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Abstract

We compute perturbative QCD corrections to the lifetime splitting between the charged and
neutralB meson in the framework of the heavy quark expansion. These next-to-leading log-
arithmic corrections are necessary for a meaningful use of hadronic matrix elements of lo-
cal operators from lattice gauge theory. We find the uncertainties associated with the choices
of renormalization scale and scheme significantly reduced compared to the leading-order re-
sult. We include the full dependence on the charm-quark massmc without any approxima-
tions. Using hadronic matrix elements estimated in the literature with lattice QCD we obtain
τ(B+)/τ(B0

d) = 1.053 ± 0.016 ± 0.017, where the effects of unquenching and1/mb correc-
tions are not yet included. The lifetime difference of heavybaryonsΞ0

b andΞ−

b is also briefly
discussed.
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Figure 1: Weak annihilation (WA) and Pauli interference (PI) diagrams in the leading order
of QCD. They contribute toΓ(B0

d) andΓ(B+), respectively. The crosses represent|∆B| = 1
operators, which are generated by the exchange ofW bosons. CKM-suppressed contributions
are not shown.

1 Preliminaries

TheHeavy Quark Expansion (HQE) technique provides a well-defined QCD-based framework
for the calculation of total decay rates ofb-flavoured hadrons [1]. The HQE yields an expansion
of the decay rateΓ(Hb) in terms ofΛQCD/mb, whereHb represents any hadron containing a
singleb-quark and any of the lightu,d,s (anti-)quarks as valence quarks.mb is theb-quark mass
andΛQCD is the fundamental scale of QCD, which determines the size ofhadronic effects. In
the leading order ofΛQCD/mb the decay rate ofHb equals the decay rate of a freeb-quark,
which is unaffected by the light degrees of freedom ofHb. Consequently, the lifetimes of all
b-flavoured hadrons are the same at this order. The first corrections to the free quark decay
appear at order(ΛQCD/mb)

2 and are caused by the Fermi motion of theb-quark inHb and the
chromomagnetic interaction of the final state quarks with the hadronic cloud surrounding the
heavyb-quark. These mechanisms have a negligible effect on the lifetime difference between
theB+ andB0

d mesons, because the strong interaction excellently respects isospin symmetry. At
order(ΛQCD/mb)

3, however, one encounters weak interaction effects betweenthe b-quark and
the light valence quark. These effects, known asweak annihilation (WA) andPauli interference
(PI) [1], are depicted in Fig. 1. They are phase-space enhanced with respect to the leading
free-quark decay and induce corrections toΓ(Hb) of order16π2(ΛQCD/mb)

3 = O(5−10%).
The measurement of lifetime differences among differentb-flavoured hadrons therefore tests the
HQE formalism at the third order in the expansion parameter.

The calculation ofΓ(Hb) consists of three steps: the first step is an operator productexpan-
sion (OPE) integrating out the heavyW boson, which mediates the weakb decay. This results in
an effective|∆B| = 1 Hamiltonian describing the flavour-changing weak interaction of the Stan-
dard Model up to corrections of orderm2

b/M
2
W , where∆B denotes the change in bottom-quark

number:

H =
GF√

2
V ∗

cb

∑

d′=d,s
u′=u,c

Vu′d′

[

C1(µ1) Qu′d′

1 (µ1) + C2(µ1) Qu′d′

2 (µ1)
]

+ h.c.. (1)

HereGF is the Fermi constant and theVij ’s are elements of the Cabibbo-Kobayashi-Maskawa
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(CKM) matrix. The Wilson coefficientsCi(µ1) contain the short-distance physics associated
with scales above the renormalization scaleµ1. The weak interaction is encoded in the four-
quark operators

Qu′d′

1 = biγµ(1 − γ5)cj u′

jγ
µ(1 − γ5)d

′

i, Qu′d′

2 = biγµ(1 − γ5)ci u
′

jγ
µ(1 − γ5)d

′

j, (2)

with summation over the colour indicesi andj. We have omitted penguin operators and doubly
Cabibbo-suppressed terms in (1), which have a negligible effect on theB+–B0

d lifetime differ-
ence. Next the total decay rateΓ(Hb) is related toH by the optical theorem:

Γ(Hb) =
1

2MHb

〈Hb|T |Hb〉. (3)

Here we have adopted the conventional relativistic normalization〈Hb|Hb〉 = 2EV and intro-
duced the transition operator:

T = Im i
∫

d4xT [H(x) H(0)]. (4)

The second step is the HQE, which exploits the hierarchymb ≫ ΛQCD to expand the RHS of (3)
in terms ofΛQCD/mb. To this end an OPE is applied toT which effectively integrates out the
hard loop momenta (corresponding to the momenta of the final state quarks). We decompose the
result as

T = [T0 + T2 + T3]
[

1 + O(1/m4
b)
]

T3 = T u + T d + Tsing (5)

HereTn denotes the portion ofT which is suppressed by a factor of1/mn
b with respect toT0

describing the free quark decay. The contributions toT3 from weak spectator interactions read

T u =
G2

Fm2
b |Vcb|2

6π

[

|Vud|2
(

F uQd + F u
S Qd

S + GuT d + Gu
ST d

S

)

+ |Vcd|2
(

F cQd + F c
SQd

S + GcT d + Gc
ST d

S

)]

+ (d → s)

T d =
G2

Fm2
b |Vcb|2

6π

[

F dQu + F d
SQu

S + GdT u + Gd
ST u

S

]

. (6)

The superscriptq of the coefficientsF q, F q
S , Gq, Gq

S refers to thecq intermediate state (see
Fig. 1). We include singly Cabibbo-suppressed contributions. In writing T d we have used
|Vud|2 + |Vus|2 ≈ 1 andmd ≈ ms ≈ 0, so thatF d = F s, etc.. Here we encounter the local
dimension-6,∆B = 0 operators

