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We review a comprehensive computational framework to

survey the potential energy landscape for systems com-

posed of rigid or partially rigid molecules. Illustrative case

studies relevant to a wide range of molecular clusters and

soft and condensed matter systems are discussed.

1 Introduction

Computer simulations are now playing an important role in

improving our understanding of molecular science, providing

a bridge between theory and experimental observables using

the tools of statistical mechanics.1,2 The richness of the be-

haviour of such systems over multiple length and time scales

poses limitations on our ability to simulate them with atom-

istic detail to a high level of accuracy. Many of the novel

computational techniques in this field are focused on address-

ing these limitations, either by employing advanced sampling

strategies for thermodynamics3–11 or kinetics12–19 to replace

brute-force simulations, or by relying upon coarse-grained

(CG) representations20–27 with fewer degrees of freedom.

An alternative approach, similar in the spirit to coarse-

graining in reducing the number of degrees of freedom, is to

approximate the molecules as rigid bodies. This approach de-

pends upon a separation between the frequencies of the in-

termolecular modes and the intramolecular modes. A partial

relaxation of this approximation involves molecular models,

composed of rigid units linked by flexible segments, and al-

lows for such a description to be adopted for complex macro-

molecular systems. A guided choice of rigid domains in

macromolecular systems can be obtained via principal compo-

nent analysis performed on data obtained from short molecular

dynamics or Monte Carlo trajectories with all-atom represen-

tations.28–31

A rigid-body description in fact offers a versatile approach,

which provides useful insight beyond the molecular length

scale in particle-based simulations. In particular, this repre-

sentation, combined with effective potentials, can describe a

rich variety of colloidal building blocks that are anisotropic

in shape and/or surface chemistry.32 A wide array of building
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blocks can now be produced thanks to remarkable advances in

particle synthesis, thus opening up potential avenues to com-

plex functional architectures via self-assembly.32

Molecular dynamics simulations of rigid or partially rigid

molecular models require equations of motion, either in gen-

eralised coordinates involving only unconstrained degrees of

freedom, or using the Cartesian coordinates of all atoms sat-

isfying constraints.33 The former approach is commonly em-

ployed for fully rigid molecular systems, where the quaternion

representation of the rotational coordinates has emerged as the

description of choice owing to its robust characteristics.34,35

The method of constraints was originally developed for par-

tially rigid molecules,36 and is especially useful for complex

macromolecular systems.33

An alternative to standard molecular dynamics or Monte

Carlo simulations is provided by focusing on stationary points

of the underlying potential energy surface (PES) for the sys-

tem of interest to analyse structure, thermodynamics, and

kinetics.37 Within this paradigm, a comprehensive compu-

tational framework employs basin-hopping global optimisa-

tion to identify stable structures,38,39 basin-sampling to obtain

equilibrium thermodynamics relying upon the superposition

approach,11 and discrete path sampling for transition path-

ways and kinetics.14,15

Basin-hopping global optimisation performs a biased ran-

dom walk in the configuration space, where each step consists

of a local geometry optimisation to a minimum following per-

turbation from the existing minimum.39 In basin-sampling an

approximation to the relative contributions from local minima

in terms of the volumes of basins of attraction is used to ob-

tain the potential energy density of states from a sampling of

local minima.11 Using discrete path sampling we obtain a con-

nected database of local minima and transition states,40 which

defines a kinetic transition network,41,42 providing a platform

to perform kinetic analysis42,43 and all the information re-

quired to visualise the energy landscape using disconnectivity

graphs44,45.

Efficient geometry optimisation is critical in employing the

above computational framework. This energy landscape ap-

proach has recently been used in combination with a variety

of rigid and partially rigid molecular models following our

efforts to address the difficulties that geometry optimisation

of rigid bodies is known to pose. In the present contribu-

tion we summarise the methodological developments and dis-

cuss illustrative case studies to demonstrate the utility of this
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framework for systems consisting of rigid and partially rigid

molecules.

The article is organised as follows. In the next section

we summarise our recent methodological developments on

the treatment of rigid-body rotational coordinates following

a brief summary of previous work in this context, and then

outline the computational approaches we undertake to explore

the energy landscape. The section that follows then illustrates

a wide range of applications. Finally we conclude with an

outlook.

