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Abstract 

This paper presents work in progress towards the demonstration of a self-restoring arithmetic logic unit (ALU) based on 
convergent cellular automata (CCA). The need for fault tolerance and self-recovery strategies for electronic circuits is discussed, 
with particular focus on well-known redundancy and reconfiguration approaches. Our CCA fault tolerant strategy is 
demonstrated via MATLAB simulation using fault injection. The combined roles of the CCA as coordination layer and 
restoration agent are discussed. Work in progress towards a hardware demonstration using VHDL description and FPGA 
hardware is also described. 
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1. Introduction 

We have previously demonstrated the composition of the 
convergent cellular automata (CCA) and considerations for its 
implementation for reliable electronics [1][2]. Here the 
standard cellular automata (CA) is modified by a set of 
constraints that initiate convergent behaviour i.e., that cause 
the CA to recursively reassemble a predetermined pattern. A 
CCA comprises memory in the form of look up tables (LUTs) 
for storing the rule set and a state machine to govern the cell 
behavior.  

We consider the CCA as performing a coordination role to 
arrange functional logic to form the required I/O task. 
Associated with this are two sets of I/O: one for 
communicating CCA states between neighbouring cells and a 
second set for passing data between the functional logic.  
Once the rule set is programmed, the CCA begins 
coordination of its internal states and simultaneously the 
functional logic via unique mappings. This self-organisation 
occurs continually and is beneficial because the CCA is able 

to restore the correct logical functionality in the event of non –
persistent soft errors without requiring external intervention. 

We describe construction of a demonstration unit that uses 
a convergent rule set to create a robust full adder arithmetic 
logic unit (ALU) and memory mapped state machine. Progress 
towards a hardware demonstration unit is also presented. 

 The future scalability of this approach is an important 
consideration, particularly with regard to hardware platforms, 
where limitations of the field programmable gate array 
(FPGA) platform must be understood. In particular there is 
need for more efficient mapping of the dynamic functional 
logic to hardware and for run-time alterations to the rule set. 
We also discuss the more challenging problem of persistent 
soft errors and hard errors, where one or more cells do not 
recover functionality, in which case a reconfiguration scheme 
is proposed which requires the development of a more 
advanced CA behaviour. 
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2. Fault tolerance and self-recovery in electronics 

In this section we introduce the somewhat broad categories 
of redundancy and reconfiguration applied to self-recovering 
electronics. The scope of this work is currently limited to non-
persistent soft errors typically resulting from single event 
upsets (SEUs), for which there are many responsible 
mechanisms. External triggers include high energy cosmic 
rays [3], thermal fluctuations and electromagnetic 
interference. Internally induced SEUs arise from noise present 
in semiconductor junctions and design flaws. Special 
constraints such as minimal voltage, a common requirement 
for modern ICs, tend to exacerbate susceptibility to external 
and internal SEUs [4]. The general trend to smaller feature 
size is also directly linked to SEU susceptibility and is of 
major concern for next-generation nanoscale electronics [5]. 

2.1. Fault tolerance via redundancy 

Fault tolerant methods are often based on the concept of 
adding more elements to the system than strictly necessary in 
such a way that the system acquires the ability to ‘absorb’ 
fault events. Here we consider fixed elements introduced at 
the point of fabrication. Hence it is usually possible to 
calculate with high accuracy the predicted response of the 
resulting redundant circuit in the event of a restricted set of 
fault events. Sometimes statistical simulation must be used to 
form an accurate model of the circuit robustness. The majority 
of such mechanisms can be related to the early work of Von 
Neumann [6] involving unreliable components. Von 
Neumann argued that, in many situations, a reliable system 
can be constructed from components that are not 100% 
reliable, but whose individual reliabilities are reasonably high. 
This lead to the development of many practical 
configurations, including modular redundancy, signal 
interweaving and quadded logic [7].  

2.2. Fault tolerance via reconfiguration 

An alternative approach distinct from redundancy 
approaches is that of active reconfiguration, in which the 
circuit is altered in the event of external events such as an 
SEU. This requires additional memory and switching 
elements repeated throughout the design. Reconfiguration is 
arguably closest in principle to the concept of self-repair since 
it enables proactive steps to be taken in response to SEU or 
other malfunction events in an effort to re-establish operation. 
Of course this may occur under the auspices of external 
control from a global agent or high system level, in which 
case the qualifier self no longer applies.  