Qq = bγµ(1 − γ5)q qγµ(1 − γ5)b, Qq
S = b(1 − γ5)q q(1 + γ5)b,

T q = bγµ(1 − γ5)T
aq qγµ(1 − γ5)T

ab, T q
S = b(1 − γ5)T

aq q(1 + γ5)T
ab, (7)
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whereT a is the generator of colour SU(3). We define the∆B = 0 operators at the renormaliza-
tion scaleµ0, which is of ordermb. The Wilson coefficientsF u . . . Gd

S are computed in pertur-
bation theory. When applied to mesons,T u andT d correspond to the WA and PI mechanisms
of Fig. 1, respectively. In the case of baryons their role is interchanged:T u encodes the PI effect
andT d describes the weak scattering of theb-quark with the valence quark (see Fig. 5). The co-
efficients in (6) depend onµ0. Since the hard loops involve the charm quark, they also depend on
the ratioz = m2

c/m
2
b . The truncation of the perturbation series makesF u . . . Gd

S also dependent
on µ1 = O(mb). This dependence diminishes in increasing orders ofαs. To the considered or-
der, the dependence onµ0 cancels between the coefficients and the matrix elements of operators
in (6), so that observables are independent ofµ0. The remainderTsing in (5) involves additional
dimension-6 operators, which describe power-suppressed contributions to the free quark decay
from strong interactions with the spectator quark. The operators inTsing are isospin singlets and
do not contribute to theB+–B0

d lifetime difference. The formalism of (5)–(7) applies to weakly
decaying hadrons containing a single bottom quark and no charm quarks. Decays of hadrons like
theBc meson with more than one heavy quark have a different power counting than in (5) [2]. In
the third step one computes the hadronic matrix elements of the operators in (7). They enter our
calculation in isospin-breaking combinations and are conventionally parametrized as [3]

〈B+|(Qu − Qd)(µ0)|B+〉 = f 2
BM2

BB1(µ0), 〈B+|(Qu
S − Qd

S)(µ0)|B+〉 = f 2
BM2

BB2(µ0),

〈B+|(T u − T d)(µ0)|B+〉 = f 2
BM2

Bǫ1(µ0), 〈B+|(T u
S − T d

S)(µ0)|B+〉 = f 2
BM2

Bǫ2(µ0). (8)

HerefB is theB meson decay constant. In thevacuum saturation approximation (VSA) one has
B1(µ0) = 1, B2(µ0) = 1 + O(αs(mb), ΛQCD/mb) andǫ1,2(µ0) = 0. Corrections to the VSA
results are of order1/Nc, whereNc = 3 is the number of colours.

Using the isospin relation〈B0
d |Qd,u|B0

d〉 = 〈B+|Qu,d|B+〉 we now find from (3) and (6):

Γ(B0
d) − Γ(B+) =

G2
Fm2

b |Vcb|2
12π

f 2
BMB

(

|Vud|2 ~F u + |Vcd|2 ~F c − ~F d
)

· ~B. (9)

Here we have introduced the shorthand notation

~F q(z, µ0) =











F q(z, µ0)
F q

S(z, µ0)
Gq(z, µ0)
Gq

S(z, µ0)











, ~B(µ0) =











B1(µ0)
B2(µ0)
ǫ1(µ0)
ǫ2(µ0)











for q = d, u, c. (10)

The strong interaction affects all three steps of the calculation. The minimal way to in-
clude QCD effects is the leading logarithmic approximation, which includes corrections of order
αn

s lnn(µ1/MW ), n = 0, 1, . . . in the coefficientsC1,2(µ1) in (1). The corresponding leading or-
der (LO) calculation of the width difference in (9) involvesthe diagrams in Fig. 1 [1,3]. Yet LO
results are too crude for a precise calculation of lifetime differences. The heavy-quark masses in
(9) cannot be defined in a proper way and one faces a large dependence on the renormalization
scaleµ1. Furthermore, results forB1,2 andǫ1,2 from lattice gauge theory cannot be matched to the
continuum theory in a meaningful way at LO. Finally, as pointed out in [3], at LO the coefficients
F , FS in (9) are anomalously small. They multiply the large matrixelements parametrized by
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B1,2, while the larger coefficientsG, GS come with the small hadronic parametersǫ1,2, rendering
the LO prediction highly unstable. To cure these problems one must include the next-to-leading-
order (NLO) QCD corrections of orderαn+1

s lnn(µ1/MW ). NLO corrections to the effective
|∆B| = 1 Hamiltonian in (1) have been computed in [4, 5]. The second step beyond the LO re-
quires the calculation of QCD corrections to the coefficientsF u . . . Gd

S in (6). Such a calculation
has been first performed for theB0

s–B0
d lifetime difference in [6], whereO(αs) corrections were

calculated in the SU(3)F limit neglecting certain terms of orderz. In this limit only a few penguin
effects play a role. A complete NLO computation has been carried out for the lifetime difference
between the two mass eigenstates of theB0

s meson in [7]. In particular the correct treatment
of infrared effects, which appear at intermediate steps of the calculation, has been worked out
in [7]. The computation presented in this paper is conceptually similar to the one in [7], except
that the considered transition is∆B = 0 rather than∆B = 2 and the quark masses in the final
state are different. While this work was in preparation, QCDcorrections toT u andT d have also
been calculated in [8]. There are two important differencesbetween our analysis and [8]:

(i) in [8] the NLO corrections have been computed for the limiting casez = 0, i.e. neglecting
the charm-quark mass in the final state. The corrections to this limit are of orderz ln z or
roughly 20%. In Sect. 2 we include the dependence on the charm-quark mass exactly.

(ii) in [8] the ∆B = 0 operators have been defined in the heavy quark effective theory (HQET)
rather than in full QCD, as we did in (7). HQET operators were chosen to eliminate
the mixing of the dimension-6 operators in (7) into lower-dimensional operators under
renormalization. We emphasize that this mixing does not impede the use of QCD operators
in the HQE: it results purely from ultraviolet effects and can be accounted for by a finite
renormalization of the affected operators. For a more detailed discussion with an explicit
example we refer the reader to [7] and to Sect. 3.2.

