32 

is adequate operational storage capacity for the equivalent of 40 years of UK CO2 emissions. 33 

 34 

  35 
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INTRODUCTION 36 

 37 

Carbon capture and storage (CCS) is considered a necessary and significant contributor in plans for 38 

reducing anthropogenic global CO2 emissions in the future [1-3]. Cost is currently one of the main 39 

barriers to the development of CCS infrastructure projects in advance of market demand, and the 40 

largest part of this is associated with capture technology [4]. However, uncertainty concerning CO2 41 

storage capacity and its development is also a major technical and commercial obstacle [4]. This is 42 

especially the case for saline formations [5], which represent the largest proportion of available 43 

storage sites worldwide [1]. The term saline formation is used here to describe a saline aquifer 44 

containing water that is too salty to be considered for potable use. 45 

 46 

The process of storing CO2 in saline formations involves drilling wells and injecting CO2 into the 47 

pore space of a saline formation. The long-term, theoretical potential storage capacity of such sites 48 

is dependent on structural, residual, dissolution and mineralisation trapping mechanisms. This long-49 

term potential storage capacity is hereafter referred to as the static capacity. The term operational 50 

storage capacity is used here for that capacity which is achievable under typical industry operating 51 

conditions. This capacity is constrained by a number of factors including static capacity, cost and 52 

the maximum allowable pressure build-up in the storage formation [6]. 53 

 54 

Pressure build-up is an important constraint because, as CO2 is injected into the saline formation, 55 

the pore-space accommodates the new fluid locally by compressing the rock matrix and the 56 

previously residing formation waters [7].  This in turn leads to an increase in pressure within the 57 

saline formation, which will be especially high around the injection well. It is undesirable to have 58 

excessive pressure build-up because this may lead to fracturing of the cap-rock, re-activation of 59 

faults and/or other mechanisms that can result in migration of the CO2 outside the storage formation 60 

[8, 9]. 61 

 62 

Local pressure reduction can be achieved by distributing the injected CO2 across multiple injection 63 

wells. But in a controversial numerical simulation study, Ehlig-Economides and Economides [10] 64 

concluded that hundreds of wells would be required to store just 30 years of emissions from one 65 

coal-power plant. One limitation of the study was that the mathematical model assumed the saline 66 

formation is completely confined (i.e., surrounded on all sides by impermeable boundaries). 67 

Cavanagh et al. [11] argue that significantly more CO2 can be stored in saline formations that have 68 

pressure connection to much larger external geological systems. However, when many wells are 69 

applied in close proximity, the pressure interference between wells causes individual injection wells 70 
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to act as if contained within completely confined saline formation units [12, 13]. Therefore, even 71 

open saline formation systems, where not all the boundaries are impermeable, may behave as 72 

completely confined systems if large numbers of wells are required due to poor injectivity (where 73 

relatively small injection rates lead to relatively high pressure build-up). 74 

 75 

More importantly, Cavanagh et al. [11] argue that the dimensions of the saline formation considered 76 

by Ehlig-Economides and Economides [10] (873 km2 area and 30.5 m thickness) were significantly 77 

smaller than those considered by many other studies. For example, the saline formations described 78 

by Jin et al. [14] were of the order of 2000 km2 area and 300 m thickness and those listed in table 6 79 

of SCCS [15] have areas ranging from 1712 km2 to 17147 km2. Nevertheless, Ehlig-Economides 80 

and Economides [10] raise the interesting point that drilling thousands of injection wells to store 81 

small amounts of CO2 is an uneconomic prospect. This is particularly so in an offshore environment 82 

such as the UK Continental Shelf. 83 

 84 

However, for commercial deployment of CCS the major concern will not be the number of wells 85 

required but instead the total cost of storing the CO2. In a recent study, Carneiro et al. [16], using 86 

similar methods to Ehlig-Economides and Economides [10], estimated the cost of storing CO2 in 43 87 

different saline formation storage hubs across Spain, Portugal and Morocco. They found that the 88 

storage cost per tonne of CO2 (excluding the cost of capture, compression and transmission) ranged 89 

from 1.4 to 116.3 €2007. Their approach was to take a saline formation unit, apply a pre-assigned 90 

number of injection wells (typically 4) and then assess the maximum injection rate per well that 91 

