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The  potential  for reducing  the  Cost  of  Electricity  (CoE)  by  using  High  Temperature  Superconductors  (HTS)
in the  Toroidal  Field  (TF) coils  of  a fusion  tokamak  power  plant  has been  investigated  using  a  new  HTS
module  in  the  PROCESS  systems  code.  We  report  the  CoE  and  the  design  of  HTS  tokamaks  that  have
been  optimised  by  minimising  the  major  radius  of  the  plasma.  Potential  future  improvements  in both
the  superconducting  properties  and  the  structural  materials  for  TF  coils operating  at  4.8  K  and  30  K  are
considered.  Increasing  the  critical  current  density  by a factor  of  10 (with a  commensurate  reduction
in  costs  kA−1 m−1) results  in  a CoE  4.4%  less  than equivalent  tokamaks  using  current  low  temperature
ROCESS
ost electricity
oroidal field magnets

superconductors  (LTS).  If  the yield  strength  of  the  TF casing  material  is  increased  by  40%  to  1400  MPa,
the  CoE  is further  reduced  by  3.4%.  Implementing  both  improvements  and  operating  the  TF coils  at
4.8  K  leads  to  CoE  of  19.1  (10.1)  D  cent  kW−1 h−1 for  a 500 MW  (1.5  GW)  HTS  reactor  compared  to 20.7
(11.1)  D cent  kW−1 h−1 for an LTS  reactor  (2013  costs).  Operating  the  HTS  TF  coils  at  30  K  with  both
improvements,  gives  a similar  CoE  for HTS  and LTS  tokamaks.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction

It is well established from the fusion power scaling law,
F ∝ ˇ2B4, that in order to realise economic fusion power, it is
ecessary either to improve plasma performance significantly (to

ncrease ˇ) or to increase the toroidal magnetic field (B) [1]. High-
emperature superconductors (HTS) offer one way  to increase
he magnetic field, with upper critical fields in excess of 50 T.
EBa2Cu3O7 (RE: Rare-Earth, REBCO) 2nd generation (2G) HTS
apes already have critical current densities in the superconducting
ayer alone, one or two orders of magnitude higher than in Nb3Sn
nd are improving rapidly as manufacturing techniques develop.
TS also have the benefit of having high critical temperatures (Tc)

hat allow the possibility of increased operating temperatures and
 reduction in our reliance on helium as a coolant. Furthermore
hese tapes are far from a mature technology: currently REBCO tape
s manufactured with only ∼1% of the cross sectional area made of
he superconductor, so we can expect significant improvements in
Please cite this article in press as: T.S. Lee, et al., Optimal design of a to
a tokamak using high temperature superconductors, Fusion Eng. Des.

ost and performance of HTS fusion conductors.
Many institutes have already investigated building tokamaks

sing HTS technology, with peak magnetic fields as high as 22 T

∗ Corresponding author. Tel.: +44 1913343520.
E-mail address: d.p.hampshire@durham.ac.uk (D.P. Hampshire).
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920-3796/© 2015 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

[2]. However most of the more broadly based conceptual system
studies have focused mainly on using established Nb3Sn technol-
ogy, operating at more modest fields (up to 13.6 T). In this paper,
we report the results from adding generic critical current density
(Jc) equations as part of a new HTS module added to the PROCESS
systems code developed in CCFE, in order to assess both the eco-
nomic impact of using HTS, and to investigate how key tokamak
parameters such as the major radius and operating temperature
will change when switching from low temperature superconduc-
tors (LTS) to HTS. Parameter scans are carried out that not only
consider the superconducting properties of today’s materials but
also potential improvements that are likely on the timescale of
DEMO being built.

In this paper we focus on the results for a 500 MW net electric
power plant as this is a possible size for DEMO. We  also summarise
results for larger power plants.

