
Algorithmica manuscript No.
(will be inserted by the editor)

Model Counting for CNF Formulas of Bounded Modular Treewidth

Daniel Paulusma · Friedrich Slivovsky ·
Stefan Szeider

Received: date / Accepted: date

Abstract We define the modular treewidth of a graph as its treewidth after contraction of modules.
This parameter properly generalizes treewidth and is itself properly generalized by clique-width.
We show that the number of satisfying assignments can be computed in polynomial time for CNF
formulas whose incidence graphs have bounded modular treewidth. Our result generalizes known
results for the treewidth of incidence graphs and is incomparable with known results for clique-
width (or rank-width) of signed incidence graphs. The contraction of modules is an effective data
reduction procedure. Our algorithm is the first one to harness this technique for #SAT. The order
of the polynomial bounding the runtime of our algorithm depends on the modular treewidth of the
input formula. We show that it is unlikely that this dependency can be avoided by proving that SAT
is W[1]-hard when parameterized by the modular incidence treewidth of the given CNF formula.

Keywords Propositional Satisfiability ·Model Counting · Algorithms

1 Introduction

A module in a graph is a set S of vertices such that for any vertex v /∈ S, every vertex in S is a
neighbor of v or every vertex in S is a non-neighbor of v. Contraction of modules, that is, removing
from each module all but one vertex is an important preprocessing step for a wide range of combi-
natorial optimization problems [12]. The aim of this paper is to harness its power for propositional
model counting (#SAT) that asks for the number of satisfying truth assignments of a given CNF
formula, a well-studied problem with applications in artificial intelligence, such as probabilistic in-
ference [1,10,21]. We illustrate the power of the module contraction operation with the following
example. Given a set {x1, . . . , xn} of variables, consider a CNF formula Fm,n that consists of m

Slivovsky and Szeider’s research was supported by the ERC, grant reference 239962. Paulusma’s research was supported
by EPSRC, grant reference EP/G043434/1.

An extended abstract of this paper appeared in the Proceedings of STACS 2013.

D. Paulusma
School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, UK
E-mail: daniel.paulusma@durham.ac.uk

F. Slivovsky
Institute of Computer Graphics and Algorithms, Vienna University of Technology, A-1040 Vienna, Austria
E-mail: fslivovsky@gmail.com

S. Szeider
Institute of Computer Graphics and Algorithms, Vienna University of Technology, A-1040 Vienna, Austria
E-mail: stefan@szeider.net

2 Daniel Paulusma et al.

β-hypertree width

incidence clique-width

modular incidence treewidth∗signed incidence clique-width [8]

incidence treewidth [8,20,23]

primal treewidth [20]

Fig. 1 A hierarchy of structural parameters. An arc from a parameter p to a parameter q reads as “q is bounded whenever p
is bounded.” Bold type is used to indicate parameters that render #SAT polynomial-time solvable when bounded. The result
of this paper is indicated by a ∗-symbol.

distinct clauses each containing n literals over {x1, . . . , xn}, so that every variable occurs in every
clause. It is easy to see that Fm,n has exactly 2n − m satisfying truth assignments. The vertices
of the incidence graph of Fm,n (the bipartite graph whose vertex classes consist of variables and
clauses, and a variable is exactly adjacent to those clauses it occurs in) can be partitioned into two
modules. By contracting these modules, the incidence graph of Fm,n reduces to a single edge. We
call the treewidth of the graph obtained from the incidence graph of a CNF formula F after con-
tracting all modules the modular incidence treewidth of F . We consider classes of CNF formulas
that have bounded modular incidence treewidth and show that #SAT is polynomial-time tractable
for such classes. More specifically, we prove the following theorem (where the length of a formula
is equal to the sum of the number of literals in each of its clauses).

Theorem 1 #SAT can be solved in time O(`3k+4) on CNF formulas that have modular incidence
treewidth at most k and length `.