2 Methodology

2.1 Rigid-Body Rotational Coordinates: Background

Chasles’ theorem, which states that the most general displace-

ment of a rigid body can be described as a translation plus a

rotation,46 underlies our choice for a minimal set of rigid-body

coordinates. While the Cartesian representation of the centre-

of-mass is the usual choice for the translational coordinates,

rigid-body orientation has been parameterised in various ways

for geometry optimisation.47–52 One of the earliest schemes

employs three Euler angles.46 However, this representation

has singularities at α = 0, where α is the angle between the

body-fixed and laboratory z axes, and can result in the conver-

gence of geometry optimisation to spurious stationary points

for α → 0.47,53 Moreover, the use of Euler angles was found

to warrant additional precautions for characterising pathways

of structural rearrangements.47

The four-parameter unit quaternion, Q = (q0,q1,q2,q3) ≡
(q0,q), which provides a singularity-free description of rota-

tion,54 has emerged as a robust parameterisation, especially

for molecular dynamics simulations.34,35 The elegance of

quaternion algebra for manipulating rotations makes this rep-

resentation attractive and it is widely used for molecular mod-

elling.55 However, geometry optimisation with quaternion pa-

rameters leaves us with a choice to make between two pro-

tocols; one route requires a constrained optimiser to satisfy

the unit norm constraint, and the other involves unconstrained

optimisation, treating all four quaternion parameters as inde-

pendent variables at the expense of a scaling factor to reset the

determinant of the rotation matrix to unity.56

Alternatively, Stone and co-workers have considered a hi-

erarchy of axis systems.49,50 Here, a set of rotational coordi-

nates that is distinct from the one describing the orientation of

a rigid body was used to obtain the energy derivatives.

2.2 Angle-Axis Representation

The angle-axis representation of rotation is based on Euler’s

theorem,46 which states that a general displacement of a rigid

body with one point fixed is a rotation about some axis. The

angle-axis representation consists of a unit vector p̂, defining

the axis, and an angle θ, describing the magnitude of rotation

about that axis. A three-parameter representation can be ob-

tained in terms of the unnormalised vector p = [p1, p2, p3] =
θp̂, which is often called a rotation vector, whose magnitude,

θ, is the angle of rotation, and whose direction is parallel to

the axis of rotation. The equivalent quaternion representation

is Q = (q0,q1,q2,q3) ≡ (q0,q) = (cos(θ/2), p̂ sin(θ/2)), and

the reverse transformation is straightforward. The first imple-

mentation of the angle-axis scheme for geometry optimisation

of rigid molecular models sacrificed efficiency for flexibil-

ity,51 and was subsequently improved using a matrix formu-

lation.57 This scheme provides a flexible, user-friendly inter-

face to incorporate any system governed by site-site isotropic

or anisotropic potentials, and is briefly discussed below.

For the rotation vector p, Rodrigues’ rotation formula58

gives the corresponding 3×3 rotation matrix R, which results

in a transformation from the body-fixed frame to the space-

fixed frame:

R = I+(1− cosθ)p̃p̃+ sinθp̃, (1)

where I is a 3× 3 identity matrix, θ = (p2
1 + p2

2 + p2
3)

1/2 is

the angle of rotation, p̃ is the skew-symmetric matrix obtained

from p̂:

p̃ =
1

θ




0 −p3 p2

p3 0 −p1

−p2 p1 0


 , (2)

and a right-handed coordinate system with the right-hand rule

for rotations is assumed. The product of the skew-symmetric

matrix p̃, obtained from p, and any vector v returns their cross

product: p̃v = p× v. Eq. (1) is the key to the present compu-

tational scheme.

2.3 Computing Energy Gradients and Hessians

Adopting a notation to denote derivatives of a matrix A,

∂A/∂pk, by Ak (k = 1,2,3), one has57

Rk =
pk sinθ

θ
p̃2 +(1− cosθ)(p̃kp̃+ p̃p̃k)

+
pk cosθ

θ
p̃+ sinθp̃k. (3)

In the limit as θ → 0 the formulation in Eq. (1) reduces to the

identity matrix. Analytical derivatives can be obtained in this

limit by considering a Taylor expansion up to the second order

terms.

The second derivatives can be obtained within this compu-

tational scheme by successive application of the chain rule,

where six additional 3× 3 matrices of two types need to be

computed, namely ∂2R/∂p2
k and ∂2R/∂pl∂pk, which we de-

note by Rkk and Rkl , respectively.57 As for the first deriva-

tives, the limit for θ → 0 can be treated by considering Taylor

expansions.
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In this scheme the rigid-body coordinate information is all

stored in the space-fixed frame. Terms involving the angle-

axis coordinates that appear in calculating the energy and its

derivatives can be obtained by the action of the rotation ma-

trix and its derivatives on vectors or matrices defined in the

body-fixed frame, as illustrated in Appendix. A significant

gain in efficiency arises from precomputing these products for

a given configuration, thus removing as many operations as

possible from the innermost loop over each distinct pair of

sites. Benchmark calculations for minimisation of (H2O)55

clusters described by the TIP4P potential59 showed that the

present scheme in its matrix formulation gained a ten-fold

speed-up over the initial implementation, and was only about

10% slower than an Euler angle scheme, which exploited the

specific geometry of the water monomers.57 The rotation ma-

trix and its derivatives, being system-independent, can be pro-

grammed once and for all.