2. Power plant systems code—PROCESS

Designing a tokamak is demanding, since hundreds of con-
straints have to be met  whilst simultaneously trying to optimise
roidal field magnet system and cost of electricity implications for
 (2015), http://dx.doi.org/10.1016/j.fusengdes.2015.06.125

critical figures of merit. The Power Reactor Optimisation Code for
Environmental and Safety Studies (PROCESS), developed in CCFE,
is a systems code that uses scaling laws to model all aspects of
a tokamak, including the plasma characteristics, magnet design,

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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operating temperature as shown in Fig. 1, the important conclu-
sions of the paper are unaffected. ITER will operate at 4.8 K so that
it can use supercritical helium as the coolant. If present-day REBCO
were to be used as the superconductor in the TF coils, the opti-
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alance of plant etc. In doing so, it is possible to find an optimal
esign for a nuclear fusion power plant. PROCESS is a powerful
ool as the simple scaling laws require very little computational
ower allowing parameter scans of key tokamak parameters with
6 processor clusters in a few minutes.

Previous work (e.g. the PPCS study [3]) using PROCESS included
nvestigations into the constraints on the plasma and technology
erformance and analysis of relatively near term increases in the
lasma and technology performance as compared with ITER. We
ave been guided by that previous work to set key parameters as

ollows: ˇN ∼ 3.0, the plant availability set at 0.75, the calculated
ootstrap current fraction ∼35%, the efficiency of converting the
hermal power into electrical power of 40% and a peak divertor heat
oad of 10 MW m−2. Further details of the technological assump-
ions made in this paper can be found in the PPCS study and in a
ecent PROCESS update [4]. We  have also assumed a learning factor
f 0.65, equivalent to a 10th of a kind reactor. For the superconduc-
ors we used costs of 6.1 and 80.6 $ kA−1 m−1 at 12 T, 4.2 K for Nb3Sn
nd REBCO respectively, which are 1990 ¢ costs calculated retro-
pectively for use in the 1990 cost module in PROCESS. In principle,
ncreases in Jc and reductions in cost of HTS tapes occur separately.
nfluenced by the low cross sectional area of superconductor in
TS tapes compared to LTS strands and to simplify our analysis,
e have chosen to consider increases in Jc at constant cost per unit

ength (i.e. when Jc doubles, the cost kA−1 m−1 halves). We  also con-
ert 1990 ¢ costs to 2013 D cent costs using CPI inflation where 1 ¢
1990) = 1.32 D cent (2013).

. Critical currents in superconductors

PROCESS describes the reduced field
(

b = B/Bc2
)

, reduced tem-

erature
(

t = T/Tc

)
and strain (ε) dependence of the critical current

ensity (Jc), more strictly the engineering (or whole strand) critical
urrent density, of Nb3Sn strand using [5]:

c = C

B
s (ε)

(
1 − t1.52

)  (
1 − t2

)
bp(1 − b)q (1)

here all symbols have their usual meanings.
In the new HTS module, Jc of tapes is described as a function of

eld (B), temperature (T), angle of the field with respect to the tape
�
)

and strain, using:

c ≈ ˛ (T)
(

1 − c (T) (ε − ε0(T))d
)

×
(

1 − B

Bc2

)
exp

(
−B cos �

ˇW (T)

)
(2)

The form of the field and temperature dependencies follow
hose reported for flux flow along channels [6,7]. We  also include an
mpirical strain dependence in Eq. (2) to provide a generic parame-
erisation of Jc. The free parameters ˛ (T),  c (T),  ε0 (T), and ˇW (T) are
aken as functions of temperature alone and fitted using variable
train Jc data from Sunwong [7] and Sugano [8] in the form:

(
T

)V
Please cite this article in press as: T.S. Lee, et al., Optimal design of a to
a tokamak using high temperature superconductors, Fusion Eng. Des.

(T) = U 1 −
Tc

, (3)

here Tc is independent of strain. The values of the constants U and
 for REBCO tape are shown in Table 1. The constant d was found to

able 1
he values of U and V for REBCO derived from experimental data [7,8] for ˛(T), c(T),
0(T), and ˇW(T) using Eq. (3).