Finally one must compute the non-perturbative QCD effects residing inf 2
BB1, . . . f

2
Bǫ2. Results

from lattice gauge theory for the matrix elements in (8) havebeen recently obtained in [9]. Earlier
results using HQET fields can be found in [10]. In the matchingof the results to continuum QCD
the dependence ofB1, . . . ǫ2 on µ0 and on the chosen renormalization scheme must cancel the
corresponding dependence of the Wilson coefficients, whichrequires NLO accuracy.

2 T
u and T

d at next-to-leading order

We decompose the Wilson coefficients in (6) as

F u(z, µ0) = C2
1(µ1) F u

11(z, xµ1
, xµ0

) + C1(µ1) C2(µ1) F u
12(z, xµ1

, xµ0
)

+ C2
2(µ1) F u

22(z, xµ1
, xµ0

)

F u
ij(z, xµ1

, xµ0
) = F

u,(0)
ij (z) +

αs(µ1)

4π
F

u,(1)
ij (z, xµ1

, xµ0
) + O

(

α2
s

)

(11)
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with xµ = µ/mb and an analogous notation for the remaining Wilson coefficients in (6). The LO
coefficients are obtained from the diagrams in Fig. 1. The non-vanishing coefficients read [3]

1

3
F

u,(0)
11 (z) =

1

2
F

u,(0)
12 (z) = 3F

u,(0)
22 (z) =

1

2
G

u,(0)
22 (z) = − (1 − z)2

(

1 +
z

2

)

,

1

3
F

u,(0)
S,11 (z) =

1

2
F

u,(0)
S,12 (z) = 3F

u,(0)
S,22 (z) =

1

2
G

u,(0)
S,22 (z) = (1 − z)2 (1 + 2z) ,

1

3
F

c,(0)
11 (z) =

1

2
F

c,(0)
12 (z) = 3F

c,(0)
22 (z) =

1

2
G

c,(0)
22 (z) = −

√
1 − 4z (1 − z) , (12)

1

3
F

c,(0)
S,11 (z) =

1

2
F

c,(0)
S,12 (z) = 3F

c,(0)
S,22 (z) =

1

2
G

c,(0)
S,22 (z) =

√
1 − 4z (1 + 2z) ,

6F
d,(0)
11 (z) = F

d,(0)
12 (z) = 6F

d,(0)
22 (z) = G

d,(0)
11 (z) = G

d,(0)
22 (z) = 6 (1 − z)2 ,

while

G
u,(0)
11 = G

u,(0)
12 = G

u,(0)
S,11 = G

u,(0)
S,12 = G

c,(0)
11 = G

c,(0)
12 = G

c,(0)
S,11 = G

c,(0)
S,12 = G

d,(0)
12 = 0,

F
d,(0)
S,ij = G

d,(0)
S,ij = 0. (13)

To obtain the NLO correctionsF u,(1)
ij . . . G

d,(1)
S,ij we have calculated the diagramsEi and the

imaginary parts ofDi in Fig. 2. At NLO one becomes sensitive to the renormalization scheme.
First, this affects the quantitiesmb, z andαs entering our calculation. The NLO coefficients
given below correspond to the use of the pole-mass definitionfor mb and the definition ofαs in
theMS scheme [11].z can be either calculated from the pole masses or from theMS masses,
becausez = m2

c/m
2
b = m2

c(mc)/m
2
b(mb) + O(α2

s). Second, the choice of the renormalization
scheme is also an issue for the effective four-quark operators appearing at the various stages of
our calculation. In the prediction of physical quantities this scheme dependence cancels to the
calculated order, nevertheless it must be taken care of whenassembling pieces from different
theoretical sources. The Wilson coefficientsC1,2 of H in (1) andF

u,(1)
ij . . . G

d,(1)
S,ij depend on

the scheme used to renormalize the∆B = 1 operators in (2), but this dependence cancels in
F u,(1) . . . G

d,(1)
S . Our results below correspond to the definition ofC1,2 in [5]. F u,(1) . . . G

d,(1)
S

also depend on the renormalization scheme of the∆B = 0 operators in (7). This dependence
cancels only when these coefficients are combined with the hadronic parametersB1,2 andǫ1,2

calculated from lattice QCD. It is therefore important thatour scheme is used in the lattice-
continuum matching of these quantities. We use theMS scheme with the NDR prescription for
γ5 [5]. To specify the scheme completely, it is further necessary to state the definition of the
evanescent operators appearing in the calculation [12]. Weuse

E[Q] = bγµγργν(1 − γ5)q qγνγργµ(1 − γ5)b − (4 − 8ε) Q

E[QS ] = bγµγν(1 − γ5)q qγνγµ(1 + γ5)b − (4 − 8ε) QS (14)

and analogous definitions ofE[T ] and E[TS]. When the diagramsE1 . . .E4 for e.g. QS are
calculated inD = 4 − 2ε dimensions, the result can be expressed as a linear combination of
QS andE[QS]. Effectively, (14) defines how Dirac strings with two or three Dirac matrices are
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Figure 2: WA contributions in the next-to-leading order of QCD. The PI diagrams are obtained
by interchangingu andd and reversing the fermion flow of theu andd lines. The first line
shows the radiative corrections to∆B=0 operators, which are necessary for the proper infrared
factorization. Not displayed are the diagramsE′

3, E′

4 andD′

3−8 which are obtained from the
corresponding unprimed diagrams by left-right reflection and the reverse of the fermion flow.

reduced. (Note that (14) also implies the replacement rulesγνγργµ(1− γ5)⊗ γνγργµ(1− γ5) →
(16−4ε)γµ(1−γ5)⊗γµ(1−γ5) andγµγν(1−γ5)⊗γµγν(1+γ5) → 4(1+ε)(1−γ5)⊗(1+γ5).)
The particular choice of the−8ε terms in (14) is motivated by Fierz invariance: the one-loop
matrix elements of e.g.QS and its Fierz transformQF

S = −1/2 biγν(1 + γ5)bjqjγ
ν(1 − γ5)qi

are in general different. This feature is an artifact of dimensional regularization. With (14) and
a corresponding definition ofE[QF