This result characterizes a new hierarchy of tractable classes for a notoriously hard problem:
#SAT is #P-complete in general [24] and remains #P-hard even for monotone 2CNF formulas and
Horn 2CNF formulas [19]. It is NP-hard to approximate the number of satisfying truth assignments
of a formula with n variables to within 2n

1−ε

for any ε > 0. Again, this hardness result even holds
for monotone 2CNF formulas and Horn 2CNF formulas [19], which can be viewed as classes with
some syntactic restriction. By contrast, modular incidence treewidth is a so-called structural param-
eter. Classes with some structural restriction are obtained by bounding parameters of (hyper)graphs
associated with formulas. Figure 1 illustrates the relation of modular incidence treewidth to other
structural parameters with respect to #SAT; in Section 1.1 we will discuss Figure 1 in detail.

After stating all necessary terminology and notation in Section 2, we prove Theorem 1 in Sec-
tion 3 by dynamic programming on a tree decomposition of the modular incidence graph. This is
the graph obtained from the incidence graph of a formula by contracting all modules. Vertices in
the modular incidence graph represent modules that are either sets of variables or sets of clauses.
As the formula Fm,n given in our initial example shows, the sizes of these sets cannot be bounded
in terms of the modular incidence treewidth alone. As a consequence, algorithms for solving #SAT
on formulas of bounded treewidth, which typically rely on data structures indexed by the subsets of
variables and clauses associated with a bag of the tree decomposition [20], do not yield tractability.
It is a significant challenge to encode the information required to perform dynamic programming
in space polynomially bounded by the input size. Our main technical contribution is the use of

Model Counting for CNF Formulas of Bounded Modular Treewidth 3

projections for solving this task (the projection of a set C of clauses under some truth assignment τ
is the subset of those clauses of C that are not satisfied by τ). We define an equivalence relation on
truth assignments based on their projections for a particular formula. This formula is determined by
the boundary of a subgraph induced by the tree decomposition. The resulting equivalence relation
is sufficiently precise for the number of equivalence classes to still be polynomially bounded. This
bound translates into a polynomial bound for the runtime of a dynamic programming algorithm,
allowing us to establish Theorem 1. The order of the corresponding polynomial is a function in the
modular incidence treewidth. The following result shows that this function cannot be replaced by
a constant, subject to the widely held assumption that FPT6=W[1].

Theorem 2 SAT is W[1]-hard, when parameterized by the modular incidence treewidth of the
input formula.

Theorem 2 can be proven by using the same W[1]-hardness reduction as the one in the proof of
the result by Ordyniak et al. [15, p.98] that states that SAT is W[1]-hard when parameterized by the
β-hypertree width (see Appendix A). In particular, Theorem 2 implies that Theorem 1 cannot be
established by a direct application of the algorithmic meta-theorems of Courcelle, Makowsky, and
Rotics [5,6], which can be used in the case of primal treewidth, incidence treewidth or signed inci-
dence clique-width, the other three structural parameters of Figure 1 that render #SAT cubic-time
solvable provided they are bounded (or even linear-time solvable in the case of primal treewidth
and incidence treewidth as discussed in Section 1.1).

1.1 Structural Parameters Related to Modular Treewidth

In order to discuss the relationships between the structural parameters in Figure 1 in more detail we
use the following terminology. For two structural parameters p and q of CNF formulas, we say that
p dominates q if there is a function f such that p(F) ≤ f(q(F)) for all formulas F . Parameters p
and q are called equivalent if p dominates q and q dominates p. We say that p is more general
than q if p dominates q but not the other way around, whereas p and q are called incomparable if
neither p dominates q nor q dominates p. Let p be a structural parameter. We say that a class of
CNF formulas has bounded p, whenever there is a constant c such that p(F) ≤ c for all formulas
F in the class.

