
 Procedia CIRP 11 (2013) 373 – 378

Available online at www.sciencedirect.com

2212-8271 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari
doi: 10.1016/j.procir.2013.07.026

ScienceDirect

2nd International Through-life Engineering Services Conference

Demonstration of a self-recovering ALU using a convergent cellular
automata

 Richard McWilliam*, Philipp Schiefer, Alan Purvis
School of Engineering and Computing Sciences, Durham University, Science Labs, South Road, Durham, DH1 3LE

* Corresponding author. Tel.: +44 (0)191 3342418; fax: +44(0)191 334 2408. E-mail address: r.p.mcwilliam@durham.ac.uk

Abstract

This paper presents work in progress towards the demonstration of a self-restoring arithmetic logic unit (ALU) based on
convergent cellular automata (CCA). The need for fault tolerance and self-recovery strategies for electronic circuits is discussed,
with particular focus on well-known redundancy and reconfiguration approaches. Our CCA fault tolerant strategy is
demonstrated via MATLAB simulation using fault injection. The combined roles of the CCA as coordination layer and
restoration agent are discussed. Work in progress towards a hardware demonstration using VHDL description and FPGA
hardware is also described.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of the "2nd International Through-life Engineering
Services Conference" and the Programme Chair – Ashutosh Tiwari.

 Keywords: Cellular automata; self-repairing electronics; FPGA

1. Introduction

We have previously demonstrated the composition of the
convergent cellular automata (CCA) and considerations for its
implementation for reliable electronics [1][2]. Here the
standard cellular automata (CA) is modified by a set of
constraints that initiate convergent behaviour i.e., that cause
the CA to recursively reassemble a predetermined pattern. A
CCA comprises memory in the form of look up tables (LUTs)
for storing the rule set and a state machine to govern the cell
behavior.

We consider the CCA as performing a coordination role to
arrange functional logic to form the required I/O task.
Associated with this are two sets of I/O: one for
communicating CCA states between neighbouring cells and a
second set for passing data between the functional logic.
Once the rule set is programmed, the CCA begins
coordination of its internal states and simultaneously the
functional logic via unique mappings. This self-organisation
occurs continually and is beneficial because the CCA is able

to restore the correct logical functionality in the event of non –
persistent soft errors without requiring external intervention.

We describe construction of a demonstration unit that uses
a convergent rule set to create a robust full adder arithmetic
logic unit (ALU) and memory mapped state machine. Progress
towards a hardware demonstration unit is also presented.

 The future scalability of this approach is an important
consideration, particularly with regard to hardware platforms,
where limitations of the field programmable gate array
(FPGA) platform must be understood. In particular there is
need for more efficient mapping of the dynamic functional
logic to hardware and for run-time alterations to the rule set.
We also discuss the more challenging problem of persistent
soft errors and hard errors, where one or more cells do not
recover functionality, in which case a reconfiguration scheme
is proposed which requires the development of a more
advanced CA behaviour.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

374 Richard McWilliam et al. / Procedia CIRP 11 (2013) 373 – 378

2. Fault tolerance and self-recovery in electronics

In this section we introduce the somewhat broad categories
of redundancy and reconfiguration applied to self-recovering
electronics. The scope of this work is currently limited to non-
persistent soft errors typically resulting from single event
upsets (SEUs), for which there are many responsible
mechanisms. External triggers include high energy cosmic
rays [3], thermal fluctuations and electromagnetic
interference. Internally induced SEUs arise from noise present
in semiconductor junctions and design flaws. Special
constraints such as minimal voltage, a common requirement
for modern ICs, tend to exacerbate susceptibility to external
and internal SEUs [4]. The general trend to smaller feature
size is also directly linked to SEU susceptibility and is of
major concern for next-generation nanoscale electronics [5].