S ], however, Fierz invariance is maintained at the one-loop
level. This choice, which has also been made in [5] for the∆B = 1 operators, has the practical
advantage that one can freely use the Fierz transformation at any step of the calculation. In other
words: “Fierz-evanescent” operators likeQS − QF

S can be identified with 0.
In the procedure of matching the full theory (eq. (4)) to the effective∆B = 0 theory, infrared

singularities are encountered atO(αs) both in the full-theory diagrams and in the matrix elements
of operators in the effective theory. The diagrams relevantfor this issue areD1 – D4 andE1 –
E4. The singularities cancel in the Wilson coefficientsF andG, but need to be regularized at in-
termediate steps of the calculation. We take theb-quark on-shell, assign zero4-momentum to the
external light quarks and use dimensional regularization for the infrared (as well as the ultravio-
let) divergences. In this case, care has to be taken to treat the Dirac algebra in a consistent way.
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In computing the matching condition betweenD1 – D4 andE1 – E4 we have used two different
methods, which lead to the same result. In both methods ultraviolet divergences appearing inE1

– E4 andD3 are subtracted, respectively, by∆B = 0 and∆B = 1 counterterms, in the usual
way.

In the first method, we distinguish IR singularities arisingin loop integrals from UV sin-
gularities, and treat the Dirac algebra in strictly four dimensions in the IR-divergent parts. In
the second method, IR and UV divergences are not distinguished andd-dimensional Dirac al-
gebra is used throughout. In this case evanescent operatorsE, as those given in (14), give a
non-vanishing contribution in the matching procedure. This is a subtlety of the IR regulator used
in method 2 [13]. If a different IR regulator, such as a gluon mass or method 1, is used, the
non-vanishing bare one-loop matrix element ofE is cancelled by a finite counterterm, so thatE
disappears from the NLO matching calculation [5, 12]. The non-zero contribution in method 2
originates in diagramE1 with the insertion of an evanescent operatorE. This diagram is zero
in dimensional regularization, thus leaving the corresponding counterterm uncancelled. We have
further parametrized the evanescentO(ε) parts appearing in thed-dimensional projections of
general Dirac structuresΓ ⊗ Γ onto the basic operatorsQ andQS. There are four independent
parameters in the calculation, corresponding toΓ being a string of two, three, four or five Dirac
matrices. We have checked that all four parameters disappear from the final result for the coeffi-
cients. (This is true for the evanescentO(ε) parts multiplying IR poles. The UV poles give rise
to a dependence on these parameters, which corresponds to a usual scheme dependence that is
cancelled by the matrix elements of operators in the effective theory. Our choice of scheme is
specified by (14).)

We would also like to mention that the Fierz ordering of∆B = 1 operators is immaterial
because Fierz symmetry is respected by the standard NDR renormalization scheme employed by
us. This has been checked by using the Fierz form leading to Dirac strings with flavour structure
b̄b ⊗ ūu in method 1, and̄bu ⊗ ūb in method 2, and similarly for the contribution withu → d.
(The Fierz form used in method 2 forb̄d ⊗ d̄b is such that a closed fermion loop is generated in
D1 – D4.)

In the NLO corrections to (9) we set|Vud| = 1 andVcd = 0. This introduces an error of order
|Vcd|2αs(mb)z ln z, which is well below 1% ofτ(B+)/τ(B0

d) − 1. Hence (9) only involves the
differencesF u,(1)

ij − F
d,(1)
ij . . . G

u,(1)
S,ij − G

d,(1)
S,ij . Our results for these coefficients read:

F
u,(1)
11 (z, xµ1

, xµ0
) − F

d,(1)
11 (z, xµ1

, xµ0
) =

[

16 (1 − z) (−4 − 3 z + 3 z2)

3

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

4 (1 − z)2 (16 + 19 z)

3

]

ln(1 − z) +

[

4 z (93 + 40 z − 57 z2)

9

]

ln(z) +

[

32 (1 − z)2
]

ln(xµ1
) +

[

−16 (1 − z)2
]

ln(xµ0
) +

[

32 (1 − z)

9

]

π2 +
2 (1 − z) (152 + 149 z + 155 z2)

27
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F
u,(1)
12 (z, xµ1

, xµ0
) − F

d,(1)
12 (z, xµ1

, xµ0
) =

[

32 (1 − z) (−4 − 6 z + z2)

3

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

8 (1 − z)2 (2 + 13 z + 3 z2)

3 z

]

ln(1 − z) +

[

8 z (37 − 6 z − 6 z2)

3

]

ln(z) +

[

16 (1 − z)2 (2 + z)
]

ln(xµ1
) +

[

16 (1 − z) (6 + 2 z + z2)

9

]

π2 +

4 (1 − z) (30 + 33 z − 13 z2)

3

F
u,(1)
22 (z, xµ1

, xµ0
) − F

d,(1)
22 (z, xµ1

, xµ0
) =

[

16 (19 − z) (−1 + z) z

9

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

16 (1 − z)2 (1 + 2 z)2

9 z

]

ln(1 − z) +

[

4 z (135 + 30 z − 68 z2)

27

]

ln(z) +

[

16 (1 − z)2 (8 + z)

3

]

ln(xµ1
) +

[

−8 (1 − z)2 (8 + z)

3

]

ln(xµ0
) +

[

16 (1 − z) (6 + 2 z + z2)

27

]

π2 +
4 (1 − z) (544 − 185 z − 68 z2)

81

F
u,(1)
S,11 (z, xµ1

, xµ0
) − F

d,(1)
S,11 (z, xµ1

, xµ0
) =

[

32 (1 − z)2 (1 + 2 z)
]

[

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

−8 (1 − z)2
(

2 + 10 z − 3 z2
)]

ln(1 − z) +

[

8 z (18 − 155 z + 144 z2 − 27 z3)

9

]

ln(z) +

[

−48 (1 − z)2 (1 + 2 z)
]

ln(xµ0
) +

−4 (1 − z) (133 − 53 z + 40 z2)

27

F
u,(1)
S,12 (z, xµ1

, xµ0
) − F

d,(1)
S,12 (z, xµ1

, xµ0
) =
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[

64 (1 − z) (2 − z) (1 + 2 z)

