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Abstract

The survival signature has recently been presented as an attractive concept
to aid quantification of system reliability. It has similar characteristics as
the system signature, which is well established, but contrary to the latter
it is easily applicable to systems with multiple types of components. We
present an introductory overview of the survival signature together with new
results to aid computation. We develop nonparametric predictive inference
for system reliability using the survival signature. The focus is on the failure
time of a system, given failure times of tested components of the same types
as used in the system.
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survival functions, nonparametric predictive inference, signature, survival
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1. Introduction

In recent decades, the signature has become a popular tool for quantifying
reliability of coherent systems consisting of components with exchangeable
random failure times [36], where in the literature the assumption of exchange-
ability [25] is often replaced by the stronger assumption of independent and
identically distributed (iid) component failure times. The signature can be
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used to quantify aspects of reliability of a system such as its failure time
distribution. An attractive feature of describing system structures through
signatures is the possibility to compare the reliability of different systems
based on stochastic ordering of their signatures, as long as the failure times
of all components in these systems are exchangeable [33]. A detailed intro-
duction and overview to system signatures is presented by Samaniego [36],
some recent advances are reviewed by Eryilmaz [26].

Consider a system consisting of m components with exchangeable failure
times. Let the random failure time of the system be TS, and let Tj:m be the j-
th order statistic of the m random component failure times for j = 1, . . . ,m,
with T1:m ≤ T2:m ≤ . . . ≤ Tm:m. The system’s signature is the m-vector q
with j-th component

qj = P (TS = Tj:m) (1)

so qj is the probability that the system failure occurs at the moment of
the j-th component failure. It is natural to assume that

∑m
j=1 qj = 1, so the

system functions if all components function, has failed if all components have
failed, and system failure can only occur at times of component failures. The
survival function of the system failure time can be derived by

P (TS > t) =
m∑
j=1

qjP (Tj:m > t) (2)

If the components’ failure times are iid with known cumulative distribution
function F (t), then

P (Tj:m > t) =
m∑

r=m−j+1

(
m

r

)
[1− F (t)]r[F (t)]m−r (3)

The essential property of the system signature is that it enables infor-
mation of the system structure to be fully taken into account through the
signature, and this is separated from information about the random fail-
ure times of the components. The main disadvantage of system signatures,
however, is that it becomes extremely complicated, and is indeed effectively
impossible, to keep this separation when generalizing the concept to systems
with multiple types of components, which is crucial for a practically applica-
ble theory as most real-world systems consist of more than a single type of
components [16, 34]. Such a generalization requires probabilities for order-
ings of order statistics from different probability distributions, corresponding
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to the different types of components, which is difficult to implement. As
an alternative to the signature, Coolen and Coolen-Maturi [16] introduced
the survival signature. For systems with just one type of components, the
survival signature is closely related to the signature, but the survival signa-
ture can be defined for, and easily applied to, systems with multiple types of
components.

Section 2 of this paper provides a brief introductory overview of the sur-
vival signature. In Section 3 we present some new results that are of use for
computation of the survival signature. In Section 4 we present nonparametric
predictive inference for the system failure time, using the survival signature
and data existing of failure times of components of the same types as those
in the system. Section 5 illustrates these results via examples, where also the
use of partially known survival signatures is discussed. Section 6 concludes
the paper with a discussion of some related research challenges.

2. The survival signature

For a system with m components, we define the state vector x ∈ {0, 1}m
with entry xi = 1 if the ith component functions and xi = 0 if not. The
labelling of the components is arbitrary but must be fixed to define x. The
structure function φ : {0, 1}m → {0, 1}, defined for all possible x, takes the
value 1 if the system functions and 0 if the system does not function for state
vector x. In this paper, we restrict attention to coherent systems, which
means that φ(x) is not decreasing in any of the components of x, so system
functioning cannot be improved by worse performance of one or more of its
components. We further assume that φ(0) = 0 and φ(1) = 1, so the system
fails if all its components fail and it functions if all its components function.
These assumptions could be relaxed but are reasonable for most practical
systems, and they simplify the presentation in this paper.

Consider a system with K ≥ 2 types of components, with mk components
of type k ∈ {1, 2, . . . , K} and

∑K
k=1mk = m. Assume that the random

failure times of components of the same type are exchangeable [25], while
full independence is assumed for the random failure times of components
of different types. Due to the arbitrary ordering of the components in the
state vector, components of the same type can be grouped together, leading
to a state vector that can be written as x = (x1, x2, . . . , xK), with xk =

3



(xk1, x
k
2, . . . , x

k
mk

) the sub-vector representing the states of the components of
type k.

Coolen and Coolen-Maturi [16] introduced the survival signature for such
a system, denoted by Φ(l1, l2, . . . , lK), with lk = 0, 1, . . . ,mk for k = 1, . . . , K,
which is defined to be the probability that the system functions given that
precisely lk of itsmk components of type k function, for each k ∈ {1, 2, . . . , K}.