2.1. Fault tolerance via redundancy

Fault tolerant methods are often based on the concept of
adding more elements to the system than strictly necessary in
such a way that the system acquires the ability to ‘absorb’
fault events. Here we consider fixed elements introduced at
the point of fabrication. Hence it is usually possible to
calculate with high accuracy the predicted response of the
resulting redundant circuit in the event of a restricted set of
fault events. Sometimes statistical simulation must be used to
form an accurate model of the circuit robustness. The majority
of such mechanisms can be related to the early work of Von
Neumann [6] involving unreliable components. Von
Neumann argued that, in many situations, a reliable system
can be constructed from components that are not 100%
reliable, but whose individual reliabilities are reasonably high.
This lead to the development of many practical
configurations, including modular redundancy, signal
interweaving and quadded logic [7].

2.2. Fault tolerance via reconfiguration

An alternative approach distinct from redundancy
approaches is that of active reconfiguration, in which the
circuit is altered in the event of external events such as an
SEU. This requires additional memory and switching
elements repeated throughout the design. Reconfiguration is
arguably closest in principle to the concept of self-repair since
it enables proactive steps to be taken in response to SEU or
other malfunction events in an effort to re-establish operation.
Of course this may occur under the auspices of external
control from a global agent or high system level, in which
case the qualifier self no longer applies.

Although desirable in terms of the flexibility offered by re-
routing or re-programming logic, this approach tends to
require high complexity due to the dynamic range of possible
configurations. A centralised control entity is usually
employed to control the overall configuration. A common
example is the FPGA, which is configurable via programming
bitstream. The bitstream defines how the FPGA’s structured
logic and embedded static random access memory (SRAM)
are arranged in order to implement combinatorial and

sequential logic operations, including LUTs (often defined as
register transfer level (RTL) design). While this platform
offers re-configurability, it is not generally possible to alter
the configuration at run-time, except for limited cases and
high end FPGA chips. Nevertheless, we use an FGPA here as
a convenient programmable platform with which to
demonstrate our CCA implementation.

Alternative platforms exist, which aim to exploit regular
architectures based on cellular-inspired concepts and local
neighbor interactions (for example, see [8]). The associated
hardware is similar to an FPGA however the design is able to
provide more sophisticated run-time localised reconfiguration.

3. CCA Design and simulation

Our goal is to demonstrate a self-recovering electronic
circuit using a data protection scheme encoded within a CA,
which then controls a functional layer of logic gates also
arranged in cellular fashion.

3.1. Cellular automata as a data protection scheme

The CA is composed of a regular array of identical
electronic cells. Each cell behaves essentially as a simple state
machine driven by two inputs, a rule LUT and two outputs.
The state transitions are illustrated in Fig. 1, where the idle
state is interrupted by either Reset or Clk transition. A further
LUT is present for output mapping and an output logic whose
state is determined by the current cell state.

The CCA is formed by applying key restrictions to the CA:

 boundary cells are placed along the top and left hand sides
of the CA,

 inter-cellular data flow is restricted along a single diagonal,
 the rule set is derived analytically and guarantees

convergent behaviour.

3.2. Rule derivation and simulation

The method used to calculate the rule set is described in
[1]. The required pattern expected to be generated by the CCA
is fed into the rule generation algorithm, resulting in a set of
rules and corresponding state mapping table. A MATLAB
script is then used to check CCA pattern convergence, an
example of which is shown in Fig. 2.

375 Richard McWilliam et al. / Procedia CIRP 11 (2013) 373 – 378

Fig. 1. State transition diagram for a CCA cell, showing Clk and Reset
actions. The states shown refer to: Idle – wait for next trigger; Initialise cell –

clear the cell state and functional logic to a predetermined initial state;
Update state – change the cell internal state depending on the input values;

Map state – update the mapped output state of the cell; Select function –
program the functional logic layer depending on the mapped cell output.

Fig. 2. Example of CCA simulation after first iteration. (a) initial randomised
state of CCA (boundary cells denoted by “b=0” labels); (b) internal cell states
after first iteration; (c) Target pattern used to derive rule set; (d) CCA output

after mapping of output states according to state mapping table showing
number of mismatches in comparison to target pattern.