U V

˛(T) (1.08 ± 0.03) × 1011 A m−2 2.0 ± 0.1
c(T) 0.025 ± 0.003 −1.200 ± 0.005
ε0(T) −0.51 ± 0.04% 1.09 ± 0.08
ˇW(T) 13.8 ± 0.2 T 0.42 ± 0.03
 PRESS
d Design xxx (2015) xxx–xxx

be ∼2. The (strain independent) upper critical field (Bc2) was taken
to be:

Bc2 = Bc2 (0)

(
1 −

(
T

Tc

)0.61
)

(4)

where Tc is 87.6 K and Bc2(0) is 68.5 T for HTS [7]. Current values of
Jc were taken to be 7.8 and 3.2 × 108 A m−2 at 12 T and 4.2 K for LTS
strands and HTS tapes respectively. Improvements in Jc are imple-
mented by changing the values of C (LTS materials) and U (HTS
materials) associated with ˛(T). In PROCESS, we set the maximum
operating current to 50% of Jc. The heat loads in the cryogenic sys-
tem, are scaled from ITER values, whilst assuming no additional AC
losses as we  are investigating steady state tokamak devices.

4. Results

4.1. Optimum operating temperature for TF coils

Fig. 1 shows the Cost of Electricity (CoE) that has been
found by minimising the major radius of the plasma torus for
a 500 MW net electricity tokamak operating at a given coolant
temperature—using either Nb3Sn or REBCO as the superconduc-
tor in the TF coils. For Nb3Sn, the optimum operating temperature
is in the liquid helium range (∼2.5 K) with a corresponding CoE
of 15.3 ¢ kW−1 h−1 and peak operating magnetic field of ∼13.5 T.
Although the assumptions made about cryoplant efficiency at very
low temperatures do affect the optimum operating temperature
itself, because the cost of electricity is only weakly dependent on
roidal field magnet system and cost of electricity implications for
 (2015), http://dx.doi.org/10.1016/j.fusengdes.2015.06.125
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Fig. 1. The cost of electricity in 1990 $ that has been found by minimising the major
radius of a 500 MW net electricity tokamak operating at a given coolant temperature.
The equivalent peak toroidal magnetic field is also shown. The TF coils are con-
structed using the superconductors (a) REBCO and (b) Nb3Sn. For (a) the temperature
range over which some cryogens are liquid is shown.
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Fig. 3. The cost of electricity in 1990 $ of a 500 MW fusion power plant as a function
of  the yield strength of the steel used to construct the TF coil casing. Results are
plotted for Nb3Sn and for REBCO at different values of Jc (where Jc × 2 refers to
twice its current value). The peak operating field for the different superconductors
is  shown in the top right corner. The yield strength of structural materials for ITER
adius of a 500 MW net electricity tokamak operating at a given coolant temperature.
he TF coils are constructed using the superconductors (a) REBCO and (b) Nb3Sn. The
ffect of increasing the critical current density in both superconductors is shown.

um  operating temperature would nominally be ∼2 K giving a CoE
f 18.3 ¢ kW−1 h−1, about 20% higher than Nb3Sn. This CoE rises
apidly as the operating temperature of the TF coils increases due
o the large capital cost of buying more REBCO tape.

.2. Improvements in the critical current density

Given the likely improvements in REBCO, we  have investigated
ow the CoE of a tokamak is changed as Jc of REBCO and Nb3Sn

mproves as shown in Fig. 2. For Nb3Sn, an improvement by a fac-
or of 2 in the critical current density reduces the cost of electricity
rom 15.3 ¢ kW−1 h−1 to 15.0 ¢ kW−1 h−1. The optimum operating
emperature is also increased slightly to 3.7 K. However, increases
n Jc for Nb3Sn beyond a factor 2 have little commercial value, show-
ng only marginal improvements in the CoE, as stress constraints
or the magnets become important. The extensive use of Nb3Sn to
uild ITER means that the manufacture of Nb3Sn conductors is now

 mature technology and improvements in Jc beyond today’s values
ill be difficult. For REBCO however significant increases in Jc are

ikely. An improvement by a factor 5 would make the CoE for HTS
ompetitive with Nb3Sn. An improvement in Jc of 10 is needed to
ive similar CoE at 30 K where other benefits such as using resis-
ive joints that enable demountable magnets, better availability and
sing neon rather than helium as the coolant, provide benefits not

ncluded in the CoE calculated in this work.