There are
(
mk

lk

)
state vectors xk with

∑mk

i=1 x
k
i = lk; let Sk

l denote the
set of these state vectors for components of type k and let Sl1,...,lK denote
the set of all state vectors for the whole system for which

∑mk

i=1 x
k
i = lk,

k = 1, 2, . . . , K. Due to the exchangeability assumption for the failure times
of the mk components of type k, all the state vectors xk ∈ Sk

l are equally
likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (4)

Let Ck(t) ∈ {0, 1, . . . ,mk} denote the number of components of type k in
the system which function at time t > 0. The probability that the system
functions at time t > 0 is

P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P (
K⋂
k=1

{Ck(t) = lk}) (5)

Assumed independence of the failure times of components of different types
leads to, for lk ∈ {0, 1, . . . ,mk} for each k ∈ {1, . . . , K},

P (
K⋂
k=1

{Ck(t) = lk}) =
K∏
k=1

P (Ck(t) = lk)

The additional assumption of iid failures times of components of the same
type with known CDF Fk(t) for type k leads to

P (
K⋂
k=1

{Ck(t) = lk}) =
K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

For the special case of a system consisting of only a single type of com-
ponents, so with all m components exchangeable and K = 1 in the notation
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above, the survival signature is linked to the signature through the following
equality [16]

Φ(l1) =
m∑

j=m−l1+1

qj (6)

This is logical, as the right-hand side is simply the probability that the system
has not yet failed when l1 of its m components function. This equality
implies that, for this rather restrictive situation, the survival signature and
the signature are effectively the same with just the order of summation in
Equation (2) together with Equation (3) exchanged. This implies that all
attractive properties of the signature also hold for the method using the
survival signature [16], yet the survival signature is also easy to apply for
systems with multiple types of components, and one could argue that it is
easier to interpret than the signature.

The survival signature Φ(l1, . . . , lK) must be derived for all
∏K

k=1(mk +1)
different (l1, . . . , lK). This information is anyhow required if one wishes to
assess a system’s reliability. The survival signature only has to be calculated
once for any system, similar to the signature for systems with a single type of
components. The main advantage of Equation (5) is that, as for the signature
in case of systems with only one type of components, the information about
system structure is fully separated from the information about the compo-
nents’ failure times. In Section 5 several examples of survival signatures are
presented.

Coolen and Coolen-Maturi [16] presented two ways for comparison of
reliability of two systems using the survival signature, but only restricted
to systems with one type of components. If the two systems have the same
single type of components, it might be possible to base comparison directly
on the entries of the survival signatures, because if one dominates the other it
directly corresponds to stochastic dominance of the corresponding signatures.
If these systems do not have the same number of components, it is possible
to extend the survival signature for the system with the smallest number of
components to create a survival signature with the same number of entries
as for the larger system, while still representing the same system failure time
distribution. This is in line with a well-known method for the signature
[36]. Perhaps a more attractive comparison of the random failure times TA
and TB of systems A and B is by considering the probability for events
TA > TB + δ, which as function of δ allow detailed insight into the difference
between these failure times. This can be used whether or not the two systems
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have the same single type of components. It is relatively straightforward to
generalize these two methods to compare two systems with multiple types
of components. It follows the same reasoning and main mathematical steps
as the results derived by Coolen and Coolen-Maturi [16], just with more
complicated notation due to multiple types of components. We do not present
this in detail here.

3. New results for survival signatures

Computation of the survival signature is complicated for systems of re-
alistic size. In this section we briefly present two results that can simplify
computation in specific situations. It may not be needed to compute a sys-
tem’s survival signature exactly for a specific inference, as bounds resulting
from partial computations may be sufficient, similar to the use of bounds for
signatures as presented by Al-nefaiee and Coolen [5]. As the survival signa-
ture of a coherent system is non-decreasing in all its components, the use of
such bounds is pretty straightforward; we illustrate this briefly in Example
5 in Section 5, for more details see Al-nefaiee [4].

Gaofeng et al. [29] showed how the signature of a system with one type
of components can be derived from the signatures of two subsystems, if the
system consists of these two subsystems in either series or parallel configu-
ration. Repeated application of their method enables quite straightforward
computation of the signature of any system consisting of any number of sub-
systems as long as the overall structure can be created through a sequence of
series or parallel configurations. The same idea can be used to compute the
survival signature of a system consisting of two subsystems in either series
or parallel configuration; by repeated use this enables the survival signatures
for quite a substantial range of systems to be computed relatively easily.