The primal graph of a given CNF formula F has as vertices the variables of F , and two variables
are joined by an edge if and only if they occur together in at least one clause. The primal treewidth
of a formula is the treewidth of its primal graph. It is known that #SAT linear-time tractable for
classes of CNF formulas of bounded primal treewidth [20]. The same result has been shown for
classes of formulas of bounded branchwidth [1], a parameter equivalent to primal treewidth [18]
(also see [23]). The incidence treewidth of a formula is the treewidth of its incidence graph. This
parameter is known to be more general than primal treewidth [11]. It is also known that #SAT is
linear-time tractable for classes of CNF formulas of bounded incidence treewidth; see [8,20] for
proofs of this result, which do not rely on the algorithmic meta-theorems of Courcelle, Makowsky
and Rotics [5,6] that yield a cubic-time algorithm.

The clique-width of a graph is an invariant based on graph grammars [4], whereas the signed
clique-width is a variant of clique-width for directed graphs [7]. The signed incidence graph is
obtained from the incidence graph by orientating its edges so as to indicate positive or negative
occurrences of variables. The (signed) incidence clique-width of a formula is the clique-width of its
(signed) incidence graph. It is known that #SAT can be solved in cubic time for any class of CNF
formulas of bounded signed incidence clique-width [8]. Incidence clique-width is more general
than signed incidence clique-width [8] and signed incidence clique-width is more general than
incidence treewidth [23]. However, the complexity status of #SAT for classes of CNF formulas
of bounded incidence clique-width is still open. The β-hypertree width of a CNF formula is a
parameter that is yet more general than incidence clique-width [11]. Also the complexity status of
#SAT for classes of CNF formulas of bounded β-hypertree width remains to be settled.

4 Daniel Paulusma et al.

Clique-width is closely related to a parameter known as rank-width [16]. The signed incidence
rank-width of a formula is the rank-width of its signed incidence graph. This parameter is equivalent
to the signed incidence clique-width, so tractability of #SAT for CNF classes of bounded signed
incidence rank-width follows from the aforementioned result on signed incidence clique-width [8].
Ganian, Hlinený and Obdrzálek developed an algorithm for #SAT with runtime single-exponential
in the signed incidence rank-width [9]. The signed incidence rank-width is never larger than twice
the signed incidence clique-width but it can be exponentially smaller [9], so this algorithm can be
seen as an improvement over the algorithm of Fischer, Makowsky, and Ravve, whose runtime is
single-exponential in the signed incidence clique-width [8].

As follows from our discussion, the equivalent structural parameters signed incidence clique-
width and signed incidence rank-width are currently the most general structural parameters based
on width measures for which #SAT is known to be polynomial-time tractable. We now explain
the remaining three arcs in Figure 1. In particular, we will show that modular incidence treewidth
is incomparable with signed incidence clique-width and more general than incidence treewidth.
The following two examples will be useful for showing this; see Section 2 for the definition of
treewidth.

Example 1 Let x1, . . . , xm be distinct variables. The formula ϕm is defined as the set of clauses
Ci,j for 1 ≤ i, j ≤ m and i 6= j, where Ci,j = ({x1, . . . , xm} \ {xi, xj}) ∪ {¬xi,¬xj}. The
(unsigned) incidence graph corresponds to the complete bipartite graph Kn,m for n =

(
m
2

)
, which

has treewidth m. Hence, the incidence treewidth of ϕm is equal to m as well. The signed incidence
clique-width of ϕm tends to infinity with m [8]. As in our initial example, contracting all modules
reduces Kn,m to a single edge. This means that the modular incidence treewidth of ϕm is 1 for
arbitrary m.

Example 2 Let x1, . . . , xm, y1, . . . , ym be 2m distinct variables. We let ψm consist of the clauses
Ci for 1 ≤ i ≤ m where Ci = {yi, x1, . . . , xm}, along with m singleton clauses {x1}, . . . , {xm}.
The incidence graph I(ψm) of ψm has no modules containing more than one vertex. Hence the
modular incidence treewidth and the incidence treewidth of ψm coincide. Since I(ψm) contains
Km,m as a subgraph, its treewidth is at least m. Hence, the modular incidence treewidth of ψm is
at least m. By contrast, it can be shown that the signed incidence clique-width of ψm is at most 4
for arbitrary m (see Appendix B). The incidence clique-width of any formula is at most twice its
signed incidence clique-width [8], so the incidence clique-width of ψm is at most 8 for arbitrarym.