Even for gradient-only transition state search methods, such

as hybrid eigenvector-following,60,61 the six degrees of free-

dom associated with overall translation and rotation, as well as

any additional redundancies governed by symmetry, require

special treatment. Analytic expressions for the correspond-

ing Hessian eigenvectors with zero eigenvalues enable these

modes to be projected out,62,63 or the corresponding eigen-

values to be shifted37. The shifting procedure is more effi-

cient, especially for larger systems. While it is easy to work

out the eigenvectors for overall translation, finding the eigen-

vectors corresponding to overall rotation is more involved.

We obtained these eigenvectors by considering the change in

the angle-axis coordinates upon rotation about the axes of the

space-fixed frame through transformations via quaternions, as

outlined in ref. 57.

2.4 Metric Tensor

The metric tensor is essential for defining infinitesimal dis-

tances in a given coordinate system, and has been discussed

for various representations of orientation space.34,64 Since the

translational and rotational degrees of freedom have different

physical dimensions, care is needed to treat them on an equal

footing while mapping the PES of a rigid-body system. It is

then convenient to obtain a metric tensor for the full config-

uration space of a rigid body using generalised coordinates

without any dependence on an underlying atomistic model.

By definition, the weighted metric tensor for the full configu-

ration space of a rigid body is

Gαβ = ∑
i

wi
∂xi

∂qα
·

∂xi

∂qβ
(4)

with generalised coordinates q = {r,p}, where xi is the posi-

tion vector of site i in the laboratory frame, wi = 1 for geo-

metric properties, such as distances, or alternatively wi = mi

for normal mode analysis, and the sum goes over all the sites

decorating the rigid body. Using angle-axis variables to repre-

sent rigid-body orientation, Rühle et al. have recently shown

that the metric tensor can be split into three components: one

that depends solely on translational degrees of freedom, Gtrans
αβ

,

one for rotational degrees of freedom, Grot
αβ, and a mixing term

Gmix
αβ , with

Gtrans
αβ = Wδαβ , (5)

Grot
αβ = Tr

(
RαSRT

β

)
, (6)

Gmix
αβ =

(
2WRβXw

)
α
, (7)

where Tr stands for the trace,

W = ∑
i

wi ,

Xw =
1

W
∑

i

wixi ,

and S is the weighted tensor of gyration in the reference frame

of the rigid body with

Sαβ = ∑
i

wixi,αxi,β , (8)

where xi,α is the α(= x,y,z)-component of the vector xi. Note

that the mixing term vanishes for any consistent choice of wi

and rigid-body mapping. The metric tensor can be used to

define a coordinate independent scalar product, such as the in-

finitesimal distance ds, which is consistent with the atomistic

description

ds2 = ∑
α,β

dqα Gα,β dqβ = ∑
i

wi |dxi|
2 . (9)

Rühle et al. have applied this result to calculate the root-mean-

square gradient for energy minimisation and the kinetic en-

ergy term for normal mode analysis.65 The metric tensor for-

mulation is consistent with calculations performed on the full

atomistic resolution while only making use of the rigid-body

variables and the tensor of gyration. A measure for finite

distances, which is consistent with the underlying atomistic

representation, can also be obtained, and has been used to

adapt nudged66,67 and doubly-nudged68 elastic band methods

in double-ended transition state searches for rigid-body sys-

tems.65

2.5 Exploring the Energy Landscape

Basin-hopping (BH) global optimisation and discrete path

sampling yield complementary information, and provide a

framework to explore the underlying PES. The BH global op-

timisation approach involves a transformation of the poten-

tial energy surface, which preserves the global minimum as
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well as the energies of all the local minima.39 In practice,

the resulting coarse-grained configuration space is explored

by proposing steps, each involving a perturbation from the

current minimum in both the translational and rotational co-

ordinates for rigid bodies, followed by a local geometry opti-

misation to another minimum. The proposed step is accepted

or rejected on the basis of a Metropolis (or other suitable)

criterion based on the relative energies of the two local min-

ima. Since the objective is to escape from the basin of at-

traction of the current minimum, step sizes are much larger

than those typically used in Monte Carlo simulations of ther-

modynamic properties. A fictitious temperature is used to ap-

ply the Metropolis criterion. It is noteworthy that finding the

global minimum on the PES is often a non-trivial task, espe-

cially for molecular or mesoscopic systems in the presence of

anisotropic interactions.