.3. REBCO TF casing strength

For tokamaks operating at magnetic fields higher than ITER, the
Please cite this article in press as: T.S. Lee, et al., Optimal design of a to
a tokamak using high temperature superconductors, Fusion Eng. Des.

ield strength (YS) and the ultimate tensile stress (UTS) eventually
ecome the critical design parameters in the TF coils. In PROCESS,
he allowable stress on the casing of the TF coils is the minimum
f 2/3 the yield strength (normally taken to be 1000 MPa) or 1/2
is  shown as well as the yield strength of the cryogenic steel, CSUS-JN1 [9].

the UTS (1500 MPa) which sets a maximum von Mises stress of
667 MPa  on the TF coil casing. In light of well-established cryogenic
steels with yield strengths above 1400 MPa  and UTS approaching
1800 MPa  [9], this work considers the impact of improved yield
strengths for future materials without changes in cost that range
from 800 to 2000 MPa  at the operating temperature.

Fig. 3 shows the effect on the CoE of increasing Jc and increas-
ing the yield strength of the TF coil casing. For LTS operating at
4.8 K and HTS at 30 K, there is little value in improving the struc-
tural materials used, because of the small reduction in the CoE for
improvements in steel strength. This is because in LTS the field
dependence of Jc (i.e. low Bc2) limits the attainable magnetic field
and for HTS at 30 K, large quantities of expensive REBCO tape are
needed to reach high fields. For HTS at 4.8 K however, savings of
∼3.4% can be made for a 40% increase in the steel strength assum-
ing an increase in Jc by a factor 10. For HTS at 4.8 K, an increase by a
factor 5 is needed in Jc in order to be competitive with LTS whereas
to operate at 30 K, an increase by a factor of 10 is required.

Table 2 shows some of the key tokamak parameters for the
different 500 MW power plants considered in this paper. In an
advanced HTS fusion plant where Jc has increased by a factor of
10 over today’s values and high-strength cryogenic steels are used,
the CoE for a HTS tokamak operating at 4.8 K is 7.7% lower than an
equivalent LTS machine. The HTS plant has a peak field of 15.8 T, a
major radius 8.6% lower and a plasma density 32% higher than the
LTS plant. These improvements also lead to the added benefit of
lower required plasma currents and higher bootstrap fractions of
the current. Alternatively the HTS tokamak can be operated at 30 K
and the CoE is comparable to LTS.

4.4. Optimised gigawatt tokamaks

We have repeated the analysis above for tokamaks larger than
500 MW.  Table 3 gives a summary of the costs of electricity for
500 MW,  1000 MW and 1500 MW net electricity fusion reactors.
roidal field magnet system and cost of electricity implications for
 (2015), http://dx.doi.org/10.1016/j.fusengdes.2015.06.125

It compares CoE calculated using present day values for the Jc
and allowable stress on the TF coil casing as well as values that
include possible future improvements. From Table 3, the CoE (in

dx.doi.org/10.1016/j.fusengdes.2015.06.125


ARTICLE IN PRESSG Model
FUSION-8144; No. of Pages 4

4 T.S. Lee et al. / Fusion Engineering and Design xxx (2015) xxx–xxx

Table 2
Key tokamak parameters for five 500 MW power plants. LTS—Nb3Sn in the TF coils. HTS—REBCO (at 4.8 K) in the TF coils with Jc × 10. HTS + s/s—REBCO (at 4.8 K) for the TF
coils  with Jc × 10 and TF coil steel strength × 1.4. HTS 30 K and HTS + s/s 30 K as before but with TF coils at 30 K.