We are now ready to prove the following three propositions, each of which correspond to an
arc in Figure 1.

Proposition 1 Modular incidence treewidth and signed incidence clique-width are incomparable.

Proof The statement of the proposition follows immediately from Examples 1 and 2. ut

Proposition 2 Modular incidence treewidth is more general than incidence treewidth.

Proof Modular incidence treewidth dominates incidence treewidth: by contracting modules we
obtain an induced subgraph of the incidence graph, and the treewidth of a graph is bounded from
below by the treewidth of any of its subgraphs. Then the result follows from recalling that the class
of formulas from Example 1 has unbounded treewidth and modular incidence treewidth 1. ut

Proposition 3 Incidence clique-width is more general than modular incidence treewidth.

Proof It is well known that there is a function that provides an upper bound on the clique-width
of any graph in terms of its treewidth, and that clique-width is invariant under contraction of mod-
ules [7]. Hence, incidence clique-width dominates modular incidence treewidth. Then the result
follows from recalling that the class of formulas from Example 2 has unbounded modular inci-
dence treewidth and bounded incidence clique-width. ut

Model Counting for CNF Formulas of Bounded Modular Treewidth 5

2 Preliminaries

Let X and Y be sets, and let f : X → Y be a function. We write f−1(y) = {x ∈ X | f(x) = y}.
For a subset X ′ ⊆ X , we let f |X′ denote the restriction of f to X ′, that is, f |X′(x) = f(x) for all
x ∈ X ′. Similarly, a function h with domain X∗ ⊇ X is an extension of f if h(x) = f(x) for all
x ∈ X . If Y = 2Z for some set Z and f(x) = {z} for some z ∈ Z, then we may write f(x) = z
instead. Let X∗ and Y ∗ be sets, and let g : X∗ → Y ∗ be a function that agrees with f on X ∩X∗,
that is, g(x) = f(x) for all x ∈ X ∩X∗. Then the function f ∪ g : X ∪X∗ → Y ∪ Y ∗ is defined
as (f ∪ g)(x) = f(x) if x ∈ X and (f ∪ g)(x) = g(x) if x ∈ X∗ \X .

We assume an infinite supply of propositional variables. A literal is a variable x or a negated
variable x; we put var(x) = var(x) = x; if y = x is a literal, then we write y = x. For a set
S of literals we write S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite
non-tautological set of literals. A finite set of clauses is a CNF formula (or formula, for short). The
length of a formula F is denoted by ` =

∑
C∈F |C|. The union of two clauses C and D, denoted

by CD, is the union of the literals of C and D. A variable x occurs in a clause C if x ∈ C ∪ C.
We let var(C) denote the set of variables that occur in C. A variable x occurs in a formula F if it
occurs in one of its clauses, and we let var(F) =

⋃
C∈F var(C).

Let F be a formula. The incidence graph of F is the bipartite graph I(F) with vertex set
var(F) ∪ F and edge set {Cx | C ∈ F and x ∈ var(C) }. Two vertices are twins if they have
the same neighbors in I(F). The equivalence classes of the twin relation are called modules. Since
the incidence graph I(F) is bipartite, twins either consist of two variables or of two clauses, and
each module either contains only variables or only clauses. If the vertices of a module correspond
to clauses, then we call the module a clause module; otherwise we call it a variable module. Note
that a clause module is a finite set of clauses and hence a formula. By definition, all clauses of
any clause module C of F contain all variables of any variable module X of F if and only if one
clause of C contains at least one variable from X . This implies that the set of variable modules of
C is a subset of the set of variable modules of F . For a set of clause or variable modules S, we let
〈S〉 =