Discrete path sampling (DPS) can be used to obtain a

database of minima and the transition states that connect

them.14,15,37,40 In this method, an initial path between two se-

lected minima, generally consisting of a series of intervening

transition states and minima, is determined by repeated use of

double-ended transition state searches. The doubly-nudged68

elastic band66,67,69 (DNEB) algorithm is used to identify tran-

sition state candidates, which are then accurately refined using

hybrid eigenvector-following techniques.60,61 The two min-

ima reached by (approximate) steepest-descent paths leav-

ing a transition state parallel and antiparallel to the eigen-

vector with the unique negative eigenvalue define its connec-

tivity. For local minimisations the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) algorithm of Liu and No-

cedal is used.70,71 Discrete paths are then generated systemat-

ically from the initial connected path to grow the database by

adding all the minima and transition states found during suc-

cessive connection-making attempts for pairs of minima se-

lected using a missing connection algorithm.40 The discrete

path that makes the largest contribution to the two-state rate

constant within a steady-state approximation for the inter-

vening minima can be extracted from the DPS database us-

ing a network formulation72 via Dijkstra’s shortest-path algo-

rithm73 by choosing suitable edge weights.14,15,37,40

3 Applications

3.1 Molecular clusters

Molecular clusters play an important role in bridging the gap

between single molecules and bulk matter,74 and especially

as model systems for studying solvation.75 In particular, wa-

ter and benzene clusters have attracted special attention.76,77

The quest for an accurate molecular description of the liq-

uid and solid phases of water, for which a detailed under-

standing of the hydrogen-bonding network is critical,78 has

resulted in extensive experimental and theoretical studies of

water clusters.79–82 Benzene enjoys attention as a prototypi-

cal aromatic molecule, and its spectral features make benzene

clusters conducive to experimental investigation.77 The ma-

jority of computational studies of water and benzene clusters

focus on identifying low-lying minima on the potential energy

surface.77,83–92 In fact, benzene clusters are often studied to

benchmark new global optimisation techniques.87,88,91,93 Be-

cause of the fundamental interest in understanding the inter-

action of water with aromatic systems,94 small water clusters

complexed to a single benzene molecule have also been stud-

ied.95,96

As an application of the present computational framework

to molecular clusters, the PES for (C6H6)13 was investi-

gated in a recent study by Chakrabarti et al.97 Although 13

is a magic number for benzene clusters, the symmetry of

the corresponding structure is not yet settled. The consen-

sus is on a non-crystallographic structure having a unique in-

terior molecule. Earlier computational studies employed a

number of potential energy surfaces,77,83,85,86,90 which were

found to support low-energy structures possessing either a

three-fold proper axis of rotation (C3) or a centre of inver-

sion (Ci), or both, producing an additional six-fold improper

axis of rotation (S6).90 In fact, coexistence of two isomers

in the experimental cluster beams was hypothesised to ex-

plain the observed spectra.77,90 The study by Chakrabarti et

al. employed a relatively sophisticated atom-atom intermolec-

ular potential,98 which included an anisotropic repulsion term

in the site-site interaction, and was parameterised via calcu-

lations from first principles.98 Several low-lying minima for

(C6H6)13 were identified with basin-hopping global optimisa-

tion.97 Six of these structures were found to have symmetry

elements other than the identity, as shown in Fig. 1, belonging

to the C3, Ci , and S6 point groups in pairs. The mapping of the

PES revealed an organisation of the low-lying region, shown

in Fig. 2, where efficient relaxation to the C3 global minimum

is hindered by the presence of one or more competing minima

separated by relatively high barriers. This picture is consistent

with the hypothesis of coexistence for two isomers in spectro-

scopic experiments.

As an illustration of an application to thermodynamics,

Fig. 3 shows the canonical heat capacity curve for the water

octamer, bound by the TIP4P potential,59 within the harmonic

superposition approximation.37,63,99 The canonical partition

function at temperature T can be written as63

Z(T ) = ∑
i

Zi(T ) (10)

and the harmonic approximation for the vibrational density of

states gives

Zi(T ) =
n∗i exp(−Vi/kBT )

(hν̄i/kBT )κ
. (11)
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Here Zi is the partition function for minimum i, Vi the po-

tential energy of minimum i, and n∗i is the number of dis-

tinct permutation-inversion isomers, which is inversely pro-

portional to the point group order of the minimum, ν̄i is the ge-

ometric mean of the normal mode frequencies for minimum i,

and κ is the number of vibrational degrees of freedom. Within

this approximation the following expression63 then gives the

heat capacity

CV = κkB +
1

kBT 2




∑
i

V 2
i Zi

Z
−




∑
i

ViZi

Z




2

 . (12)

The heat capacity curve was obtained from a database contain-

ing 6171 minima. The estimate for the position of the melting

transition is T = 211.5K, which is in excellent agreement with

a previous value of T = 212K obtained from parallel temper-

ing simulations.100 Furthermore, a small second peak appears

at low temperatures, as reported previously in ref. 101. This

peak corresponds to a solid/solid transition between the two

lowest minima of the water octamer with D2d and S4 symme-

try. Including approximate rotational densities of states from

a rigid rotor description of the different local minima has little

effect on the predicted thermodynamics.