Suppose that a system consists of 2 subsystems for which the survival
signatures are known. Let the system consist of K ≥ 1 types of components,
with mk components of type k, for k = 1, . . . , K, of which mr

k ≥ 0 are in
subsystem r, for r = 1, 2. Let subsystem r consist in total of mr compo-
nents, so mr =

∑K
k=1m

r
k. We denote the survival signature for subsystem

r by Φr(lr1, l
r
2, . . . , l

r
K), for lrk = 0, 1, . . . ,mr

k. For ease of notation, we define
Φr(lr1, l

r
2, . . . , l

r
K) = 0 if lrk > mr

k for any k ∈ {1, . . . , K}. If the two subsys-
tems are in series configuration, then the survival signature of the system
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can be derived, for lk ∈ {0, 1, . . . ,mk}, k = 1, . . . , K, by

Φ(l1, . . . , lK) =

l1∑
l11=0

. . .

lK∑
l1K=0

[
Φ1(l11, . . . , l

1
K)Φ2(l1 − l11, . . . , lK − l1K)×

K∏
k=1

(
m1

k

l1k

)(
m2

k

lk − l1k

)(
mk

lk

)−1]
(7)

Similarly, if the two subsystems are in parallel configuration, then the survival
signature of the system can be derived, for lk ∈ {0, 1, . . . ,mk}, k = 1, . . . , K,
by

Φ(l1, . . . , lK) =
l1∑

l11=0

. . .

lK∑
l1K=0

[
{1− (1− Φ1(l11, . . . , l

1
K))(1− Φ2(l1 − l11, . . . , lK − l1K))} ×

K∏
k=1

(
m1

k

l1k

)(
m2

k

lk − l1k

)(
mk

lk

)−1]
(8)

These results follow from straightforward combinatorial arguments, using
the hypergeometric distribution for the probability that precisely l1k of the
lk functioning components of type k are among the m1

k components of this
type in subsystem 1, and the remaining ones are among the m2

k components
of this type in subsystem 2. This computational method will be illustrated
in Example 2 in Section 5.

In many situations where reliability of systems is of interest, activities
such as maintenance or replacement of components are important. If one
component of type k is replaced, the failure time distribution of the new com-
ponent will typically differ from those components in the system that were of
the same type before this replacement (unless the component’s failure time is
assumed to be Exponentially distributed, in which case the replaced compo-
nent might still be considered to be of the same type as before). So, such an
activity will, effectively, imply that there is a new type of component in the
system, say type K+1, and that the number of components of its earlier type
k has been reduced from mk to mk − 1. We now consider the effect of such
a component replacement on the system’s survival signature. We restrict
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attention to replacement of a single component; this can be generalized quite
easily, following the same principles and using the hypergeometric distribu-
tion for the weighting probabilities, to replacement of multiple components
of the same type, while in case of replacement of multiple components of
different types the result below can be used sequentially, for one component
at a time.

Let Φ(l1, . . . , lk−1, lk, lk+1, . . . , lK) be the survival signature for a system
with K types of components, with lk ∈ {0, 1, . . . ,mk} for k = 1, . . . , K.
Now suppose that one component of type k is replaced by a component of
a new type, say type K + 1. This may really be a new type of component,
or just similar to the one that is being replaced but with a different age,
hence its failure time distribution over its remaining time till failure is not
identical to that of the other components in the system. We must calculate
the survival signature of this system with K + 1 types of components, which
we denote by Φ̃(l1 . . . , lk−1, l̃k, lk+1, . . . , lK , l̃K+1), where the tilde is added to
emphasize a change compared to the survival signature of this system before
the component was replaced.

The numbers mj of components of types j 6= k remain the same as before
the replacement, and now there are m̃k = mk − 1 components of type k and
m̃K+1 = 1 component of the new type K + 1. So the new survival signature
Φ̃(l1 . . . , lk−1, l̃k, lk+1, . . . , lK , l̃K+1) must be specified for lj ∈ {0, 1, . . . ,mj}
for j ∈ {1, . . . , k − 1, k + 1, . . . , K}, l̃k ∈ {0, 1, . . . , m̃k} and l̃K+1 ∈ {0, 1}.
This specification is simplified by the following relationship,

Φ(l1, . . . , lk−1, lk, lk+1, . . . , lK) =

lk
mk

× Φ̃(l1 . . . , lk−1, lk − 1, lk+1, . . . , lK , 1) +

mk − lk
mk

× Φ̃(l1 . . . , lk−1, lk, lk+1, . . . , lK , 0) (9)

The proof of Equation (9) is based on the probability that the replaced
component would be one of the lk functioning ones out of the mk components
of type k in the original system, or one of the mk − lk non-functioning ones.
Hence, if one has the fully specified original survival signature Φ available, the
computations required in order to fully specify the new survival signature Φ̃
can, for example, be restricted to computing the values of Φ̃(l1 . . . , lk−1, lk −
1, lk+1, . . . , lK , 1), from which the values of Φ̃(l1 . . . , lk−1, lk, lk+1, . . . , lK , 0)
follow by Equation (9), and together these fully specify Φ̃. While this does
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require new computations, the overall system structure remains the same,
and attention can now be restricted to lk − 1 components of type k, with
the replaced component assumed to be functioning. So the computations to
derive Φ̃ are similar to those for Φ, which would already have been performed,
but are actually easier as one component can be assumed to function. This
is illustrated in Example 3 in Section 5.