LTS HTS HTS + s/s HTS 30 K HTS + s/s 30 K

TF operating temp (K) 4.8 4.8 4.8 30 30
Fusion power (GW) 2.6 2.6 2.6 2.6 2.6
Major radius (m)  7.67 7.42 7.01 7.47 7.06
Peak magnetic field (T) 12.6 14.2 15.8 14.0 15.6
Field on axis (T) 4.4 5.3 5.9 5.3 5.8
Average Density (1019 m−3) 8.7 10.1 11.5 10.0 11.3
Plasma current (MA) 23.5 21.3 20.3 21.4 20.4
Bootstrap Fraction 0.35 0.37 0.39 0.37 0.38
CoE  (D cent kW−1 h−1) 20.7 19.8 19.1 20.9 20.6

Table 3
The cost of electricity (2013) for tokamaks with a net electrical power of 500 MW,
1000 MW and 1500 MW.  Nb3Sn and REBCO are considered for the TF coils with
different improvements in Jc and steel strength.

Cost of electricity
(D cent kW−1 h−1 2013 costs)

500 MW 1 GW 1.5 GW

Nb3Sn 20.7 13.4 11.1
Nb3Sn × 2Jc , ×1.4 s/s 19.6 12.6 10.3
REBCO × 2Jc , 4.8 K 21.8 13.9 11.4
REBCO × 10Jc , 4.8 K 19.8 12.8 10.6
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REBCO × 10Jc , ×1.4 s/s, 4.8 K 19.1 12.3 10.1
REBCO × 10Jc , 30 K 20.9 13.4 11.0
REBCO × 10Jc , ×1.4 s/s, 30 K 20.6 13.0 10.6

 cent kW−1 h−1 2013 costs) for HTS fusion energy plants decreases
s the plant gets larger where:

oE = L(P)n, (5)

here P is the electric power of the plant in GW,  L varies from 14.3
or current materials down to 12.6 for advanced materials (cf. 1 GW
ata in Table 3) and n = −0.59. To obtain some indication of the rela-
ive merits of fusion as a power source, we note that the strike price
or the new Hinkley point C nuclear fission reactor in the UK is set at

 pence kW−1 h−1 which is equivalent to ∼11.5 D cent kW−1 h−1 in
013 costs, not dissimilar to the 1.5 GW plant with 15.6 T peak field,

 m major radius, 30 K operating temperature and a CoE of ∼10.6
 cent kW−1 h−1. Whilst this comparison is clearly no guarantee of
he cost of electricity in the future (when a number of fusion reac-
ors might exist), it does indicate that large fusion energy plants are
ot necessarily uneconomic based on present costing methods.

. Concluding comments

The cost of electricity for fusion power plants using different
uperconductors in the TF coils has been investigated using the
ROCESS systems code. In order to investigate the potential of HTS,
e concentrated on their critical current properties with commen-

urate scaled reduction in cost. We  have ignored many serious
hallenges that are en route to commercial fusion, including man-
Please cite this article in press as: T.S. Lee, et al., Optimal design of a to
a tokamak using high temperature superconductors, Fusion Eng. Des.

ging high thermal loads on the divertor. We  have also assumed
hat properties other than Jc, for example AC. losses and quench
rotection behaviour are the same in HTS as current LTS supercon-
uctors. Although we do not foresee any fundamental hurdles to

[

[

implementing HTS materials in fusion energy plants, unfortunately
there is not a large scale commercial application to drive conductor
development of HTS materials, equivalent to MRI that helped drive
LTS materials. We are far from producing HTS versions of the LTS
low cost, multifilamentary round-wire strands currently available,
although there is notable effort from groups working on 2G and 3G
HTS.

In this paper, we have found that if we can increase Jc and hence
decrease cost in HTS materials by a factor × 10 and use very high
strength steel × 1.4, the CoE for a 500 MW HTS plant operating
at 4.8 K is ∼7.7% less than an LTS plant. These saving are due to
higher peak magnetic fields of up to 15.8 T (5.9 T on axis), increased
fusion power density and a reduction in the major radius by ∼8.6%.
Alternatively using HTS at 30 K, makes the CoE similar to LTS but
improves the potential use of demountable magnets, better plant
availability and using neon as the coolant. For a large 1.5 GW plant,
we find that with Jc × 10 and strength of steel × 1.4, the cost of elec-
tricity from fusion energy is competitive with other low carbon
technologies.
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