⋃
S∈S S denote the union of the elements of S . The modular incidence graph I∗(F) is the

bipartite graph obtained from I(F) after removing all but one vertices of each module.
Let F be a formula. A truth assignment is a mapping τ : X → { 0, 1 } defined on some

set of variables X ⊆ var(F). If X = var(F), then τ is a total truth assignment (of F). For
x ∈ X , we define τ(x) = 1 − τ(x). A truth assignment τ satisfies a clause C if C contains
some literal x with τ(x) = 1. If τ satisfies all clauses of F , then τ satisfies F ; in that case we
call F satisfiable. The SATISFIABILITY (SAT) problem is that of testing whether a given formula
is satisfiable. Propositional model counting (#SAT) is a generalization of SAT that asks for the
number of satisfying total truth assignments of a given formula.

Let X be a set of variables. For a clause C, we let CX = {x ∈ C | var(x) ∈ X }; note
that CX = ∅ if and only if C contains no literals x or x with x ∈ X . For a formula F , we let
FX = {CX | C ∈ F } \ {∅}. For a truth assignment τ , we let clause(τ) = τ−1(0) ∪ τ−1(1);
note that clause(τ) 6= clause(τ ′) for any two distinct truth assignments τ and τ ′. The following
lemma immediately follows from the above definitions.

Lemma 1 Let τ : X → {0, 1} be a truth assignment defined on some set of variables X . Let C be
a clause. Then C is not satisfied by τ if and only if CX = clause(τ |X∩var(C)).

We now adjust the notion of a projection as introduced by Kaski, Koivisto and Nederlof [13] for
our purposes. This notion plays an important role in our paper. Let F be a formula and X be a set
of variables. We refer to the set of clauses of F not satisfied by a truth assignment σ : X → {0, 1}
as the (negative) projection of σ on F denoted F (σ). We denote the set of all these projections
by P(F,X) = {F (σ) | σ : X → {0, 1} }. If X ⊇ var(F), then we may write PF instead,
as P(F,X) = P(F,var(F)) holds in that case. Note that F is satisfiable if and only if the empty
projection ∅ belongs to PF , and that the number of satisfying total truth assignments of F is equal

6 Daniel Paulusma et al.

to |{σ : var(F) → { 0, 1} | F (σ) = ∅ }|. The following lemma, which follows immediately from
the definition of a projection, states a useful property of projections.

Lemma 2 Let F be a formula and let X,Y be two sets of variables. Let σ : X → {0, 1} and
τ : Y → {0, 1} be two truth assignments that agree on X ∩ Y . Then F (σ ∪ τ) = F (σ) ∩ F (τ).

For a clause C and a formula F we let select(F,C) = {C ′ ∈ F | C ⊆ C ′ }. We will
now prove two useful lemmas. The first lemma is for clause modules C. It implies that every truth
assignment on var(C) either satisfies C or does not satisfy a unique clause of C. The second lemma
is similar but with respect to variable modules X .

Lemma 3 Let C be a clause module of a formula F , and let τ be a truth assignment defined on a
set of variables X . Then C(τ) = select(C, clause(τ |X∩var(C))).

Proof Let C ∈ C. Because C is a clause module, var(C) = var(C). Then, by using Lemma 1
and the definitions of clause and select, we find that C ∈ C(τ) if and only if C is not sat-
isfied by τ if and only if CX = clause(τ |X∩var(C)) = clause(τ |X∩var(C)) if and only if
C ∈ select(C, clause(τ |X∩var(C))). ut

Lemma 4 Let X be a variable module of a formula F , and let τ be a truth assignment defined on
a superset of X . If FX(τ) 6= ∅, then FX(τ) = clause(τ |X).

Proof Let C ∈ FX . Because X is a variable module, var(C) = X . Lemma 1 tells us that C is not
satisfied by τ if and only if C = clause(τ |X∩var(C)) = clause(τ |X). ut

We also need the following lemma.