could be sustained for 30 years. 92 

 93 

Another way to approach the topic of numbers of injection wells for commercial development is to 94 

determine a maximum allowable cost per tonne of CO2 stored, impose this on a given saline 95 

formation and then determine the associated operational storage capacity. The term, maximum 96 

allowable cost (MAC), is hereafter used to refer to an imposed maximum cost per tonne of CO2 97 

stored. Operational storage capacity is likely to reduce with reducing MAC. In this article we 98 

demonstrate how MAC can be expected to affect the operational CO2 storage capacity that can be 99 

utilised at a regional and national scale by analysing a database of 375 saline formations from 100 

offshore UK. The findings will be of significant benefit for developing a national portfolio of UK 101 

site appraisal options. The presented methodology should also be widely applicable to national 102 

appraisal studies elsewhere in the world. Minimum input data required for candidate storage saline 103 

formations includes: depth, geothermal gradient, pore-pressure, permeability, porosity, areal extent 104 

and formation thickness. 105 
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 106 

The outline of this article is as follows. First, a set of suitable cost scenarios are developed and 107 

proposed. A methodology is described to estimate operational storage capacity as a function of 108 

MAC. Following on from this, some case studies are presented from the UK CO2 Stored® database 109 

[17]. An analysis is then performed to explore how MAC affects operational storage capacity in 110 

terms of both magnitude and spatial distribution. 111 

 112 

MATERIALS AND METHODS 113 

 114 

Development of cost scenarios 115 

 116 

The total cost of storing a given quantity of CO2 is strongly dependent on the required number of 117 

injection wells. The number of injection wells is in turn controlled by the sustained injection rate 118 

applicable to each well, which can be different to the initial injection rate achieved on well 119 

completion. Hosa et al. [18] reviewed injection rates at 15 operating or planned CO2 storage 120 

projects around the world. The largest injection rate per well reported was 3.65 Mt/year. Ten of the 121 

reported rates were less than 1 Mt/year. Five of the reported rates were less than 0.1 Mt/year.  122 

 123 

Mathias et al. [19] showed that the injection rate statistics from Hosa et al. [18] are very similar to 124 

bulk fluid production rates (i.e., combined volumetric rates of oil, water and gas at reservoir 125 

conditions) from 104 offshore UK oil and gas fields. By averaging production rates over a ten year 126 

period, Mathias et al. [19] showed that 50% of the production wells studied produced bulk fluid at a 127 

rate of less than 3.5 million barrels per year. Assuming a CO2 density of 650 kg/m3, this volumetric 128 

rate converts to around 0.35 Mt/year. 129 

 130 

Collectively, the studies of Hosa et al. [18] and Mathias et al, [19] suggest that many CO2 injection 131 

wells are likely to achieve sustained rates of up to 0.1 Mt/year, whilst very few injection wells are 132 

likely to achieve injection rates greater than 1 Mt/year. Based on these studies, we will consider 133 

four injection rate scenarios: 0.1 Mt/year, 0.5 Mt/year, 1.0 Mt/year and 2.5 Mt/year. The latter rate 134 

represents a very optimistic scenario for storage sites located on the UK Continental Shelf. 135 

 136 

These injection rates can be thought of as representing different cost scenarios, the smallest rate 137 

representing the most expensive scenario. An indication of the total investment cost of these 138 

scenarios, for a given quantity of CO2 to be stored, can be obtained by utilising the equation 139 

(modified from [20]): 140 
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 141 

( )[ ] )1( fCCCCLCNI msdsfwd +++++=      (1) 142 

 143 

where I (€) is investment cost, N (-) is the number of injection wells, L (m) is the injection well 144 

length, Cd (€/m) is the drilling cost per metre length of well, Cw (€/well) is a fixed cost per well, 145 

Csf (€/well) is the cost for the surface facilities on the injection sites, Csd (€) is the cost of site 146 

development, Cm (€) is the cost of emplacement of monitoring equipment and f (-) is a factor to be 147 

applied to the total cost to account for additional operating, maintenance and monitoring (OMM) 148 

costs. 149 

 150 

Building on the work of van den Broek et al. [20], Carneiro et al. [16] provide values for the above 151 

cost parameters in 2007€ for deep offshore saline formations as follows: Cd = €26 k per m, 152 