3.2 Colloidal clusters

Colloidal clusters, the mesoscopic counterpart of atomic

or molecular clusters, are currently an active field of re-

search.102–108 Colloidal particles are large enough to be

amenable to direct real space imaging, but small enough to

undergo thermal Brownian motion. There has been an un-

precedented growth over the last decade in the synthesis of

colloidal building blocks with anisotropy in shape and/or sur-

face chemistry.32,109–112 Unlike isotropic spherical colloids,

which have served extensively as model systems for studying

phase transitions in atomic systems,113 these novel building

blocks possess directional interactions, commonly associated

with molecular building blocks at a smaller length scale, rais-

ing the possibility of ‘colloidal molecules’.32,112 Anisotropic

colloidal particles, providing scope for tuning the interparti-

cle interactions under laboratory conditions, have proved to

be promising building blocks for programmed assembly of

functional architectures across length scales.105,114 The study

of clusters of anisotropic colloids has recently received much

attention, especially in the context of finite-sized superstruc-

tures and crystal precursors.105,108,115 The energetics and ki-

netics of assembly pathways for small colloidal clusters also

promise to reveal fundamental insight into phenomena occur-

ring at early stages of nucleation.116

The present computational framework allows us to develop

a predictive understanding of the relationship between the

anisotropic features of the colloidal building blocks and the

structure and symmetry of the aggregates they produce. This

understanding should be very valuable for structure fabrica-

tion via self-assembly of tailored building blocks.32 Here we

summarise our recent results for chiral colloidal clusters, fo-

cusing on designing and exploiting supracolloidal chirality. A

general strategy for fabrication of helical architectures with

achiral building blocks was devised in a recent study,117 un-

derpinning the physics of emergent chirality at the meso-

scopic scale. This study was motivated by an experiment that

demonstrated a route to chiral clusters involving two compet-

ing length scales, realised with colloidal asymmetric dumb-

bells linked by a magnetic belt at the waist in the presence of

a magnetic field.105 Global optimisation identified favourable

helical structures for small clusters of rigid dipolar dumbbells

in the presence of an applied electric field, where the model

consisted of Lennard-Jones sites representing the lobes and

a point-dipole directed across the axis between the lobes.117

Figure 4 shows that an optimal value for the asymmetry pa-

rameter, characterised by the size ratio of the lobes, is cru-

cial for the emergent chirality in the presence of a sufficiently

strong electric field. While the dumbbells tend to align perpen-

dicular to the field because of the dipolar interactions, steric

interactions controlled by a second length scale are also im-

portant. The most intriguing aspect of this study was the

demonstration of emergent chirality with oblate ellipsoids of

revolution, perhaps the simplest building block that provides

a realisation of two competing length scales. In the examples

shown in Fig. 5, the oblate ellipsoids of revolution interact via

two different soft anisotropic pair potentials.118,119 An oblate

ellipsoid with idealised shape provides a coarse-grained de-

scription of discotic molecules, which tend to form columnar

liquid crystals. In fact, helical order in columnar architectures

is of great interest for achieving high charge-carrier mobility

in discotic liquid crystals.120–122

The fastest pathway that was characterised for the rever-

sal of handedness in a helical cluster revealed some interest-

ing features.123 The energy profile for the helix-handedness

inversion is shown in Fig. 6. The left- and right-handed he-

lices have the same energy in the absence of any symmetry-

breaking terms in the Hamiltonian and are enantiomers. The

inversion mechanism involves a boundary between two seg-

ments of opposite handedness, which we call a defect, prop-

agating along the helix from one end to the other. The path

involves a sequence of low-lying minima as the defect hops

between successive pairs of dumbbells. The two segments of

opposite handedness rotate in different directions through this

sequence of hopping events, marked by periodic expansion

and contraction of the helical strand as a whole; the dumb-

bells reverse their direction of rotation as they switch from

one segment to the other. The mechanism involves signif-

icant cooperativity, which couples directional rotary motion
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to spring-like linear motion.123 This inversion pathway, when