4. Nonparametric predictive inference for system failure time

This section presents the use of the survival signature in nonparametric
predictive inference (NPI) for the system failure time. NPI is a statistical
method which gives a direct conditional probability for one or more future
observable random quantities, conditional on observed values of related ran-
dom quantities [8, 12, 13]. NPI can be considered suitable if there is hardly
any knowledge about the random quantity of interest, other than the data
which we assume consist of n observations, or if one does not want to use
such further information, e.g. to study effects of additional assumptions un-
derlying other statistical methods. NPI uses lower and upper probabilities,
also known as imprecise probabilities, to quantify uncertainty [9, 19, 39, 40]
and has strong consistency properties from frequentist statistics perspective
[8, 13]. NPI provides a solution to some explicit goals formulated for ob-
jective (Bayesian) inference, which cannot be obtained when using precise
probabilities [12], and it never leads to results that are in conflict with infer-
ences based on empirical probabilities. Imprecise probabilities provide many
exciting opportunities for reliability quantification [20, 37, 38]. The NPI
method has already been used for system reliability [3, 14, 23, 31], but only
for systems with quite restricted structures. NPI for system reliability using
the signature has also been presented, for systems consisting of only one type
of components [4, 5, 15]. NPI has also been presented for a variety of other
problems in operational research and statistics, including predictive analysis
for queueing problems [17], replacement problems [24], decision making under
uncertain utilities [30] and classification with decision trees using maximum
entropy [1, 2] (see also www.npi-statistics.com).

We now present NPI lower and upper survival functions for the failure
time TS of a system consisting of multiple types of components, using the
system signature combined with NPI for Bernoulli data [11]. This enables the
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NPI method to be applied to, in principle, all systems, so this methodology
widely generalizes the earlier results on NPI for system reliability. The failure
times of components of different types are assumed to be independent. NPI is
used for learning about the components of a specific type in the system, from
data consisting of failure times for components that are exchangeable with
these. We assume therefore that such data are available, for example resulting
from testing or previous use of such components. For k ∈ {1, . . . , K}, let nk

denote the number of components of type k for which test failure data are
available, and let sk(t) denote the number of these components which still
function at time t. Throughout this paper we assume that the test data do
not contain censored observations, a brief comment about this is included in
Section 6.

The NPI lower survival function is derived as follows. Remember that
Ck(t) denotes the number of components of type k in the system which
function at time t, where it is assumed that failure ends the functioning of
a component and it is not repaired or replaced. Under the assumptions for
the NPI approach [11], we derive the following lower bound for the survival
function

P (TS > t) ≥
m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, · · · , lK)
K∏
k=1

D(Ck(t) = lk)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t)− 1 + lk
sk(t)− 1

)(
nk − sk(t) +mk − lk

nk − sk(t)

)
In this expression, P denotes the NPI upper probability for Bernoulli data
[11]. For each component type k, the function D ensures that maximum
possible probability, corresponding to NPI for Bernoulli data [11], is assigned
to the event Ck(t) = 0, so D(Ck(t) = 0) = P (Ck(t) = 0). Then, D(Ck(t) = 1)
is defined by putting the maximum possible remaining probability mass, from
the total probability mass available for the event Ck(t) ≤ 1, to the event
Ck(t) = 1. This is achieved by D(Ck(t) = 1) = P (Ck(t) ≤ 1)−P (Ck(t) = 0).
This argument is continued, by assigning for increasing lk the maximum
possible remaining probability mass D(Ck(t) = lk). As the survival signature
is increasing in lk for coherent systems, as assumed in this paper, and the
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resulting D is a precise probability distribution, the right-hand side of the
inequality above is indeed a lower bound and it is the maximum possible
lower bound. As such, it is the NPI lower probability for the event TS > t,
giving the NPI lower survival function for the system failure time (for t > 0)

STS
(t) = P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, · · · , lK)
K∏
k=1

D(Ck(t) = lk) (10)

The corresponding NPI upper survival function for TS is similarly derived,
using the upper bound

P (TS > t) ≤
m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, · · · , lK)
K∏
k=1

D(Ck(t) = lk)

where

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t) + lk
sk(t)

)(
nk − sk(t) +mk − lk − 1

nk − sk(t)

)
In this expression, P denotes the NPI lower probability for Bernoulli data
[11]. This construction ensures that minimum possible weight is given to
small values of Ck(t), resulting in the NPI upper survival function for the
system failure time (for t > 0)

STS
(t) = P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, · · · , lK)
K∏
k=1

D(Ck(t) = lk) (11)

Before illustrating this NPI approach for system reliability with the use
of survival signatures in Examples 4 and 5 in Section 5, it is important to
comment on the special case of systems consisting of only K = 1 type of
components. For such systems, NPI theory for the system survival time
using the signature was presented by Coolen and Al-nefaiee [15]. This used
NPI for future order statistics of real-valued observations [18]. It is not
trivial that this leads to the same inferences as the method using the survival
signature and NPI for Bernoulli quantities [11] as presented in this section.
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1

1 1

2 2

2

Figure 1: System with 2 types of components (Ex. 1)

However, the resulting inferences for such systems, from these two different
NPI approaches, are identical, which is proven in detail by Al-nefaiee [4].