Although desirable in terms of the flexibility offered by re-
routing or re-programming logic, this approach tends to 
require high complexity due to the dynamic range of possible 
configurations. A centralised control entity is usually 
employed to control the overall configuration. A common 
example is the FPGA, which is configurable via programming 
bitstream. The bitstream defines how the FPGA’s structured 
logic and embedded static random access memory (SRAM) 
are arranged in order to implement combinatorial and 

sequential logic operations, including LUTs (often defined as 
register transfer level (RTL) design). While this platform 
offers re-configurability, it is not generally possible to alter 
the configuration at run-time, except for limited cases and 
high end FPGA chips. Nevertheless, we use an FGPA here as 
a convenient programmable platform with which to 
demonstrate our CCA implementation. 

Alternative platforms exist, which aim to exploit regular 
architectures based on cellular-inspired concepts and local 
neighbor interactions (for example, see [8]). The associated 
hardware is similar to an FPGA however the design is able to 
provide more sophisticated run-time localised reconfiguration. 

3. CCA Design and simulation 

Our goal is to demonstrate a self-recovering electronic 
circuit using a data protection scheme encoded within a CA, 
which then controls a functional layer of logic gates also 
arranged in cellular fashion. 

3.1. Cellular automata as a data protection scheme 

The CA is composed of a regular array of identical 
electronic cells. Each cell behaves essentially as a simple state 
machine driven by two inputs, a rule LUT and two outputs. 
The state transitions are illustrated in Fig. 1, where the idle 
state is interrupted by either Reset or Clk transition. A further 
LUT is present for output mapping and an output logic whose 
state is determined by the current cell state. 

The CCA is formed by applying key restrictions to the CA: 
 

 boundary cells are placed along the top and left hand sides 
of the CA, 

 inter-cellular data flow is restricted along a single diagonal, 
 the rule set is derived analytically and guarantees 

convergent behaviour. 

3.2. Rule derivation and simulation  

The method used to calculate the rule set is described in 
[1]. The required pattern expected to be generated by the CCA 
is fed into the rule generation algorithm, resulting in a set of 
rules and corresponding state mapping table. A MATLAB 
script is then used to check CCA pattern convergence, an 
example of which is shown in Fig. 2. 
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Fig. 1. State transition diagram for a CCA cell, showing Clk and Reset 
actions. The states shown refer to: Idle – wait for next trigger; Initialise cell – 

clear the cell state and functional logic to a predetermined initial state; 
Update state – change the cell internal state depending on the input values; 

Map state – update the mapped output state of the cell; Select function – 
program the functional logic layer depending on the mapped cell output. 

 

 

Fig. 2. Example of CCA simulation after first iteration. (a) initial randomised 
state of CCA (boundary cells denoted by “b=0” labels); (b) internal cell states 
after first iteration; (c) Target pattern used to derive rule set; (d) CCA output 

after mapping of output states according to state mapping table showing 
number of mismatches in comparison to target pattern. 

After the first iteration, only 5 cells match the target 
pattern (cf. Fig. 2 (c) & (d)). After successive iterations, the 
correct pattern emerges as shown in Figs. 3(d) and Fig. 4(d). 
The CCA pattern converges upon a full refresh of all 
diagonals from top left to bottom right, hence the number of 
iterations required is r(c-1) where r and c are the number of 
rows and columns in the CCA respectively. 

 

 

Fig. 3. CCA state after 4 iterations, showing reduction of errors. See Fig. 2 for 
key. 

 

 

Fig. 4. CCA state after 7 iterations, showing convergence to correct pattern. 
See Fig. 2 for key. 

3.3. Adder example 

The example shown in Figs 2-4 was intended to coordinate 
an adder ALU, hence the target pattern can be mapped to a 
functional layer that implements the adder. This mapping is 
illustrated in Fig. 5. The CCA coordinating layer requires 20 
rules and 8 state mappings (which comprises 6 original states 
and 2 additional states) which represents a modest rule set 
size. The cells having state ‘6’ are in fact unallocated and may 
be used for fault-tolerant reconfiguration in future 
implementations. 
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Fig. 5. Functional logic mapping for adder ALU (corresponding CCA states 
shown in square brackets). 

The protection of the adder ALU is secured when the CCA 
successfully updates the correct coordination pattern. 