driven appropriately, may open up new avenues for fabricating

a novel class of nanoscale machines.124,125

As another example, we have deduced a minimalist de-

sign rule for a Bernal spiral, i.e. a three-stranded helix com-

posed of a chain of face-sharing tetrahedra,126 using patchy

colloids.127 The target structure was realised as the global

minimum for a finite-sized cluster of patchy colloids, with

two different types of attractive surface sites, described as

complementary patches and antipatches. For these patchy

colloids, Morgan et al. defined a model potential, which in-

volved an isotropic component, describing the interaction be-

tween spherical cores, and an anisotropic component governed

by two types of complementary patches. A tailored spatial

arrangement for three pairs of patches and antipatches, de-

rived from the geometry of a Bernal spiral, produced the tar-

get structure as the global minimum for a range of parameter

space. A minimalist design rule, which provides realistic tar-

gets for state-of-the-art experimental fabrication, was then de-

rived by systematic removal of patches. A patch-antipatch pair

offset by about 10◦ from the directly opposite spatial arrange-

ment was found to be sufficient for the ground state structure

to be a Bernal spiral (Fig. 7). It is noteworthy that a recent

experiment108 with Janus spheres observed a Bernal spiral to

emerge through kinetics. The two-patch building blocks with

a pair of complementary patch and antipatch are similar in

spirit to Janus particles, especially for wider patch widths.

As a final example in this subsection, we present the dis-

connectivity graph for a 21-particle Stockmayer cluster, St21,

including the 1000 lowest minima.128 The Stockmayer po-

tential (Lennard-Jones plus point-dipole, with strength µ) has

been studied extensively to model dipolar colloids. The small-

est cluster where knotted structures become energetically most

favoured is St21.129 A trefoil knot is the global minimum over

the range 1.7 ≤ µ < 2.9, beyond which a pair of stacked rings

becomes more favourable. Figure 8 shows the disconnectivity

graph for µ = 2.9, exhibiting a pronounced double funnel.128

A low-energy pathway connecting these structures was found

to mostly involve rearrangement of, and particle exchange be-

tween, rings in a link.128 It is noteworthy that the angle-axis

representation of the rotational coordinates for these dipolar

particles with cylindrical symmetry proved to be advantageous

even though it includes a redundant degree of freedom for each

particle. These redundant degrees of freedom contribute ad-

ditional zero eigenvalues to the Hessian matrix. Analytical

expressions for the corresponding eigenvectors were used for

projection in characterising the transition states.57

3.3 Biomolecules

To understand the functions of biomolecules, such as proteins,

DNA and RNA, it is often necessary to determine their three-

dimensional structure. Methods in biomolecular structure pre-

diction generally fall into two classes. The first class is based

on bioinformatics,130–134 taking advantage of known correla-

tions between sequence and tertiary structures from a large

training set. An alternative class of methods employ atom-

istic force fields, such as CHARMM,135,136 AMBER,137,138

OPLS,139,140 or others, to model the interatomic and inter-

molecular interactions. Our aim here is to highlight the poten-

tial advantages of using rigid domains in biomolecular struc-

ture prediction combined with force-field based methods.

Simulations with all-atom representations tend to become

prohibitively expensive for large systems. However, in many

cases, biomolecules may be considered as partially rigid

molecules. Local rigidifications can be guided by principal

component analysis of short molecular dynamics or Monte

Carlo trajectories.28–31 There are also methods, such as the

pebble game,141 where graph theoretical techniques are em-

ployed to analyse bond networks, and thus rigidity, in differ-

ent parts of the molecules of interest. Alternatively, groups of

atoms may be frozen simply because their relative deforma-

tions are irrelevant for the problems at hand. Unlike the ex-

amples discussed above, here each rigid body is distinct and

it may consist of an arbitrary number of atoms or interaction

sites.

To illustrate the use of the present computational frame-

work, benchmark calculations using the basin-hopping

method were carried out by Kusumaatmaja et al. for two small

peptides,142 the tryptophan zipper143 (PDB: 1LE0; using the

CHARMM force field135,136) and chignolin144 (PDB: 1UAO;

using the AMBER force field137,138). In both cases, the mean

first encounter time to find the global minimum from random

starting configurations is faster with local rigidifications, by

factors of 4.2 and 2.5 for the tryptophan zipper and chigno-

lin, respectively. Minimal groupings were used, where only

peptide bonds, termini and side chain rings were considered

rigid. The groupings are illustrated by the isosurfaces in Fig. 9

for the tryptophan zipper. We note that, in contrast to coarse-

graining, this approach still accounts for the full atomistic in-

teractions between the locally rigid domains, though interac-

tions between atoms within the same rigid domain need not be

computed.