3

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

−16 (1 − z)2 (1 + 2 z + 6 z2 − 3 z3)

3 z

]

ln(1 − z) +

[

16 z (4 − 24 z + 18 z2 − 3 z3)

3

]

ln(z) +

[

−32 (1 − z)2 (1 + 2 z)
]

ln(xµ1
) +

[

−32 (1 − z)2 (1 + 2 z)
]

ln(xµ0
) +

[

−32 (1 − z) z (1 + 2 z)

9

]

π2 +
8 (1 − z) (−17 − 29 z + 36 z2)

3

F
u,(1)
S,22 (z, xµ1

, xµ0
) − F

d,(1)
S,22 (z, xµ1

, xµ0
) =

[

32 (1 − z) (3 − z) (1 + 2 z)

9

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

−8 (1 − z)2 (2 + 5 z + 8 z2 − 3 z3)

9 z

]

ln(1 − z) +

[

8 z (18 − 123 z + 82 z2 − 9 z3)

27

]

ln(z) +

[

−32 (1 − z)2 (1 + 2 z)

3

]

ln(xµ1
) +

[

−16 (1 − z)2 (1 + 2 z)

3

]

ln(xµ0
) +

[

−32 (1 − z) z (1 + 2 z)

27

]

π2 +
4 (1 − z) (−259 − 421 z + 488 z2)

81

G
u,(1)
11 (z, xµ1

, xµ0
) − G

d,(1)
11 (z, xµ1

, xµ0
) =

[16 (4 − 3 z) (1 − z)]

[

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

(1 − z)2 (122 + 5 z)
]

ln(1 − z) +

[

z (384 − 256 z − 21 z2)

3

]

ln(z) +

[

−24 (1 − z)2
]

ln(xµ1
) +

[

−6 (1 − z)2 (4 + 3 z)
]

ln(xµ0
) +

[

4 (7 − 9 z) (1 − z)

3

]

π2 +
(1 − z) (−2450 + 2575 z + 517 z2)

18
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G
u,(1)
12 (z, xµ1

, xµ0
) − G

d,(1)
12 (z, xµ1

, xµ0
) =

[8 (4 − 13 z) (1 − z)]

[

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

2 (1 − z)2 (2 + 3 z + 13 z2)

z

]

ln(1 − z) +

[

4 z (12 + 24 z − 25 z2)

3

]

ln(z) +

[

12 (1 − z)2 (14 + z)
]

ln(xµ1
) +

[

−12 (1 − z)2 (8 + z)
]

ln(xµ0
) +

[

4 (1 − z) (6 + 2 z + z2)

3

]

π2 +
(1 − z) (818 − 667 z − 19 z2)

9

G
u,(1)
22 (z, xµ1

, xµ0
) − G

d,(1)
22 (z, xµ1

, xµ0
) =

[

−8 (1 − z) (36 + 31 z + 5 z2)

3

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

4 (1 − z)2 (−1 + 68 z + 5 z2)

3 z

]

ln(1 − z) +

[

4 z (162 − 102 z − z2)

9

]

ln(z) +

[

−4 (1 − z)2 (8 + z)
]

ln(xµ1
) +

[

2 (1 − z)2 (8 + z)
]

ln(xµ0
) +

[

2 (1 − z) (60 + 77 z + 7 z2)

9

]

π2 +
(1 − z) (−2803 + 2786 z + 725 z2)

27

G
u,(1)
S,11 (z, xµ1

, xµ0
) − G

d,(1)
S,11 (z, xµ1

, xµ0
) =

[

−18 (1 − z)2 (1 + 2 z)
]

ln(1 − z) +

[

−44 (4 − 3 z) z2

3

]

ln(z) +

4 (1 − z) (28 + 103 z − 164 z2)

9

G
u,(1)
S,12 (z, xµ1

, xµ0
) − G

d,(1)
S,12 (z, xµ1

, xµ0
) =

[16 (1 − z) (1 + 2 z)]

[

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

−4 (1 − z)2 (1 + z) (1 + 2 z)

z

]

ln(1 − z) +

[

4 z (6 − 51 z + 28 z2)

3

]

ln(z) +
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[

−24 (1 − z)2 (1 + 2 z)
]

ln(xµ1
) +

[

−8 (1 − z) z (1 + 2 z)

3

]

π2 +

4 (1 − z) (−53 − 80 z + 82 z2)

9

G
u,(1)
S,22 (z, xµ1

, xµ0
) − G

d,(1)
S,22 (z, xµ1

, xµ0
) =

[

16 (1 − z) (1 + 2 z) (3 + 5 z)

3

] [

Li2(z) +
ln(1 − z) ln(z)

2

]

+

[

−2 (1 − z)2 (−2 + 31 z + 64 z2 + 3 z3)

3 z

]

ln(1 − z) +

[

2 z (36 − 336 z + 62 z2 + 9 z3)

9

]

ln(z) +

[

8 (1 − z)2 (1 + 2 z)
]

ln(xµ1
) +

[

4 (1 − z)2 (1 + 2 z)
]

ln(xµ0
) +

[

−4 (1 − z) (1 + 2 z) (9 + 7 z)

9

]

π2 +
(1 − z) (385 + 1519 z − 3278 z2)

27
(15)

HereLi2(z) = − ∫ z
0 dt [ln(1 − t)]/t is the dilogarithm function. Any dependence on infrared

regulators has cancelled from the coefficients in (15) showing that infrared effects properly fac-
torize. As another check we have verified that the dependenceon µ1 cancels analytically to the
calculated order.