Cw = €8,200 k per well, Csf = €6,120 k per well, Csd = €24,097 k, Cm = €1,530 k. They further 153 

suggest an OMM factor of f = 0.05. 154 

 155 

Applying Eq. (1) with the parameter values listed above and assuming a uniform well length of 156 

L = 2000 m leads to the following equation for estimating the associated storage cost per tonne of 157 

CO2 stored, Cst (€/tonne): 158 

 159 

 )/()/386.01(64.69 00tMNCst +=        (2) 160 

 161 

where M0 (Mt/year) is the injection rate applied to each well and t0 (years) is the duration of 162 

injection. From Eq. (2) it is clear that for situations with large numbers of wells, the cost of storage 163 

is approximately inversely proportional to the injection rate. Therefore it can be concluded that the 164 

costs per tonne of CO2 stored shown in Table 1 are largely independent of the saline formation size 165 

considered. 166 

 167 

Table 1 shows some corresponding costs associated with the four injection rate scenarios for a 168 

saline formation with 4000 Mt potential static capacity (typical of the list studied by SCCS [15]) 169 

with each injection well assumed to be 2000 m long and operating at a constant rate for 20 years. 170 

 171 

Note that even with an overly optimistic sustained injection rate of 2.5 Mt/year per well, this would 172 

require 80 wells and would cost €5.6 billion. If we consider the pessimistic (but more realistic) 173 

scenario of 0.1 Mt/year, 2000 wells would be required and the cost would be €139.3 billion. Hence 174 

the cost per tonne of CO2 ranges from €1.39 to €34.82. For comparison, Herzog [21] calculated that 175 
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the cost of capture and compression of CO2 from a supercritical pulverised coal power plant to be 176 

around €70.47  / tonne of CO2 (based on a 2007 Euro to US dollar exchange rate of 1.35) (note that 177 

Herzog’s [21] price is stated in USD2007). It can therefore be understood that the most expensive 178 

storage option would still be under half the anticipated cost associated with capture and 179 

compression. 180 

 181 

Table 1: Storage costs for 100% utilisation of a 4000 Mt saline formation based on Eq. (1) and 182 

assuming each injection well operates for 20 years. These costs are based on 2007 prices previously 183 

published by Carneiro et al. [16]. 184 

Injection rate, M0 (Mt/year)  0.1  0.5  1  2.5 185 

Number of wells, N   2000  400  200  80 186 

Total storage cost, I (€Billion) 139.3  27.9  14.0  5.6 187 

Cost per tonne of CO2, Cst (€)  34.82  6.96  3.48  1.39 188 

 189 

Whilst the total cost of storing a given quantity of CO2 is strongly dependent on the number of 190 

injection wells used, Eq. (2) shows that the cost per tonne of CO2 stored becomes independent of 191 

the number of injection wells when a large number of wells are required. This can be explained as 192 

follows: The per-well cost of storage dominates the total cost (given by Eq. (1)) such that the total 193 

cost is nearly proportional to the number of wells used. When all the injection wells are operating at 194 

the same rate and for the same duration, the mass of CO2 stored is also proportional to the number 195 

of wells. Therefore, the number of wells effectively cancels out when considering the cost per tonne 196 

of CO2 stored. The above findings assume that the injection rate and injection duration are 197 

independent of the number of wells. However, a methodology that more realistically incorporates 198 

this dependency is explained in the sub-section below. 199 

 200 

Determining storage capacity for a given maximum allowable cost (MAC) 201 

 202 

The operational storage capacity associated with a given saline formation for a MAC (such as the 203 

Cst values presented in Table 1) can be determined by assessing how many injection wells can 204 

operate within the saline formation at the associated injection rate for the specified time (i.e., 20 205 

years in Table 1). The approach taken for determining operational storage capacity for a given 206 

saline formation in this study is described as follows: 207 

 208 

Firstly, the static capacity, mstat [M], of the saline formation is obtained by determining the pore-209 

volume of the saline formation, multiplying by the density of CO2 at reservoir conditions and then 210 
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multiplying by an efficiency factor, as described by Gammer et al. [22]. The static capacity 211 

represents an upper limit on operational storage capacity, as described in the introduction and by 212 