The largest computational gain comes from the reduced

number of basin-hopping steps required to find the global min-

imum, as the search space is reduced. Local minima that dif-

fer only slightly in the atomic configurations of the rigidified

groups are no longer accessible. To quantify this reduction

in search space, we selected 175,685 local minima from the

unrigidified search, and reoptimised the configurations for the

local rigidifications presented in Fig. 9. We found that the

number of distinct minima decreased to 123,227, i.e. a reduc-

tion by approximately 30%.

Naturally, more aggressive rigidification results in further
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reduction in the number of degrees of freedom, and the ef-

ficiency gain will become more important the larger the sys-

tem size. Unfortunately there is always the danger of over-

rigidification, and therefore biophysical or biochemical in-

sights are necessary. To check for self-consistency, structures

optimised with rigidification can be relaxed allowing for more

intramolecular degrees of freedom up to a fully atomistic de-

scription. As an example of advantageous local rigidification,

Mochizuki et al.145 have exploited this computational frame-

work to estimate the protein-ligand binding free energy of hu-

man aldose reductase. The conformational space of the pro-

tein and the protein-ligand complex can be factorised into re-

gions close to and far from the binding pocket. The former

region must be fully accounted for, while the latter can be rep-

resented by a single, but consistent, configuration for all the

calculations. It was found that up to 70-80% of the protein

macromolecule may be rigidified while retaining a reasonably

accurate representation of the binding free energy.

4 Conclusion

We have outlined a comprehensive computational framework

for surveying the underlying potential energy surface of rigid

or partially rigid molecules. This approach yields useful in-

formation on the structure, thermodynamics, and kinetics, as

illustrated by several applications to soft and condensed mat-

ter systems, via basin-hopping global optimisation,38,39 basin-

sampling,11 and discrete path sampling14,15. A key element

of these procedures is geometry optimisation, which is used

recursively to characterise local minima and transition states

on the PES. The interface for this framework with rigid and

partially rigid molecular models relies upon a computational

scheme that uses an angle-axis representation for the rigid-

body rotational coordinates. This representation, when imple-

mented using a matrix formulation, has proved to be robust as

well as computationally efficient for gradient-based geometry

optimisation, and provides a user-friendly interface.

The versatility of a rigid-body description for particle-based

simulations goes beyond what is described in the preceding

sections. For example, a number of theoretical and computa-

tional methodologies have attempted to address the challenges

of modelling viral capsid assembly.146 The formation of cap-

sids with well-defined morphologies illustrates the remarkable

ability of biological matter to self-assemble, where a protec-

tive coat for the genetic material is formed by a large num-

ber of protein subunits. Each of the protein subunits con-

tains thousands of atoms, making particle-based simulations

with all-atom representation prohibitively expensive for the

timescales (milliseconds or larger ) of interest. Instead the

subunits are treated as rigid bodies in a wide class of coarse-

grained models.146 In another application of the present com-

putational framework, Fejer et al. systematically manipulated

anisotropic interactions in a simple coarse-grained model,

where an ellipsoid core and two repulsive LJ sites are held

together rigidly.147 A wide variety of complex morphologies,

including shells, tubes and spirals were produced.147

In the majority of the applications so far, the present frame-

work has dealt with finite-sized systems. However, it can

be extended to explore the crystal energy landscapes for

small organic molecules, where reasonably accurate inter-

molecular potentials are available within a rigid-body approx-

imation.148–150 Applications to predict crystal structures of

molecular solids and polymorphism should be very valuable

to crystal engineering.151 While the global minimum in the

crystal energy landscape corresponds to the thermodynamic

crystal structure, the low-lying minima constitute likely can-

didates for polymorphic forms. The barrier heights between

low-lying minima on the crystal energy landscape are critical

for a predictive understanding of polymorphism.150

5 Appendix

The prescription for obtaining the first derivatives of the en-

ergy with respect to the rigid-body coordinates is outlined

here for site-site isotropic potentials to highlight the salient

features of the angle-axis representation of rotation in its ma-

trix formulation. The position vector of the centre-of-mass,

r = [r1,r2,r3], and the rotation vector, p, account for the six

rigid-body coordinates. However, it is important to note that

p must be treated differently from r. If the coordinates of two

rigid bodies are denoted using the superscripts I and J, and

the sites within each rigid body by subscripts i and j, then for

site-site isotropic potentials the total energy is

U = ∑
I

∑
J<I

∑
i∈I

∑
j∈J

fi j(ri j), (13)

where ri j = |ri j|= |ri − r j| and fi j ≡U IJ
i j is the pair potential

between sites i and j. If ζ represents one of the six coordinates

of rigid body I, then the first derivative of the potential energy

is
∂U

∂ζ
= ∑

J 6=I

∑
i∈I

∑
j∈J

f ′i j(ri j)
∂ri j

∂ζ
, (14)