For our numerical studies we choose the following range for the input parameters:

αs(MZ) = 0.118 ± 0.003, mb = 4.8 ± 0.1 GeV, z = 0.085 ± 0.015. (16)

Throughout this paper we always removeO(α2
s) terms from the calculated coefficients. (For

instance, at NLO we write a product such asC2
1F

u as C2
1,LOF u

NLO + 2C1,LO dC1F
u
LO, where

C1,NLO = C1,LO + dC1 denotes the NLO Wilson coefficient.) In all terms we use the two-loop
expression for the running couplingαs in QCD with five flavours. Numerical values for the
calculated coefficients can be found in Tab. 1. The two contributions from(F u − F d)B1 +
(Gu −Gd)ǫ1 and from(F u

S − F d
S)B2 + (Gu

S −Gd
S)ǫ2 to Γ(B0

d) − Γ(B+) are separately scheme-
independent. Tab. 1 reveals that the former part is expectedto give the dominant contribution
to the desired width difference. The results also show a substantial improvement of theµ1-
dependence in the NLO compared to LO. This dependence is plotted in Fig. 3 for the two Wilson
coefficients of the important vector operators. The approximation employed in [8] settingz = 0
in the NLO correction is also plotted. Expectedly, the accuracy of this approximation decreases
for small µ1, because the difference to the exact NLO result is of orderαs(µ1) z ln z. For the
final result of our coefficients we estimate theµ1-dependence in a more conservative way: we
vary µ1 in F u . . . Gu

S andF d . . . Gd
S independently. Further the variation withz andαs(MZ) in
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z 0.085 0.070 0.100
µ1 mb/2 mb 2 mb mb mb

F u,LO − F d,LO 0.865 0.270 −0.176 0.280 0.261
F u,NLO − F d,NLO 0.396 0.460 0.386 0.469 0.452

F u,LO
S − F d,LO

S 0.002 0.042 0.105 0.043 0.042

F u,NLO
S − F d,NLO

S 0.035 0.033 0.026 0.031 0.035

Gu,LO − Gd,LO −9.912 −8.618 −7.848 −8.887 −8.353
Gu,NLO − Gd,NLO −8.665 −8.501 −8.154 −8.718 −8.280

Gu,LO
S − Gd,LO

S 2.679 2.404 2.231 2.420 2.385

Gu,NLO
S − Gd,NLO

S 1.668 1.850 1.902 1.854 1.843

Table 1: Numerical values for the coefficients in (9) forαs(MZ) = 0.118 andµ0 = mb =
4.8 GeV.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
µ1/mb
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F
u
-F

d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
µ1/mb

-10.0

-9.0

-8.0

-7.0

G
u
-G

d

Figure 3: Dependence ofF u − F d andGu − Gd on µ1/mb for the input parameters in (16) and
µ0 = mb. The solid (short-dashed) line shows the NLO (LO) result. The long-dashed line shows
the NLO result in the approximation of [8], i.e.z is set to zero in the NLO corrections.

the ranges of (16) is calculated and all these sources of theoretical uncertainty are symmetrized
individually and added in quadrature. The dependence onz is only an issue forGu − Gd. We
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find:

NLO LO app

F u − F d 0.460 ± 0.101 0.270 ± 0.480 0.440 ± 0.119

F u
S − F d

S 0.033 ± 0.046 0.042 ± 0.052 0.025 ± 0.045

Gu − Gd −8.50 ± 0.40 −8.62 ± 0.90 −8.00 ± 0.32

Gu
S − Gd

S 1.85 ± 0.08 2.40 ± 0.23 1.80 ± 0.10

(17)

The quoted central values correspond to the choiceµ1 = mb and the central values in (16).
The third column in (17) shows the result for the approximation of [8], settingz = 0 in the
NLO corrections. Forµ1 = mb this approximation reproduces the size of the NLO corrections
to F u − F d and Gu

S − Gd
S to better than 15% . The small NLO correction toGu − Gd is,

however, overestimated. The NLO result for this coefficient, which is largest in magnitude, is
better reproduced by the LO result than by the approximationof [8].

The origin of theαs(µ1) z ln z terms, which are the main cause of the discrepancy between
the first and third column in (17), can be traced back to diagram D11 of Fig. 2. This diagram
defines the scheme of the charm-quark mass. One can absorb theαs(µ1) z ln z terms into the LO
by replacingz with z = m2

c(µ)/m2
b(µ), which implies the replacement

F u,(1) → F u,(1) − αs

4π

∂F u,(0)

∂z
γ(0)

m z ln z (18)

in the NLO corrections toF u and similarly in the other Wilson coefficients. Hereγ(0)
m = 8

is the LO anomalous dimension of the quark mass. This procedure sums the terms of order
αn

s (µ1) z lnn z with n = 0, 1, . . . to all orders in perturbation theory. This can be seen by per-
forming an OPE of the transition operatorT which treatsmc as a light mass scale: then increasing
powers ofmc correspond to∆B = 0 operators of increasing dimension andmc andmb enter
the result at the same scaleµ1 at which the OPE is performed. In every order of the perturbation
seriesln z is split intoln(µ2

1/m
2
b) contained in the Wilson coefficients andln(m2

c/µ
2
1) residing in

the matrix elements. Since there are no dimension-8 operators with charm-quark fields contribut-
ing toΓ(B0

d)−Γ(B+), no terms of orderm2
c ln(m2

c/µ
2
1) can occur. From our NLO results we can

indeed verify that the procedure in (18) removes theαs(µ1) z ln z terms, while e.g. terms of order
αs(µ1) z2 ln z persist as expected, because there are dimension-10 operators with charm-quark
fields of the typemc(b̄q)(q̄b)(c̄c). Using z = 0.055 rather thanz = 0.085 in the coefficients
tabulated in the third column of (17) indeed removes the disturbing discrepancy with the NLO
result forGu − Gd. Also the central values ofF u − F d andGu

S − Gd
S move closer to the NLO

result, while no significant improvement occurs forF u
S − F d

S .
The width difference in (9) involves the product~F q T ~B, which is independent of the renor-

malization scheme and scales. In order to compare the schemedependent coefficients~F q with
the calculation in [8] forz = 0, we need to take into account that the coefficients in [8] are
defined for matrix elements in HQET rather than in full QCD. The matching relation connecting
HQET and full-QCD matrix elements of the four operators~O used in [8] has the form

〈 ~O〉QCD(mb) =

(

1 +
αs(mb)

4π
ĈMS

1

)