3.4. LUT example 

We illustrate a more complex example by encoding a LUT 
memory map for a real state machine. In this example, the 
state machine behaviour is converted to a LUT so that the data 
becomes easier to protect. We are then able to apply the 
benefits of CCA pattern reconstruction to protect the LUT. In 
this case each 8-bit binary LUT entry is converted into 
segmented entries of the form: [pair, tuple, tuple], which are 
then converted into integer form. This form of segmentation is 
useful when the LUT entry is naturally split into different data 
field (such as pointer address, input comparison bits, output 
assert bits), each of which is protected by a CCA cell. There is 
no functional logic mapping in this example; the CCA output 
directly corresponds to the LUT entries. The resulting target 
pattern can be seen in Fig. 6, along with the initial iteration 
result. Fig. 7 shows convergence towards the target pattern 
after 31 iterations. This example requires 102 rules and 39 
mapped states, illustrating the increasing memory overhead 
incurred for more complex examples. 

3.5. Fault injection 

The initial random CCA state represents a scrambling of 
every cell internal state, which may occur at power on (before 
Reset) or after a significant non-persistent SEU capable of 
affecting every cell. We can further illustrate the effect of 
single cell upsets and recovery by initiating fault injection.  In 
Fig 8. a fault is injected into cell (2,2) such that the cell state 
increments from ‘4’ to ‘5’, This could be as a result of a logic 
‘stuck at’ error. The pattern is reconstructed once the fault 
clears (Fig. 9). Since the cells refresh in a fixed diagonal 
direction, an erroneous cell near the upper left will cause 
significant damage to the CCA pattern until the fault clears. 

Any number of faults can be simulated via fault masking 
process implemented in MATLAB. 

 

Fig. 6. CCA implementation of 29x3 LUT memory map showing (left to 
right) Initial random CCA configuration, LUT memory map, internal CCA 

state after 1 iteration, corresponding CCA mapped output.  

4. FPGA Implementation 

In order to produce a functional FPGA demonstrator each 
CCA cell was modelled using VDHL and schematically laid 
out using Xilinx IDE. The CCA cell comprises a rule LUT 
and a functional LUT and I/O logic. This can usefully be 
described as a VHDL entity that describes the behaviour of 
the cell. A VHDL test bench is used to test a 16 cell array and 
various rule sets and to check the functional logic behaviour. 
The top level schematic is shown in Fig. 10, where the 
arrangement of 16 cells can be seen. Boundary values are 
supplied by direct integer definitions at schematic level. 

A touch screen is under development to provide a 
convenient method of interacting with the CCA such that 
faults may be injected to disturb the correct states of cells. 
When faults are induced the CA then automatically 
reassembles the correct global state. Key design decisions can 
be evaluated, in particular the suitability of Commercial off 
the shelf (COTS) reconfigurable hardware, logic design and 
recovery mechanism.  
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Fig. 7. CCA convergence to LUT memory map after 10 and 31 iterations. 

 

 

Fig. 8. Result of fault injection for CCA adder. (a) intended internal CCA 
pattern; (b) resulting internal pattern with fault (circled); (c) target pattern; (d) 

actual output pattern. 

 

 

Fig. 9. Recovery of CCA internal state. (a) target pattern; (b-d) successive 
recovery of target pattern. 

 

Fig. 10. Schematic layout for FPGA design. Each block contains VHDL 
description of a cell. 

5. Discussion and conclusions 

The current scope of this work is limited to non-persistent 
soft errors; however we are investigating how dynamic CCA 
rules or boundary vectors enable reconfiguration in the event 
of persistent soft errors or even hard fault situations. For 
example, the redundant cells seen in Fig. 5 are available for 
assignment but the CCA rule set cannot yet perform 
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reconfiguration steps in an autonomous fashion. This problem 
has been investigated by others for multi-core processors [9], 
however the rule sets used were not convergent. This means 
that, whilst the dynamic CA was able to generate new 
configurations in the event of a processor halt event 
(including inter-processor dependencies), it does not offer 
continuous self-recovery for temporary errors in the same 
way. This is due to the vastly more complex nature of 
processors in comparison to simple functional logic meaning 
that the processor state cannot be mapped to a simple 
functional LUT. 

Further FPGA testing will include hardware fault injection 
and removal of the Clk signal to investigate asynchronous 
operation, where the precise updating of inter-cell signals will 
depend upon interconnection delays and therefore the unique 
RTL synthesis. 

We observed that soft errors occurring within the CCA are 
mitigated by inter-cellular signals, which reconstruct the 
correct pattern when the fault cell recovers. However, 
significant damage occurs when the faulty cell is near the top 
left corner. We are investigating alternative strategies that 
vary the direction of cell update in order to locate the position 
of the fault cell and potentially quarantine its state until it 
recovers normal operation, thus limiting the extent of damage. 
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