where f ′i j = d fi j(ri j)/dri j. Here

∂ri j

∂rI
= r̂i j, (15)

and
∂ri j

∂pI
k

= r̂i j ·
∂ri j

∂pI
k

= r̂i j · (R
I
kr0

i ), (16)

where the following relationship was used

ri j = rI +RIr0
i − rJ −RJr0

j . (17)
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Here, the vectors in the body-fixed frame are denoted by the

superscript 0. The Hessian matrix for site-site isotropic po-

tentials can easily be obtained within this scheme, which can

also deal efficiently with site-site anisotropic potentials. Fur-

ther details, including the treatment of anisotropic potentials

can be found in ref. 57. The present framework has been im-

plemented in the global optimisation program, GMIN, and the

geometry optimisation program, OPTIM, both of which are

available for use under the Gnu public software licence.152,153

The programs contain a variety of rigid-body intermolecular

potentials, including dipolar and polarisable potentials with

analytic derivatives.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Structures of six low-lying minima for (C6H6)13. Distinct pairs of structures with C3 (a,b), Ci (c,d), and S6 (e,f) symmetry are shown

with the central benzene molecule (green) is in the plane of the page and molecules belonging to the same orbit of the point group identified by

the same colour. The structures in (a), (c), and (e) have lower energies than (b), (d), and (f), respectively. The structure in (a) corresponds to

the global minimum. Reproduced from Ref. 97.
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Fig. 2: Disconnectivity graph for the (C6H6)13 cluster. The lowest 200 minima are shown, highlighting the six low-lying minima shown in

Fig. 1. Superscripts are used to distinguish between structures of the same symmetry, following the labels for the panels of Fig. 1. The unit of

energy is kJmol−1 on the vertical axis. The graph groups enantiomers together, where applicable. Reproduced from Ref. 97.
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Fig. 3: Canonical heat capacity curve for the water octamer, described by the TIP4P pair potential.
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(a) (b) (c) (d)

Fig. 4: Global minima for clusters of six dipolar dumbbells in the presence of an applied electric field, illustrating the importance of the

asymmetry of the building blocks for this field-driven assembly to produce a helix. Here the asymmetry parameter α, characterised by the size

ratio of the lobes of the dumbbells, is increased from 1 to 2 for dipole moment µD = 1 and electric field E = 5, with the latter parameters in

reduced units:117 (a) α = 1; (b) α = 1.43; (c) α = 1.67; (d) α = 2. The arrow corresponds to the field direction. Helices are observed in (c) and

(d). Reproduced from Ref. 117.
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(a) (b)

Fig. 5: Global minima for clusters of N axially symmetric discoids bound by the oblate ellipsoids of revolution that interact via two different soft

anisotropic pair potentials. (a) N = 13 with the Paramonov-Yaliraki potential118 and (b) N = 49 with a modified Gay-Berne pair potential. 119

Different colours are used to distinguish between the stacks. Reproduced from Ref. 117.
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Fig. 6: Potential energy profile for a supracolloidal helix along the fastest pathway identified between enantiomers. The potential energy, V , is

shown as a function of the integrated Cartesian path length along the pathway, s. The structures of some of the low-lying minima, which are

numbered along the pathway, are superimposed on the energy profile, including the global minima at either end. The two segments of opposite

handedness are distinguished by different colours. The right-handed segment is shown in green and cyan and the left-handed one in red and

yellow. The helical axis for the global minima is parallel to the static electric field. V and s are in reduced units. Reproduced from Ref. 123

with permission from The Royal Society of Chemistry.
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Fig. 7: Global minimum for 18 patchy colloids, each decorated with a patch-antipatch pair offset by roughly 10◦ from the directly opposite

spatial arrangement. (a) Side view; (b) top view. Reprinted with permission from Ref. 127. Copyright 2013 American Chemical Society.
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Fig. 8: Disconnectivity graph for St21 with a reduced dipole moment value of µ =2.90. Branches to the 1000 lowest energy minima are shown.

Here, ε∗ is the full Stockmayer pair energy for parallel head-to-tail dipole vectors at the corresponding value of dipole moment. The two

structures correspond to the stacked ring (I) and trefoil knot (II) minima. Reproduced from Ref. 128 with permission from The Royal Society

of Chemistry.
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Local Rigidification

Fig. 9: Global minimum configuration of the tryptophan zipper (trpzip 1, PDB: 1LE0). From left to right, an increasing number of atoms is

locally rigidified during global optimisation. The magenta, cyan, and orange isosurfaces correspond to the tryptophan side chain rings, peptide

bonds, and end groups.
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