After the first iteration, only 5 cells match the target
pattern (cf. Fig. 2 (c) & (d)). After successive iterations, the
correct pattern emerges as shown in Figs. 3(d) and Fig. 4(d).
The CCA pattern converges upon a full refresh of all
diagonals from top left to bottom right, hence the number of
iterations required is r(c-1) where r and c are the number of
rows and columns in the CCA respectively.

Fig. 3. CCA state after 4 iterations, showing reduction of errors. See Fig. 2 for
key.

Fig. 4. CCA state after 7 iterations, showing convergence to correct pattern.
See Fig. 2 for key.

3.3. Adder example

The example shown in Figs 2-4 was intended to coordinate
an adder ALU, hence the target pattern can be mapped to a
functional layer that implements the adder. This mapping is
illustrated in Fig. 5. The CCA coordinating layer requires 20
rules and 8 state mappings (which comprises 6 original states
and 2 additional states) which represents a modest rule set
size. The cells having state ‘6’ are in fact unallocated and may
be used for fault-tolerant reconfiguration in future
implementations.

376 Richard McWilliam et al. / Procedia CIRP 11 (2013) 373 – 378

Fig. 5. Functional logic mapping for adder ALU (corresponding CCA states
shown in square brackets).

The protection of the adder ALU is secured when the CCA
successfully updates the correct coordination pattern.

3.4. LUT example

We illustrate a more complex example by encoding a LUT
memory map for a real state machine. In this example, the
state machine behaviour is converted to a LUT so that the data
becomes easier to protect. We are then able to apply the
benefits of CCA pattern reconstruction to protect the LUT. In
this case each 8-bit binary LUT entry is converted into
segmented entries of the form: [pair, tuple, tuple], which are
then converted into integer form. This form of segmentation is
useful when the LUT entry is naturally split into different data
field (such as pointer address, input comparison bits, output
assert bits), each of which is protected by a CCA cell. There is
no functional logic mapping in this example; the CCA output
directly corresponds to the LUT entries. The resulting target
pattern can be seen in Fig. 6, along with the initial iteration
result. Fig. 7 shows convergence towards the target pattern
after 31 iterations. This example requires 102 rules and 39
mapped states, illustrating the increasing memory overhead
incurred for more complex examples.

3.5. Fault injection

The initial random CCA state represents a scrambling of
every cell internal state, which may occur at power on (before
Reset) or after a significant non-persistent SEU capable of
affecting every cell. We can further illustrate the effect of
single cell upsets and recovery by initiating fault injection. In
Fig 8. a fault is injected into cell (2,2) such that the cell state
increments from ‘4’ to ‘5’, This could be as a result of a logic
‘stuck at’ error. The pattern is reconstructed once the fault
clears (Fig. 9). Since the cells refresh in a fixed diagonal
direction, an erroneous cell near the upper left will cause
significant damage to the CCA pattern until the fault clears.

Any number of faults can be simulated via fault masking
process implemented in MATLAB.

Fig. 6. CCA implementation of 29x3 LUT memory map showing (left to
right) Initial random CCA configuration, LUT memory map, internal CCA

state after 1 iteration, corresponding CCA mapped output.

4. FPGA Implementation

In order to produce a functional FPGA demonstrator each
CCA cell was modelled using VDHL and schematically laid
out using Xilinx IDE. The CCA cell comprises a rule LUT
and a functional LUT and I/O logic. This can usefully be
described as a VHDL entity that describes the behaviour of
the cell. A VHDL test bench is used to test a 16 cell array and
various rule sets and to check the functional logic behaviour.
The top level schematic is shown in Fig. 10, where the
arrangement of 16 cells can be seen. Boundary values are
supplied by direct integer definitions at schematic level.

A touch screen is under development to provide a
convenient method of interacting with the CCA such that
faults may be injected to disturb the correct states of cells.
When faults are induced the CA then automatically
reassembles the correct global state. Key design decisions can
be evaluated, in particular the suitability of Commercial off
the shelf (COTS) reconfigurable hardware, logic design and
recovery mechanism.