5. Examples

We present five examples involving small system structures, which are
not related to actual physical systems but presented in order to illustrate the
new methods that have been introduced in this paper. These examples also
include some further discussions of aspects of these methods.

Example 1.
Consider the system with K = 2 types of components, types 1 and 2, as
presented in Figure 1. The survival signature for this system is presented
in Table 1, it is easily verified by checking all possible combinations of the
specific components of each type which function or not. We will also use this
system in Examples 3 and 4.
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l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)

0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 4/9
0 3 0 2 3 6/9
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1/9 3 2 1
1 3 3/9 3 3 1

Table 1: Survival signature of the system in Figure 1 (Ex. 1)

Example 2.
We illustrate the method presented in Section 3 to use the survival signatures
of subsystems to compute a system’s survival signature. Consider the system
in Figure 2, which has three subsystems, labelled by A, B and C, and K = 3
types of components. The survival signatures of the three subsystems are
easily derived and presented in Table 2. This table presents the survival
signatures for the subsystems as functions of the numbers of components of
each of these three types, even if not all types of components occur in the
subsystem, which is in line with the notation introduced in Section 3.

We first use Equation (7) to derive the survival signature for the subsys-
tem which consists of subsystems A and B in series configuration, we refer to
this as subsystem AB. This leads to the survival signature presented in Ta-
ble 3, where apart from Φab(0, 0, 0) = 0 all not presented Φab(lab1 , l

ab
2 , l

ab
3 ) with

lab1 ∈ {0, 1}, lab2 ∈ {0, 1, 2, 3} and lab3 ∈ {0, 1, 2} are equal to 1. We calculate
the survival signature of the entire system by combining the survival signa-
ture Φab for subsystem AB with the survival signature Φc for subsystem C,
using Equation (8). This leads to the system’s survival signature presented
in Table 4, where apart from Φ(0, 0, 0) = 0 all not presented Φ(l1, l2, l3) with
l1 ∈ {0, 1}, l2 ∈ {0, 1, 2, 3, 4} and l3 ∈ {0, 1, 2, 3, 4} are equal to 1. To provide
more insight into the survival signature, the values in this table are given
as fractions that correspond to the number of combinations considered when
deriving these values directly. We will also use this system and its survival
signature in Example 5.
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3 3
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Figure 2: System with 3 types of components (Ex. 2)

Example 3.
To illustrate the effect of component replacement on a system’s survival sig-
nature, as discussed in Section 3, consider again the system discussed in
Example 1, as presented in Figure 1 with the survival signature given in Ta-
ble 1. The numbers of components of types 1 and 2 in the original system are
m1 = 3 and m2 = 3. Assume that one component of type 2 in the original
system is replaced by a component of type 3, leading to the system in Figure
3. The numbers of components of types 1, 2 and 3 in the system after this
component replacement are m1 = 3, m̃2 = 2 and m̃3 = 1. The survival signa-
ture Φ̃ for this system, after the component replacement, is given in Table 5.
It is easy to verify that these values, together with the values of Φ in Table
1, satisfy Equation (9). For example, for l1 = 2 and l2 = 2, this equation
becomes Φ(2, 2) = 2

3
Φ̃(2, 1, 1) + 1

3
Φ̃(2, 2, 0) = 2

3
× 1

2
+ 1

3
× 1

3
= 4

9
. To calculate

Φ̃ in Table 5, we only have to calculate the values of Φ̃(l1, l̃2, 1), as given in
the final column of Table 5. This is easier than the original calculation of Φ
in Table 1, because it concerns the same system structure but with the new
component of type 3 in Figure 3 certainly functioning. Given the fully spec-
ified survival signature Φ of the original system and the values of Φ̃(l1, l̃2, 1),
the values of Φ̃(l1, l̃2, 0) in Table 5 are easily calculated using Equation (9).
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Subsystem A Subsystem B Subsystem C
la1 la2 la3 Φa(la1 , l

a
2 , l

a
3) lb1 lb2 lb3 Φb(lb1, l

b
2, l

b
3) lc1 lc2 lc3 Φc(lc1, l

c
2, l

c
3)

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 2 1 0 0 2 1
1 1 0 1 0 1 0 0 0 1 0 1