Szulczewski et al. [6]. The next stage is to determine the maximum operational storage capacity, 213 

mmax [M], that can be achieved for each of the four MAC scenarios associated with the injection 214 

rates, M0 [MT-1], in Table 1.  215 

 216 

A sequence of 37 different saline formation utilisation rates, U0 [MT-1], is considered ranging from 217 

0.1 to 1000 Mt/year. The term utilisation rate is used here to describe the rate at which CO2 is 218 

injected into a saline formation unit as a whole. For a given utilisation rate, U0, and injection rate, 219 

M0, the number of wells, N, being considered can be obtained from N = U0 / M0. For each 220 

utilisation rate and injection rate, the maximum sustainable injection duration, t0 [T], is determined 221 

as described in the next sub-section. Scenarios where t0 < 20 years are excluded based on the 222 

assumption that operators would require their injection wells to be sustainable for at least 20 years. 223 

Values of t0 are capped at 40 years, representing an operational design life of the saline formation. 224 

The quantity of CO2 stored, m0 [M], for each (U0, M0) scenario is found from m0 = U0 × t0. 225 

Following Szulczewski et al. [6], values of m0 are capped at the static capacity, mstat. The 226 

operational storage capacity, mmax, is taken to be the maximum value of m0 for each injection rate, 227 

M0. 228 

 229 

Because all selected injection wells are in operation for at least 20 years, the Cst values in Table 1 230 

can be thought of as representing the MAC associated with the corresponding set of injection rates, 231 

M0 (also shown in Table 1). Hence it can be understood that specifying an injection rate alongside a 232 

minimum injection duration a priori is analogous to specifying a MAC calculated from Eq. (2) a 233 

priori. 234 

 235 

Determining sustainable injection duration 236 

 237 

Injection well pressures increase as CO2 is injected into the saline formation. The sustainable 238 

injection duration, t0, is the time at which the well pressure reaches a specified upper limit, 239 

Pmax [ML-1T-2]. For the current study, Pmax was taken to be the minimum of 90% of the fracture 240 

pressure, 90% of the lithostatic pressure and 100% of the estimated downhole pressure that can be 241 

sustained by a surface pressure of 25 MPa (i.e., surface pressure + gravity head – frictional loss 242 

within the standing pipe). The latter constraint is based on the assumption that all compression is 243 

located on-shore. 244 

 245 
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Using a study of stress gradients in the Central Graben and the Scotian Shelf by Engelder and 246 

Fischer [23], the fracture pressure, Pfrac (Pa), is estimated from the empirical equation: 247 

 248 

 zPP pfrac 850071.0 +=        (3) 249 

 250 

where Pp (Pa) and z (m) are the pore-pressure and depth below seabed for a given saline formation, 251 

respectively. 252 

 253 

Following, Mijic et al. [12], the presence and interference of multiple wells is treated by splitting 254 

the saline formation into equal areas for each well. Each well is then assumed to be situated within 255 

the centre of a cylindrical completely confined saline formation surrounded with impermeable 256 

boundaries. 257 

 258 

The pressure build-up in each well as a function of time is estimated using the analytical solution of 259 

Mathias et al. [24]. This model assumes that CO2 is injected into the centre of a cylindrical 260 

homogenous and completely confined saline formation. Flow of fluid is assumed to be a one-261 

dimensional radially symmetric process. Other limiting assumptions include that capillary pressure 262 

is negligible and fluid properties are constant. The model is able to account for non-linear relative 263 

permeability, the development of a dry-out-zone and salt precipitation around the well due to 264 

evaporation of water and reduction of volumetric flow rate due to CO2 dissolution into the brine. 265 

Comparisons with fully dynamic simulations using TOUGH2 have shown this analytical solution to 266 

be sufficiently accurate for this purpose Mathias et al. [24, 25]. 267 

 268 

Following Mathias et al. [25], all the relevant fluid properties for CO2 and brine are calculated 269 

using equations of state provided by Batzle and Wang [26], Fenghour et al. [27] and Spycher and 270 