377 Richard McWilliam et al. / Procedia CIRP 11 (2013) 373 – 378

Fig. 7. CCA convergence to LUT memory map after 10 and 31 iterations.

Fig. 8. Result of fault injection for CCA adder. (a) intended internal CCA
pattern; (b) resulting internal pattern with fault (circled); (c) target pattern; (d)

actual output pattern.

Fig. 9. Recovery of CCA internal state. (a) target pattern; (b-d) successive
recovery of target pattern.

Fig. 10. Schematic layout for FPGA design. Each block contains VHDL
description of a cell.

5. Discussion and conclusions

The current scope of this work is limited to non-persistent
soft errors; however we are investigating how dynamic CCA
rules or boundary vectors enable reconfiguration in the event
of persistent soft errors or even hard fault situations. For
example, the redundant cells seen in Fig. 5 are available for
assignment but the CCA rule set cannot yet perform

378 Richard McWilliam et al. / Procedia CIRP 11 (2013) 373 – 378

reconfiguration steps in an autonomous fashion. This problem
has been investigated by others for multi-core processors [9],
however the rule sets used were not convergent. This means
that, whilst the dynamic CA was able to generate new
configurations in the event of a processor halt event
(including inter-processor dependencies), it does not offer
continuous self-recovery for temporary errors in the same
way. This is due to the vastly more complex nature of
processors in comparison to simple functional logic meaning
that the processor state cannot be mapped to a simple
functional LUT.

Further FPGA testing will include hardware fault injection
and removal of the Clk signal to investigate asynchronous
operation, where the precise updating of inter-cell signals will
depend upon interconnection delays and therefore the unique
RTL synthesis.

We observed that soft errors occurring within the CCA are
mitigated by inter-cellular signals, which reconstruct the
correct pattern when the fault cell recovers. However,
significant damage occurs when the faulty cell is near the top
left corner. We are investigating alternative strategies that
vary the direction of cell update in order to locate the position
of the fault cell and potentially quarantine its state until it
recovers normal operation, thus limiting the extent of damage.

Acknowledgements

This work was carried out with the support of the EPSRC
Innovative Centre for Through-life Engineering Services.

References

[1] D. Jones, R. McWilliam, A. Purvis, “Designing convergent cellular
automata.,” Biosystems, vol. 96, no. 1, pp. 80–85, 2008.

[2] R. McWilliam, A. Purvis, D. Jones, P. Schiefer, R. Frei, A. Tiwari, M.
Zhu, “Self–repairing Electronic Logic Units Based on Convergent
Cellular Automata,” in 1st International Conference on Through–life
Engineering Services, Shrivenham, England, pp. 353–360, 2012.

[3] M. Nicolaidis, Soft Errors in Modern Electronic Systems. Springer,
2010.

[4] A. R. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, and S.-L. Lu,
“Adaptive Cache Design to Enable Reliable Low-Voltage Operation,”
Ieee Trans. Comput., vol. 60, no. 1, pp. 50–63, 2011.

[5] J. Han, J. Gao, P. Jonker, Y. Qi, and J. A. B. Fortes, “Toward hardware-
redundant, fault-tolerant logic for nanoelectronics,” Ieee Des. Test
Comput., vol. 22, no. 4, pp. 328 – 339, 2005.

[6] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Autom. Stud., vol. 34, pp. 43–
98, 1956.

[7] P. A. Jensen, “Quadded NOR Logic,” Ieee Trans. Reliab., vol. R-12,
no. 3, pp. 22 –31, 1963.

[8] A. J. Greensted and A. M. Tyrrell, “RISA: A Hardware Platform for
Evolutionary Design,” in IEEE Workshop on Evolvable and Adaptive
Hardware, 2007. WEAH 2007, pp. 1 –7, 2007

[9] M. Kawanaka, M. Tsunoyama, and S. Naito, “A fault-tolerant parallel
processor modeled by a two-dimensional linear cellular automaton,”
Syst. Comput. Jpn., vol. 25, no. 6, pp. 1–11, 2007.