0 1 1 1/2 0 1 1 1
0 1 2 1 0 1 2 1
0 2 0 1
0 2 1 1
0 2 2 1

Table 2: Survival signatures of subsystems A, B and C in Figure 2 (Ex. 2)

lab1 lab2 lab3 Φab(lab1 , lab2 , lab3 ) lab1 lab2 lab3 Φ(lab1 , lab2 , lab3 )

0 0 1 0 0 2 2 2/3
0 0 2 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 1 0 1 1 0 0
0 1 2 1/3 1 1 1 1/3
0 2 0 0 1 2 0 1/3
0 2 1 1/3 1 2 1 2/3

Table 3: Survival signature of subsystem AB in Figure 2 (Ex. 2)

Example 4.
To illustrate NPI for the system survival time, as presented in Section 4,
consider again the system from Figure 1 with survival signature given in
Table 1. Suppose that n1 = 2 components exchangeable with those of type 1
and n2 = 2 components exchangeable with those of type 2 were tested. First
suppose that failure times t21 < t11 < t22 < t12 were observed, with tkj the j-th
ordered failure time of a component of type k. The resulting NPI lower and
upper survival functions for the system failure time TS are specified in Table
6, together with the results for the case with the test failure times ordered
as t11 < t21 < t12 < t22.

For the ordering t21 < t11 < t22 < t12, in the first interval in Table 6 we have
not yet seen a failure in the test data, so the NPI upper probability that the
system will function is equal to one. In the second interval, one failure of type
2 has occurred but we do not have any evidence from the data against the
possibility that a component of type 1 will certainly function at times in this
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l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

0 0 1 0 0 2 3 22/24
0 0 2 1/6 1 0 0 0
0 0 3 1/2 1 0 1 0
0 1 0 1/4 1 0 2 2/6
0 1 1 1/4 1 1 0 1/4
0 1 2 10/24 1 1 1 6/16
0 1 3 12/16 1 1 2 16/24
0 2 0 3/6 1 2 0 4/6
0 2 1 14/24 1 2 1 18/24
0 2 2 27/36 1 2 2 32/36

Table 4: Survival signature of the system in Figure 2 (Ex. 2)

interval, so the NPI upper probability remains one. In the fourth interval,
both type 2 components have failed but only one component of type 1 has
failed. In this interval, to consider the lower survival function the system
is effectively reduced to a series system consisting of three components of
type 1, with one ‘success’ and one ‘failure’ as data, denoted by (2, 1). As
such a series system only functions if all three components function, the
NPI lower survival function within this fourth interval is equal to STS

(t) =
1
3
× 2

4
× 3

5
= 0.100, which follows by sequential reasoning, using that, based

on n observations consisting of s successes and n−s failures, denoted as data
(n, s), the NPI lower probability for the next observation to be a success is
equal to s/(n+ 1) [11]. The NPI lower probability for the first component to
function, given test data (2, 1), is equal to 1/3. Then the second component is
considered, conditional on the first component functioning, which combines
with the test data to two out of three components observed (or assumed)
to be functioning, so combined data (3, 2), hence this second component
will also function with NPI lower probability 2/4. Similarly, the NPI lower
probability for the third component to function, conditional on functioning
of the first two components in the system, so with combined data (4, 3), is
equal to 3/5. In the final interval, we are beyond the failure times of all the
tested components, so we no longer have evidence in favour of the system
to function, so STS

(t) = 0, but the system might of course still function as

reflected by STS
(t) = 0.148.

For the second case in Table 6, with data ordering t11 < t21 < t12 < t22, we
have STS

(t) = 0.667 in the second interval, where one failure of type 1 has
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2 3
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Figure 3: System with 3 types of components (Ex. 3)

occurred in the test data. In the fourth interval, both tested components of
type 1 have failed, leading to STS

(t) = 0. Both of these values are directly
related to the required functioning of the left-most component in Figure 1.

Example 5.
For the system in Figure 2, the survival signature Φ(l1, l2, l3) was specified,
for all l1 ∈ {0, 1} and l2, l3 ∈ {0, 1, 2, 3, 4}, in Table 4. While this is still a
small system, computation of the survival signature is feasible, either via the
method illustrated in Example 2 or directly, although the number of com-
binations to be considered is already substantial. This raises the question
whether or not it is necessary to calculate the survival signature entirely.
Of course, as availability of the exact survival signature is convenient for
reliability quantification, it is the ideal scenario. However, based on partial
information, e.g. following from checking only a subset of all combinations
of functioning and not functioning components, one can derive bounds for
quantities of interest. If such bounds suffice for a specific inferential question,
then of course one would not need to compute the survival signature further.
This is a straightforward idea, which was also explored by Al-nefaiee and
Coolen [5] for system signatures. Given the monotonicity of the survival sig-
nature in each of its components for coherent systems, working with bounds
for it is straightforward as long as the inference of interest is monotone as
function of the survival signature. If interest is in (NPI lower and upper)
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l1 l̃2 l̃3 Φ̃(l1, l̃2, l̃3) l1 l̃2 l̃3 Φ̃(l1, l̃2, l̃3)