Pruess [28]. Rock compressibility is calculated as a function of porosity using the correlation for 271 

sandstones of Jalalh [29]. Permeability reduction due to salt precipitation around the injection well 272 

is simulated using the power law expression provided by Mathias et al. [25], which is based on an 273 

experimental data set previously presented by Bacci et al. [30]. 274 

 275 

The above procedure is suitable for completely confined saline formations, which are impermeable 276 

on all sides. For open saline formation systems, the approach is modified as follows. For scenarios 277 

involving less than 8 injection wells, the area of the saline formation is re-scaled by multiplying by 278 

the efficiency factor (as defined in the Gammer et al. [22] study) and then dividing by the 279 

equivalent efficiency factor for a completely confined saline formation system. When more than 8 280 
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injection wells are applied, the area reverts back to its original value, under the assumption that the 281 

central well behaves as if in a completely confined saline formation due to the interference from 282 

neighbouring wells. An important assumption here is that the original open saline formation is 283 

vertically confined by impermeable overlying and underlying formations. 284 

 285 

The above procedure was devised by an expert panel associated with the work of Gammer et al. 286 

[22]. The basic idea assumes that once nine injection wells are present, there is one well in the 287 

middle of a square nine-spot arrangement, which behaves as if in a completely confined saline 288 

formation due to interference from the surrounding eight injection wells. Although such a procedure 289 

appears quite arbitrary, it is useful in terms of recognising that as more injection wells are applied, 290 

some injection wells in an open saline formation are unable to benefit from being able to propagate 291 

associated local pressure build-up to open lateral boundaries.  292 

 293 

In general, it is understood that operational storage capacity, mmax, should increase with increasing 294 

numbers of wells. However, a disadvantage of the above approach is that in some cases, increasing 295 

the number of wells can lead to reduced mmax as the saline formation is discontinuously perceived 296 

to transform from an open to a completely confined saline formation system. Therefore a correction 297 

is applied whereby mmax is assumed to remain constant with increasing number of wells unless it 298 

increases with increasing number of wells. 299 

 300 

Analysis of the CO2 Stored® database 301 

 302 

The UK Storage Appraisal Project (UKSAP), commissioned by the UK’s Energy Technologies 303 

Institute (ETI), compiled a database of relevant technical and commercial parameters for over 500 304 

potential offshore CO2 storage sites on the UK Continental Shelf, including 375 offshore saline 305 

formations [22]. Uncertainty was dealt with by experts reaching consensus on the minimum, 306 

maximum likelihood and maximum value for each parameter assuming triangular distributions. For 307 

each saline formation unit, distributions were specified for, among other things: water depth, area, 308 

formation thickness, areal net sand ratio, net to gross ratio (NTG), porosity, shallowest depth, depth 309 

to centroid, salinity, permeability, lithostatic gradient, geothermal gradient and overpressure. The 310 

data is available within the CO2 Stored® online database [17]. These parameters are sufficient to 311 

fully parameterise the model above for each saline formation unit. Note UKSAP also assumed that 312 

each saline formation can be treated as a single homogenous unit. 313 

 314 
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The model framework, described in the previous sub-sections, was applied to each of the 375 315 

offshore saline formations so as to determine estimates of operational storage capacity for each of 316 

the four allowable cost scenarios. Prescribed parameter uncertainty from CO2 Stored® was 317 

propagated through to storage capacity estimation by running the model within a Monte Carlo 318 

simulation whereby each of the parameters was randomly sampled from the specified triangular 319 

distributions. So as to ensure statistical convergence, 10,000 realisations were run for each saline 320 

formation. The entire modelling framework was conducted within the MATLAB programming 321 

environment. On a 12 core desktop computer, 10,000 simulations of a single saline formation take 322 

about 5 minutes to complete. 323 

 324 

Unfortunately, the CO2 Stored® database does not contain explicit information concerning relative 325 

permeability data for CO2 and brine mixtures for UK saline formation rocks. Recently Mathias et al. 326 

[25] compiled results from 25 different sandstone and carbonate reservoir rocks from around the 327 

world. Following the recommendations of Mathias et al. [25], relative permeability uncertainty is 328 

treated by randomly selecting one of these 25 results for each of the 10,000 saline formation 329 

realisations. 330 

 331 

RESULTS AND DISCUSSION 332 

 333 

So as to gain further insight into how this methodology works, Fig. 1 shows results from six of the 334 

saline formations previously studied for static capacity by SCCS [15]. All six units lie in close 335 

proximity to North West Scotland. A location map is available in Figure 13 of SCCS [15]. 336 