〈 ~O〉HQET (mb) , (19)
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where the4×4 matrixĈMS
1 can be found in Eq. (36) of [8]. The renormalization scheme ofoper-

ator matrix elements in full QCD is identical in our paper andin [8,9]. The only further difference
is that the operators~O are linear combinations,~O = S ~Q, of our basis~Q = (Q, QS, T, TS)T

with

S =











1
3

0 2 0
0 −2

3
0 −4

4
9

0 −1
3

0
0 −8

9
0 2

3











. (20)

(This simple relation holds beyond tree level because the renormalization schemes are identical.
The preservation of Fierz-symmetry by the choice of evanescent operators in (14) is important
for this property.) It follows that our coefficients~F are related to the corresponding coefficients
~A + αs

4π
~B in [8] at scaleµ = mb through

1

3

(

~F (0) +
αs

4π
~F (1)

)T

= ~AT S +
αs

4π

(

~BT S − ~AT ĈMS
1 S

)

. (21)

Here we have suppressed flavour labelsq = u, d and the double indicesij = 11, 12, 22 refering
to the∆B = 1 coefficientsCiCj (see (11)). Note that in the notation of [8] labelsu, d are
interchanged with respect to our convention and that the coefficients with label12 are defined
with a relative factor of two. Using (21) we have verified thatthe results of [8] obtained forz = 0
are in agreement with ours in this limit.

3 Phenomenology

3.1 τ (B+)/τ (B0
d)

One can directly use (9) to predict the desired lifetime ratio:

τ(B+)

τ(B0
d)

− 1 = τ(B+)
[

Γ(B0
d) − Γ(B+)

]

= 0.0325

(

|Vcb|
0.04

)2 (
mb

4.8 GeV

)2
(

fB

200 MeV

)2

×
[

(1.0 ± 0.2) B1 + (0.1 ± 0.1) B2 − (18.4 ± 0.9) ǫ1 + (4.0 ± 0.2) ǫ2

]

. (22)

Hereτ(B+) = 1.653 ps has been used in the overall factor and the hadronic parametersB1 . . . ǫ2

are normalized atµ0 = mb throughout this section.
In [3] it has been noticed that without a detailed study of thehadronic parameters one expects

τ(B+)/τ(B0
d) to deviate from 1 by up to±20%. This feature originates from the large coefficient

of ǫ1 and persists in our NLO prediction in (22), because the NLO corrections toGu − Gd are
small. Confronting (22) with the recent measurements [14,15],

τ(B+)

τ(B0
d)

=

{

1.082 ± 0.026 ± 0.012 (BABAR)
1.091 ± 0.023 ± 0.014 (BELLE)

(23)
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one expects|ǫ1| to be significantly smaller than1/Nc = 1/3, i.e. nonfactorizable contributions
appear to be small. This result is confirmed by the existing computations of theǫi’s in quenched
lattice QCD [9,10]. However, due to its large coefficient sophisticated non-perturbative methods
are definitely necessary to computeǫ1 sufficiently accurately. The other important term in (22)
is the first one: the NLO enhancement ofF u − F d in (17) has altered the coefficient ofB1 in
(22) from0.6 ± 1.0 in the LO to1.0 ± 0.2. While from the LO result not even the sign of this
contribution was known, the NLO result now clearly establishes a positive contribution of order
3% toτ(B+)/τ(B0

d) from the term involvingB1.
The hadronic parameters have been computed in [9] using the same renormalization scheme

as in the present paper. They read

(B1, B2, ǫ1, ǫ2) = (1.10 ± 0.20, 0.79 ± 0.10, −0.02 ± 0.02, 0.03 ± 0.01). (24)

Using |Vcb| = 0.040 ± 0.0016 from a CLEO analysis of inclusive semileptonicB decays [16],
the world averagefB = (200± 30) MeV from lattice calculations [17] andmb = 4.8± 0.1 GeV
in (22), we find

τ(B+)

τ(B0
d)

= 1.053 ± 0.016 ± 0.017,

[

τ(B+)

τ(B0
d)

]

LO

= 1.041 ± 0.040 ± 0.013, (25)

where the first error is due to the errors on the NLO coefficients as given in (22) and the hadronic
parameters (24), and the second error is the overall normalization uncertainty due tomb, |Vcb| and
fB in (22). The first error reduces to 0.008 in NLO and 0.038 in LO,if the errors on the hadronic
parameters are neglected, demonstrating the substantial reduction of scale dependence at NLO in
comparison with the LO. This result is gratifying as the strong scale dependence observed at LO
had been a major motivation for a NLO analysis. This is also seen in Fig. 4, where we show the
lifetime ratio as a function of the renormalization scaleµ1. We should, however, emphasize that
the result and error given in (25) do not include the effects of 1/mb corrections and unquenching,
which could well be on the order of 0.05. The NLO result slightly exceeds the central value of
the LO result and improves the agreement with the experimental value in (23).

3.2 τ (Ξ0
b)/τ (Ξ−

b )

The SU(3)F anti-triplet (Λb ∼ bud, Ξ0
b ∼ bus, Ξ−

b ∼ bds) comprises theb-flavoured baryons
whose light degrees of freedom are in a0+ state. These baryons decay weakly. Baryon lifetimes
have attracted a lot of theoretical attention: the measuredΛb lifetime falls short ofτ(B0

d) by
roughly 20% [18], which has raised concerns about the applicability of the HQE to baryons. Un-
fortunately this interesting topic cannot yet be addressedat the NLO level, becauseτ(Λb)/τ(B0

d)
receives contributions from the SU(3)F-singlet portionTsing of the transition operator in (5) and
NLO corrections toTsing are unknown at present. Further the hadronic matrix elements entering
τ(Λb)/τ(B0

d) involve penguin contractions of the operators in (7), whichare difficult to compute.
It is, however, possible to predict the lifetime splitting within the iso-doublet(Ξ0

b , Ξ
−

b ) with NLO
precision. The corresponding LO diagrams are shown in Fig. 5. For Ξb’s the weak decay of
the valences-quark could be relevant: the decaysΞ−

b → Λbπ
−, Ξ−

b → Λbe
−νe andΞ0

b → Λbπ
0
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Figure 4: Dependence ofτ(B+)/τ(B0
d) − 1 onµ1/mb for the central values of the input param-

eters andµ0 = mb. The solid (short-dashed) line shows the NLO (LO) result. The long-dashed
line shows the NLO result in the approximation of [8], i.e.z is set to zero in the NLO corrections.