0 0 0 0 0 0 1 0
0 1 0 0 0 1 1 0
0 2 0 0 0 2 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 1 1 1/6
1 2 0 0 1 2 1 1/3
2 0 0 0 2 0 1 0
2 1 0 0 2 1 1 1/2
2 2 0 1/3 2 2 1 2/3
3 0 0 1 3 0 1 1
3 1 0 1 3 1 1 1
3 2 0 1 3 2 1 1

Table 5: Survival signature of the system in Figure 3 (Ex. 3)

t21 < t11 < t22 < t12 t11 < t21 < t12 < t22
t ∈ STS

(t) STS
(t) t ∈ STS

(t) STS
(t)

(0, t21) 0.553 1 (0, t11) 0.553 1
(t21, t

1
1) 0.458 1 (t11, t

2
1) 0.230 0.667

(t11, t
2
2) 0.148 0.553 (t21, t

1
2) 0.148 0.553

(t22, t
1
2) 0.100 0.458 (t12, t

2
2) 0 0.230

(t12,∞) 0 0.148 (t22,∞) 0 0.148

Table 6: STS
(t) and STS

(t) for the system in Figure 1 and two data orderings (Ex. 4)

probabilities for the event that the system functions at time t, as consid-
ered in this paper, then indeed it is straigthforward to use the information
about the survival signature, consisting of bounds for its values. Detailed
theory of this use of bounds is presented by Al-nefaiee [4]. We restrict our-
selves to an illustration using the system in Figure 2, for which the exact
survival signature was derived in Example 2 and presented in Table 4. We
combine illustration of the use of bounds for the survival signature with the
NPI approach, as presented in Section 4, with more data observations than
in Example 4.

Table 7 provides bounds for the survival signature, together with the ex-
act survival signature (final column), for four cases, representing four possible
subsequent stages of its direct computation (so not using the method pre-
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sented in Section 3 and illustrated in Example 2). The bounds are denoted as
intervals, entries which are either 0 or 1 for all stages and where this follows
by monotonicity from other entries in the table have been deleted. Case 1
only involved an initial assessment for rather trivial values of (l1, l2, l3) for
which the system either functions or not with certainty. Without further
calculations, the survival signature is only known to be in [0, 1] at all other
(l1, l2, l3). Case 2 shows the effect of calculating Φ(0, 0, 3) = 1/2, Case 3 of
the additional calculations Φ(0, 1, 0) = Φ(0, 1, 1) = 1/4, these are all pretty
trivial to derive. For Case 4 we calculated, by going through all relevant
combinations, the precise values of the survival signature at 6 further points
(l1, l2, l3), as shown in Table 7. Most of these precise values affect some
bounds at other points due to the monotinicity of the survival signature, but
not all. However, all these calculations affect the related bounds for the in-
ferences. It is also possible to calculate the survival signature only partially
at a point (l1, l2, l3), leading to bounds at that point which also affect bounds
at other points (for an example we refer to Al-nefaiee [4]).

To illustrate the effect of such increased knowledge of the system’s sur-
vival signature, we present its application in the NPI method presented in
Section 4, using simulated failure times as given in Table 8, which for com-
ponents of type k ∈ {1, 2, 3} were simulated from the Weibull distribution
with shape parameter k and scale parameter 1. Of course, using the lower
(upper) bounds for the survival signature leads to a lower (upper) bound for
the NPI lower (upper) survival signature. These bounds for all four cases
are presented in Figure 4, where each plot also includes the NPI lower and
upper survival functions based on the exact survival signature. Due to the
monotonicities involved, additional calculations for the survival signatures
lead to sharper bounds for the NPI lower and upper survival functions, with
the effect of the rather straightforward calculations in Cases 2 and 3 already
quite substantial. The additional calculations in Case 4 lead to bounds that
are already mostly close to the actual NPI lower and upper survival func-
tions. Depending on the inference of interest, these bounds may already be
sufficient to derive the conclusion, in which case further calculation of the
survival signature would not be required.
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l1, l2, l3 Case 1 Case 2 Case 3 Case 4 Φ(l1, l2, l3)