Specifically, Figs. 1 a and b illustrate how operational storage capacity reduces with increasing 337 

injection rate. For reference, corresponding values for MAC, based on Eq. (2), are shown on the 338 

upper x-axes of the plots. Recall that operational storage capacities have been determined using 339 

Monte Carlo simulation. P10, P50 and P90 relate to results with probability of non-exceedances of 340 

10, 50 and 90%, respectively. It can be seen that the P50 operational storage capacity reduces to 341 

zero at 1.75 Mt/year for Mey, Forties and Tay. In contrast, a high level of P50 operational storage 342 

capacity persists beyond 2.5 Mt/year for Heimdal, Frigg and Captain. 343 

 344 

SCCS [15] previously reported upper and lower bound estimates of static capacity, for the same 345 

saline formations studied in Fig. 1, obtained by multiplying estimates of the associated pore-346 

volumes by efficiency factors of 0.02 and 0.002, respectively. Note that the operational storage 347 

capacities reported for zero injection rates in Figs. 1 a and b are analogous to static capacity 348 
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estimates. The P50 static capacities presented in Figs. 1 a and b are all found to lie within the range 349 

of the estimates previously presented by SCCS [15]. 350 

 351 

Jin [31] earlier performed a more detailed assessment on the Captain sandstone formation using a 352 

3D statistical geological model in conjunction with a numerical reservoir simulation model. Their 353 

simulation forecasted the possibility of storing 358 Mt of CO2 by injecting up to 2.5 Mt/year in 354 

individual wells for up to 25 years. Our much more simple approach described in this article 355 

forecasts an operational storage capacity of 223 Mt of CO2 in this context (see Fig. 1 b). 356 

 357 

A measure of how rapidly a saline formation becomes undesirable with decreasing MAC can be 358 

obtained by considering the efficiency ratio, E [-], found from the 1.0 Mt/year operational storage 359 

capacity divided by the associated static capacity of the saline formation. Values of E can range 360 

from zero to one. Values of E very close to one imply that operational storage capacity of the saline 361 

formation is insensitive to MAC. Small values of E imply that the saline formation rapidly loses its 362 

operational storage capacity with decreasing MAC. 363 

 364 

A sensitivity analysis was performed to determine which key factors characterise more efficient 365 

(i.e., high E) saline formations. The sensitivity analysis was performed by calculating the 366 

Spearman’s rank-order correlation between each of the input parameter values (using their 367 

maximum likelihood estimates) and the P50 value of E for each of the saline formations studied. 368 

 369 

Considering the top three most sensitive parameters for the completely confined saline formations: 370 

the efficiency factor, E, was found to be positively correlated with permeability and formation 371 

thickness but negatively correlated with the depth of the centroid of the formation below the seabed. 372 

Permeability is particularly important here because permeability directly controls how fast the 373 

pressure build-up around the injection wells is able to dissipate within the saline formation. Larger 374 

formation thickness is important because it reduces the flow rate per unit area of CO2 in the 375 

formation, which also leads to smaller pressure gradients. The negative correlation with formation 376 

centroid depth is harder to explain. However, it can be understood that for high geothermal 377 

gradients, the density of CO2 reduces with increasing depth. This in turn will lead to larger 378 

volumetric flow rate per unit area of CO2 in the formation, which in turn leads to higher pressure 379 

gradients. 380 

 381 

Considering the top three most sensitive parameters for the open confined saline formations: the 382 

efficiency factor, E, was found to be positively correlated with permeability, formation area and the 383 
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depth of the overlying seabed below sea level. Permeability was discussed above. Sea depth is 384 

likely to have a positive effect here because it leads to higher CO2 densities and hence a lower 385 

volumetric flow rate per unit area of CO2 in the formation. It is not clear why efficiency is 386 

positively correlated with area. There are many complicated parameter interactions taking place for 387 

the open saline formations due to the discontinuous way in which open saline formations are treated 388 

as completely confined saline formations when the number of injection wells exceeds 8. 389 