Lemma 5 Let X be a variable module of a formula F . Let E = {σ : X → {0, 1} | FX(σ) = Π}
for some Π ∈PFX . Then |E| = 1 if Π 6= ∅, and |E| = 2|X| − |FX | if Π = ∅.

Proof First suppose that Π 6= ∅. Recall that clause(τ) 6= clause(τ ′) for any two distinct truth
assignments τ and τ ′. Then, by Lemma 4, there is only one truth assignment τ : X → {0, 1} with
FX(τ) = Π , namely the truth assignment τ with FX(τ) = clause(τ) = Π . Hence, |E| = 1 in
this case.

Now suppose that Π = ∅. The number of truth assignments defined on X is equal to 2|X|. By
Lemma 4, each such truth assignment τX does not satisfy one unique clause with set of variables
X , namely the clause clause(τX). Then there are exactly 2|X| − |FX | truth assignments τX that
do satisfy FX , i.e., that have FX(τX) = ∅ = Π . Hence, in this case, |E| = 2|X| − |FX |. ut

We finish this section with some terminology on tree decompositions. Let G = (VG, EG) be a
finite, undirected graph with neither self-loops nor multiple edges. A tree decomposition of G is a
triple (T, χ, r), where T = (VT , ET) is a tree rooted at r and χ : VT → 2VG is a labeling of the
vertices of T (called nodes) by subsets of VG (called bags) such that the following three conditions
hold:

1.
⋃
t∈VT

χ(t) = VG,
2. for each edge uv ∈ EG, there is a node t ∈ VT with {u, v} ⊆ χ(t),
3. for each vertex x ∈ VG, the set of nodes t with x ∈ χ(t) forms a connected subtree of T .

The width of a tree decomposition (T, χ) is the size of a largest bag χ(t) minus 1. The treewidth of
G is the minimum width over all possible tree decompositions ofG. A tree decomposition (T, χ, r)
is nice if T is a binary tree such that the nodes of T belong to one of the following four types:

A. a leaf node t is a leaf of T ,
B. an introduce node t has one child t′ and χ(t) \ {v} = χ(t′) for some vertex v ∈ VG,
C. a forget node t has one child t′ and χ(t′) \ {v} = χ(t) for some vertex v ∈ VG,
D. a join node t has two children t1, t2 and χ(t) = χ(t1) = χ(t2).

Model Counting for CNF Formulas of Bounded Modular Treewidth 7

Kloks [14] showed that every tree decomposition of a graph G can be converted in linear time to a
nice tree decomposition, such that the size of the largest bag does not increase, and the correspond-
ing tree has at most 4|VG| nodes.

Let F be a formula. We call the treewidth of the modular incidence graph I∗(F) the modular
incidence treewidth of F . Let (T, χ, r) be a tree decomposition of I∗(F). For t ∈ VT , we write
χc(t) and χv(t) to denote the sets of clause modules and variable modules in χ(t), respectively.
Note that χ(t) = χc(t) ∪ χv(t). Moreover, we let Xt and Ft denote the set of variable modules
and the set of clause modules occurring in the subtree of T rooted at t, respectively. We write
Xt = 〈Xt〉 and Ft = 〈Ft〉. Note that Xr = var(F) and Fr = F .

3 Solving #SAT for Formulas of Bounded Modular Treewidth

In this section, we present an algorithm for computing the number of satisfying total truth assign-
ments of a formula F . Our algorithm runs in polynomial time provided that the modular incidence
treewidth of F is fixed. Before discussing our algorithm in detail, we first explain the main ideas
behind it.

Let F be a formula and X be a set of variables. We can partition truth assignments defined
on X into equivalence classes with respect to a relation ∼(F,X), which is defined as follows. Let
σ, τ : X → {0, 1} be two distinct truth assignments defined on X . Then σ ∼(F,X) τ if and only if
σ and τ satisfy exactly the same set of clauses of F , or equivalently, if and only if F (σ) = F (τ).
Due to the latter equivalence, we can speak about the projection of an equivalence class of ∼(F,X)

on F . Recall that the number of satisfying total truth assignments of F is equal to |{σ : var(F)→
{ 0, 1} | F (σ) = ∅ }|, which is the size of the equivalence class of ∼(F,var(F)) corresponding to
the empty projection.