0, 0, 1 0 0 0 0 0
0, 0, 2 [0, 1] [0, 1/2] [0, 1/2] 1/6 1/6
0, 0, 3 [0, 1] 1/2 1/2 1/2 1/2
0, 0, 4 1 1 1 1 1
0, 1, 0 [0, 1] [0, 1] 1/4 1/4 1/4
0, 1, 1 [0, 1] [0, 1] 1/4 1/4 1/4
0, 1, 2 [0, 1] [0, 1] [1/4, 1] [1/4, 32/36] 10/24
0, 1, 3 [0, 1] [1/2, 1] [1/2, 1] [1/2, 1] 12/16
0, 1, 4 1 1 1 1 1
0, 2, 0 [0, 1] [0, 1] [1/4, 1] 3/6 3/6
0, 2, 1 [0, 1] [0, 1] [1/4, 1] [3/6, 32/36] 14/24
0, 2, 2 [0, 1] [0, 1] [1/4, 1] [3/6, 32/36] 27/36
0, 2, 3 [0, 1] [1/2, 1] [1/2, 1] [3/6, 1] 22/24
1, 0, 1 0 0 0 0 0
1, 0, 2 [0, 1] [0, 1] [0, 1] 2/6 2/6
1, 0, 3 1 1 1 1 1
1, 1, 0 [0, 1] [0, 1] [1/4, 1] 1/4 1/4
1, 1, 1 [0, 1] [0, 1] [1/4, 1] [1/4, 32/36] 6/16
1, 1, 2 [0, 1] [0, 1] [1/4, 1] [1/4, 32/36] 16/24
1, 1, 3 1 1 1 1 1
1, 2, 0 [0, 1] [0, 1] [1/4, 1] 4/6 4/6
1, 2, 1 [0, 1] [0, 1] [1/4, 1] [4/6, 32/36] 18/24
1, 2, 2 [0, 1] [0, 1] [1/4, 1] 32/36 32/36
1, 2, 3 1 1 1 1 1

Table 7: Bounds for the survival signature of the system in Figure 2 (Ex. 5)

6. Discussion

Computation of the survival signature of a system is difficult unless the
number of components is small or the system has a relatively straightforward
structure. For systems with only one type of component, the signature has
been derived for some specific system structures [26, 27, 28, 36]. Deriving
the survival signature for specific system structures in the case of multiple
component types is an interesting topic for research. Recently, Aslett [7]
has created a function in the statistical software R to compute the survival
signature, given a graphical presentation of the system structure. This can,
in principle, be used for systems of any size, but for systems with more than
about 20 components which computation time rapidly becomes an issue.

20



Type 1 Type 2 Type 3

0.004 0.629 0.290 1.006 0.321 0.876
0.112 0.752 0.412 1.029 0.348 0.877
0.177 0.839 0.531 1.057 0.375 0.920
0.196 0.974 0.579 1.113 0.613 0.955
0.223 1.234 0.603 1.127 0.650 0.973
0.239 1.311 0.617 1.146 0.689 1.064
0.260 1.325 0.677 1.252 0.743 1.102
0.356 1.436 0.883 1.350 0.747 1.110
0.486 3.097 0.901 1.586 0.788 1.129
0.490 4.150 0.942 1.885 0.856 1.150

Table 8: Component failure times (Ex. 5)

It may be possible to implement the results in Sections 3 and 4 in this R
function. It is also interesting to investigate if it is possible to benefit from
established methods to quantify system reliability, for example fault trees,
Bayesian networks or binary decision diagrams, to derive the corresponding
survival signature.

While the emphasis in this paper has been on system reliability, the closely
related topic of reliability of networks is of great practical importance, for
example in energy provision. In such networks there are typically many com-
ponents of multiple types, with often quite large numbers of components of
a specific type for which the assumption of exchangeable failure times is rea-
sonable. Developing the survival signature approach for network reliability is
therefore also an important research challenge, which includes computational
challenges and could lead to results with great practical impact.

There are many further related research challenges related to theory and
application of survival signatures. For example, one could consider the use of
right-censored observations, which is likely to be possible with an adaptation
of the NPI for Bernoulli data in line with the corresponding NPI theory
for real-valued data with right-censored observations [21], which is related
to the well-known Kaplan-Meier estimator for such data. It will also be
of interest to consider possible system failure due to multiple failure modes
[35], where the NPI approach provides interesting opportunities to consider
unobserved or even unknown competing risks [22, 32]. Topics of optimal
system design in order to provide suitable levels of redundancy [3, 10, 14,
23, 31], possibly including costs, also pose interesting questions for which
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the use of the survival signature might provide new solutions. In the NPI
framework some of such issues have been considered, but only for systems
with relatively limited structures, for which the combinatorial aspects in
computations already became quite complex [3].

The theory presented in this paper provides a framework in which these,
and many other, problems can be studied for a wide variety of system struc-
tures. It will also be of interest to consider the use of the survival signature
if failure data at the system level are available, possibly together with some
component level data. For signatures, Bayesian inference for this situation
was recently presented by Aslett [6], who also considered inferring the sig-
nature from failure data, which may be relevant for black-box systems. It
will be interesting to develop similar methods for survival signatures, partic-
ularly because it widens applicability of such learning methods to systems
with multiple types of components.
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Figure 4: NPI lower and upper survival functions (Ex. 5)
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