Nevertheless, both sensitivity analyse demonstrate the obvious importance of permeability for 390 

predicting high efficiency in the saline formations. 391 

 392 

Figs. 1 c and d show the permeability cumulative distributions for each of the example saline 393 

formations studied in Figs. 1 a and b. Those saline formations that show non-zero P50 operational 394 

storage capacity at 2.5 Mt/year all have minimum permeabilities greater or equal to 100 mD. Also 395 

of interest are the intervals between the P10 and P90 storage capacities. Captain and Frigg exhibit 396 

very tight confidence limits. In contrast, Tay exhibits a much larger level of uncertainty. 397 

 398 

Fig. 2a shows a plot of P10, P50 and P90 operational CO2 storage capacity against injection rate for 399 

all UK offshore saline formations from the CO2 Stored® database with centroid depths greater than 400 

1000 m and less than 2500 m below sea bed, which is considered a best practice requirement in the 401 

SCCS [15] study. The results clearly indicate how UK operational storage capacity could be 402 

increased by increasing the MAC (recall that MAC is inversely proportional to injection rate in this 403 

context). Of particular interest is that the P10 storage capacity at an injection rate of 1 Mt/year 404 

(equivalent to (2007) €3.48 storage cost per tonne of CO2) is around 20 Gt. For reference, 40 years 405 

of UK net emissions of CO2 corresponds to around 19 Gt [32]. 406 

 407 

Fig. 2b shows a plot of P10, P50 and P90 number of suitable saline formations (i.e., saline 408 

formations with a greater than zero operational storage capacity) against injection rate. Note that, 409 

considering the P50 results, the centroid depths greater than 1000 m and less than 2500 m below sea 410 

bed constraint reduced the number of available saline aquifers from 375 to 113. Imposing MACs 411 

associated with injection rates of 0.1 Mt/year and 1.0 Mt/year reduces the number of available 412 

formations further to 89 and 53, respectively. The models predict that only 16 saline formations are 413 

able to deal with an injection rate of 2.5 Mt/year. 414 

 415 

Fig. 3 shows maps of P50 operational CO2 storage capacity at different injection rates. The 416 

rectangles correspond to quads commonly used by the UK Department of Energy and Climate 417 

Change (DECC) to manage oil and gas production licences. The white numbers are the sum of P50 418 
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operational storage capacities for all saline formation units situated within the respective quad. Here 419 

it can be seen how different areas look more or less attractive depending on the stipulated MAC. 420 

 421 

Table 2 shows the top 3 saline formations in terms of P50 operational CO2 storage capacity for each 422 

of the MAC scenarios presented in Table 1. Within the list, only the Heimdal formation and Forties 423 

member were presented in the earlier study by SCCS [15]. Note that the saline formation, Mey 424 

member (365), has a larger operational storage capacity for injection rates ≤ 1.0 Mt/year (recall 425 

Figure 1a). However, this was not included in Table 2 because its centroid depth is > 3000 m below 426 

seabed. The results in Table 2 only include saline formations with centroid depths between 1000 427 

and 2500 m below seabed. 428 

 429 

Both the St Bees and Heimdal formations are found to be top ranking (i.e., in the top 3) prospects 430 

for injection rates ≤ 1.0 Mt/year. The Maureen formation is top ranking only for the relatively high 431 

MAC scenarios of 0.1 and 0.5 Mt/year. In contrast, the Forties member and the Penrith and Mousa 432 

formations only become top ranking when considering the lower MAC scenarios of 1.0 and 433 

2.5 Mt/year. 434 

 435 

Table 2: Top 3 saline formations in terms of P50 operational CO2 storage capacity for each of the 436 

maximum allowable costs scenarios presented in Table 1. The numbers in brackets are the 437 

associated formation identifier numbers used in the CO2 Stored® database. Note these only include 438 

saline formations with centroid depths between 1000 and 2500 m below seabed. 439 

Injection Rate (Mt/year) Saline formation   Location   Operational capacity (Mt) 440 

0.1    St Bees Formation (265)  East Irish Sea Basin 3410 441 
   Heimdal Member (234)  Northern North Sea 2889 442 
   Maureen Formation (250)  Northern North Sea 2874 443 

0.5   St Bees Formation (265)  East Irish Sea Basin 3410 444 
   Heimdal Member (234)  Northern North Sea 2889 445 
   Maureen Formation (250)  Northern North Sea 2874 446 

1   St Bees Formation (265)  East Irish Sea Basin 3410 447 
   Heimdal Member (234)  Northern North Sea 2889 448 
   Forties Member (372)  Central North Sea 2505 449 