Now let (T, χ, r) be a nice tree decomposition of I∗(F). We will apply dynamic programming
over (T, χ, r). As usual, we start in the leaves of the tree and, using the parent-child relation, move
to nodes closer to the root, and we stop after having processed the root. For each node t ∈ VT , we
define the formula

F ∗t =
{
FX | X ∈ χv(t)

}
∪ Ft =

{
FX | X ∈ χv(t)

}
∪ 〈χc(t)〉 ∪ Ft \ 〈χc(t)〉,

and we compute the sizes of those equivalence classes [τ] of ∼(F∗t ,Xt) that consist of truth as-
signments τ with (Ft \ 〈χc(t)〉)(τ) = ∅; we call such equivalence classes transferable. Below we
explain three reasons why we do this.

Reason 1. The union of the transferable equivalence classes of∼(F∗r ,Xr)=∼(F∗r ,var(F)) that consist
of truth assignments τ with 〈χc(r)〉(τ) = ∅ and (Fr \ 〈χc(t)〉)(τ) = (F \ 〈χc(t)〉)(τ) = ∅
contains exactly all satisfying total truth assignments of F . Note that satisfying truth assignments
of F may not satisfy some formula FX for some X ∈ χv(r), but in that case only clauses in
FX \ Fr = FX \ F are not satisfied, and these clauses are irrelevant for our output.

Reason 2. We do not have to compute the sizes of any non-transferable equivalence classes of
∼(F∗t ,Xt), because these equivalence classes only contain truth assignments τ that cannot be ex-
tended to satisfying total truth assignments of F . This can be seen as follows. Let τ : Xt → {0, 1}
be a truth assignment that belongs to a non-transferable equivalence class of ∼(F∗t ,Xt). In order to
obtain a contradiction, assume that τ can be extended to a satisfying total truth assignment of F .
By definition of non-transferability, Ft \ 〈χc(t)〉 contains a clause C that is not satisfied by τ . Then
C must contain at least one variable x ∈ Xr \Xt in order to be satisfied by an extension of τ . Let C
be the clause module that contains C. Let X be the variable module that contains x. Then XC is an
edge in I∗(F). Hence, by condition 2 of the definition of a tree decomposition, there exists a node
t′ ∈ VT with {X, C} ⊆ χ(t′). Because x ∈ Xr \Xt, we find that X ∈ Xr \ Xt. Hence, t′ is not a
node of the subtree of T rooted at t. However, as C ∈ Ft \ 〈χc(t)〉, we also have C ∈ Ft \ χc(t)
besides C ∈ χ(t′). Because this violates condition 3 of the definition of a tree decomposition, we

8 Daniel Paulusma et al.

obtain a contradiction. We conclude that non-transferable equivalence classes may be discarded
during our dynamic programming.

Reason 3. We must keep track of how truth assignments in transferable equivalence classes that
not yet satisfy F itself can be extended to truth assignments that do satisfy F in a later stage of the
dynamic programming. In particular, such truth assignments may not yet satisfy clauses C of F
that belong to clause modules in χc(t) or that contain variables from one or more variable modules
in χv(t); in the latter case their restriction CX is nonempty, and consequently belongs to FX ,
for at least one set X ∈ χv(t). In order to do this bookkeeping we partition truth assignments
that satisfy Ft \ 〈χc(t)〉 into transferable equivalence classes, that is, classes of truth assignments
that satisfy exactly the same clauses of any C ∈ χc(t) and exactly the same clauses of any FX