are triggered bys → u transitions and could affect the total rates at theO(1%) level [19]. Once
the lifetime measurements reach this accuracy, one should correct for this effect. To this end we
define

Γ(Ξb) ≡ Γ(Ξb) − Γ(Ξb → ΛbX) =
1 − B(Ξb → ΛbX)

τ(Ξb)
≡ 1

τ(Ξb)
for Ξb = Ξ0

b , Ξ
−

b , (26)

whereB(Ξb → ΛbX) is the branching ratio of the above-mentioned decay modes. ThusΓ(Ξb)
is the contribution fromb → c transitions to the total decay rate. In analogy to (9) one finds

Γ(Ξ−

b ) − Γ(Ξ0
b) =

G2
F m2

b |Vcb|2
12π

f 2
BMB

(

|Vud|2 ~F u + |Vcd|2 ~F c − ~F d
)

· ~BΞb. (27)

Here ~BΞb = (LΞb

1 (µ0), L
Ξb

1S(µ0), L
Ξb

2 (µ0), L
Ξb

2S(µ0))
T comprises the hadronic parameters defined

as

〈Ξ0
b |(Qu − Qd)(µ0)|Ξ0

b〉 = f 2
BMBMΞb

LΞb

1 (µ0),

〈Ξ0
b |(Qu

S − Qd
S)(µ0)|Ξ0

b〉 = f 2
BMBMΞb

LΞb

1S(µ0),

〈Ξ0
b |(T u − T d)(µ0)|Ξ0

b〉 = f 2
BMBMΞb

LΞb

2 (µ0),

〈Ξ0
b |(T u

S − T d
S)(µ0)|Ξ0

b〉 = f 2
BMBMΞb

LΞb

2S(µ0). (28)
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Figure 5: Weak scattering (WS) and PI diagrams forΞb baryons in the leading order of QCD.
They contribute toΓ(Ξ0

b) andΓ(Ξ−

b ), respectively. CKM-suppressed contributions are not shown.

In contrast to theB meson system, the four matrix elements in (28) are not independent at the
considered order inΛQCD/mb. Since the light degrees of freedom are in a spin-0 state, thematrix
elements〈Ξb|2Qq

S + Qq|Ξb〉 and〈Ξb|2T q
S + T q|Ξb〉 are power-suppressed compared to those in

(28) (see e.g. [1,3]). This, however, is not true in all renormalization schemes, in theMS scheme
used by us2Qq

S + Qq and2T q
S + T q receive short-distance corrections, because hard gluons can

resolve the heavyb-quark mass. This feature is discussed in [7]. These short-distance corrections
are calculated from the diagramsE1 . . . E4 in Fig. 2. For our scheme we find
(

LΞb

1S(mb)

LΞb

2S(mb)

)

=

[

−1

2
+

αs(mb)

4π

(

−28/3 −7
−14/9 7/2

)] (

LΞb

1 (mb)

LΞb

2 (mb)

)

+ O
(ΛQCD

mb

)

. (29)

As an important check we find that the dependence on the infrared regulator drops out in (29).
With (29) we can express the width difference in (27) in termsof just the two hadronic parameters
LΞb

1 andLΞb

2 . We find

τ(Ξ0
b)

τ (Ξ−

b )
− 1 = τ (Ξ0

b)
[

Γ(Ξ−

b ) − Γ(Ξ0
b)
]

= 0.59

(

|Vcb|
0.04

)2 (
mb

4.8 GeV

)2
(

fB

200 MeV

)2
τ(Ξ0

b)

1.5 ps
×

[

(0.04 ± 0.01) L1 − (1.00 ± 0.04) L2

]

, (30)

with Li = LΞb

i (µ0 = mb). For the baryon case there is no reason to expect the color-octed matrix
element to be much smaller than the color-singlet ones, so that the term withL2 will dominate
the result. The hadronic parametersL1,2 have been analysed in an exploratory study of lattice
HQET [20] for Λb baryons. Up to SU(3)F corrections, which are irrelevant in view of the other
uncertainties,LΞb

i andLΛb

i are equal.

4 Conclusions

We have computed the Wilson coefficients in the heavy quark expansion to order(ΛQCD/mb)
3

for the B+–B0
d lifetime difference at next-to-leading order in perturbative QCD. These coeffi-
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cients depend on the scheme and scaleµ0 used to define the matrix elements of the∆B = 0
operators in the effective theory. Our scheme is specified bythe NDR prescription forγ5, MS
subtraction and the definition of evanescent operators given in (14). TheO(αs) accuracy is cru-
cial for a satisfactory matching of the Wilson coefficients to the matrix elements determined with
lattice QCD. Current lattice calculations, which are stillin a relatively early stage in this case,
yield, when combined with our calculations,τ(B+)/τ(B0

d) = 1.053± 0.016± 0.017 [see (25)].
The effects of unquenching and1/mb corrections are not yet included, but could well be on the
order of 0.05. Next-to-leading order corrections toτ(B+)/τ(B0

d) were recently computed in the
approximationmc = 0 [8]. Taking the limitmc → 0 of our results we find agreement with this
calculation.

A substantial improvement of the NLO calculation is the large reduction of perturbative un-
certainty reflected in the scale dependence of∆B = 1 Wilson coefficients from the standard
weak Hamiltonian. This scale dependence had been found to bevery large at leading order, pre-
venting even an unambiguous prediction of the sign ofτ(B+)/τ(B0

d) − 1 up to now [3]. With
this major source of uncertainty removed by the NLO calculation, further progress will depend
on continuing advances in the evaluation of the nonperturbative hadronic matrix elements and
the computation of1/mb-suppressed effects.
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