2.5   Heimdal Member (234)  Northern North Sea 2889 450 
   Penrith Formation (261)  East Irish Sea Basin 1076 451 
   Mousa Formation (240)  Northern North Sea 725 452 

 453 

Currently the UK has three carbon capture projects which are moving forwards with two at the 454 

FEED (Front-End Engineering Design) stage [33]. There are two identified storage sites (the third 455 
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project will likely share one of the sites). One site is located in the depleted Goldeneye gas field in 456 

the Outer Moray Firth. It has a sandstone reservoir of Cretaceous age. The other site is located in 457 

the Southern North Sea, away from the gas province and has a saline aquifer storage site composed 458 

of Triassic age sandstone. Neither of these projects features in Table 2. However, both of these 459 

project locations were chosen for alternative economic reasons associated with already available 460 

infrastructure and proximity to specific CO2 sources. 461 

 462 

In summary, storing national scale quantities of CO2 in offshore saline formations may require 463 

large numbers of wells. However, the cost of storage in this context is likely to represent a small 464 

fraction of the cost associated with capture, compression and transmission. Previous analysis has 465 

led to misleading results concerning the feasibility of CCS infrastructure deployment because 466 

technical dynamic storage capacities have been estimated for given saline formations and the 467 

associated cost subsequently derived. This article provides an alternative methodology for instead 468 

specifying a maximum allowable cost (MAC) per tonne of CO2 stored, a priori, and deriving the 469 

associated operationally available storage capacity. Note that by consideration of economic costs 470 

published in the literature, it can be shown that, for situations with large numbers of wells, the costs 471 

per tonne of CO2 stored is inversely proportional to the injection rate applied (recall Eq. (2)). Our 472 

results show that MAC can significantly affect both the magnitude and spatial distribution of 473 

operational storage capacity. Different storage prospects can appear more or less attractive 474 

depending on the MAC scenario considered. Furthermore, our approach demonstrates availability 475 

of affordable storage at a scale comparable to national UK emissions – reinforcing the validity of 476 

CCS as a decarbonisation technology for the UK, and by extension other regions with saline 477 

formation storage potential. 478 
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 603 

Figure 1: a and b show plots of operational CO2 storage capacity against injection rate for six 604 

different saline formations. The name of the saline formation relates to the name of the sandstone 605 

member. The number in brackets is the associated unit identifier number in the CO2 Stored® 606 

database. The corresponding values of maximum allowable cost (MAC) were calculated using Eq. 607 

(2) assuming a minimum injection duration of 20 years. c and d show the permeability cumulative 608 

probability distributions for each of the saline formations. The solid lines are the P50 results. The 609 

dashed lines are the P10 and P90 results. 610 
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 611 

Figure 2: a shows a plot of operational CO2 storage capacity against injection rate for all CO2 612 

Stored® UK offshore saline formations with centroid depths greater than 1000 m below sea bed and 613 

less than 2500 m below sea bed. b shows a corresponding plot of the number of suitable saline 614 

formations (i.e., the number of saline formations that have a non-zero operational storage capacity) 615 

against injection rate. The solid lines are the P50 results. The dashed lines are the P10 and P90 616 

results. The corresponding values of maximum allowable cost (MAC) were calculated using Eq. (2) 617 

assuming a minimum injection duration of 20 years. 618 
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 619 
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Figure 3: A sequence of maps showing distribution of P50 operational CO2 storage capacity across 620 

the UK. a Distribution of static capacity. b, c and d Distribution of operational storage capacity for 621 

maximum allowable cost (MAC) scenarios of 34.82, 3.48 and 1.39 € per tonne of CO2 stored, 622 

respectively. The corresponding injection rates are 0.1 Mt/year, 1.0 Mt/year and 2.5 Mt/year, 623 

respectively. Each colour block represents the area of a standard UK Department of Energy and 624 

Climate Change quad. The white number in the quad is the storage capacity available in Gt of CO2. 625 

The colours indicate how much storage is in the block with turquoise being the lowest and purple 626 

being the highest. The black dots show the locations of the saline formations incorporated into the 627 

study. Note that saline formations with centroids > 2500 m below sea bed or < 1000 m below sea 628 

bed were excluded. 629 