with X ∈ χv(t). We now prove why this does not cause an exponential blow-up. For a clause
module C ∈ χc(t), the number of equivalence classes of ∼(C,Xt) is bounded by |C| + 1. This
can be seen as follows. Let σ and τ be two truth assignments defined on Xt. Then Lemma 3 tells
us that C(σ) = select(C, clause(σ|Xt∩var(C))) and C(τ) = select(C, clause(τ |Xt∩var(C))).
This means that C(σ) and C(τ) have no common clauses if C(σ) 6= C(τ), that is, if σ and τ
belong to two different equivalence classes of ∼(C,Xt). Hence, taking into account that the set
{σ : Xt → {0, 1} | C(σ) = ∅} may correspond to an equivalence class as well, the number of
equivalence classes of ∼(C,Xt) is at most |C| + 1. Similarly, for a variable module X ∈ χv(t), the
number of equivalence classes of ∼(FX ,Xt) is at most |F | + 1 due to Lemma 4. Hence, the total
number of different transferable equivalence classes of ∼(F∗t ,Xt) is at most∏
C∈χc(t)

(|C|+ 1) ·
∏

X∈χv(t)

(|F |+ 1) ≤ (|F |+ 1)|χc(t)|+|χv(t)| = (|F |+ 1)|χ(t)| ≤ (|F |+ 1)k+1, (1)

where k denotes the treewidth of I∗(F), that is, the modular incidence treewidth of F . We observe
that this bound is polynomial if k is fixed.

In order to describe the transferable equivalence classes, we use terminology introduced by
Ganian, Hlinený and Obdrzálek [9], which we adjust for our purposes. Let t ∈ VT . A shape for t
is a pair of mappings (α, θ) where α has domain χv(t) with α(X) ∈PFX for all X ∈ χv(t) and
θ has domain χc(t) with θ(C) ∈P(C,Xt) for all C ∈ χc(t). A truth assignment τ : Xt → {0, 1} is
said to be of shape (α, θ) if it satisfies the following three conditions:

(a) FX(τ) = α(X) for all X ∈ χv(t)
(b) C(τ) = θ(C) for all C ∈ χc(t)
(c) (Ft \ 〈χc(t)〉)(τ) = ∅.

In other words, the set of assignments τ that are of shape (α, θ) describes exactly one transferable
equivalence class of∼(F∗t ,Xt). From now we denote this class byNt(α, θ), and we write nt(α, θ) =
|Nt(α, θ)|. We denote the set of all shapes for t that correspond to a transferable equivalence class
by St. By (1), we have |St| ≤ (|F | + 1)k+1 for all nodes t ∈ VT . Also note that by definition
any truth assignment τ : Xt → {0, 1} has a (unique) shape if and only if (Ft \ 〈χc(t)〉)(τ) = ∅.
We sometimes denote the shape of such a truth assignment τ by (αtτ , θ

t
τ), where αtτ (X) = FX(τ)

for all X ∈ χv(t) and θtτ (C) = C(τ) for all C ∈ χc(t). Because equivalence classes are nonempty
by definition, not every pair (α, θ) with α(X) ∈PFX for all X ∈ χv(t) and θ(C) ∈P(C,Xt) for
all C ∈ χc(t) is a shape for a node t ∈ VT . We make this more explicit in our next lemma; see
condition (ii) in particular. For ease of notation, we write select(C, α(X1) · · ·α(Xp)) instead of
select(C, 〈α(X1)〉 ∪ · · · ∪ 〈α(Xp)〉).

Lemma 6 Let (α, θ) ∈ St with t ∈ VT , and let χ∗v(t) ⊆ χv(t). Moreover, let τ : Xt → {0, 1}
satisfy FX(τ) = α(X) for all X ∈ χ∗v(t). For all C ∈ χc(t), the following three conditions hold:

(i) If C has no variable modules in χ∗v(t), then C(τ |〈χ∗v(t)〉) = C.
(ii) If C has some variable module X ∈ χ∗v(t) with α(X) = ∅, then C(τ |X) = C(τ |〈χ∗v(t)〉) =
C(τ) = ∅, and moreover, θ(C) = ∅ should τ be in Nt(α, θ).

Model Counting for CNF Formulas of Bounded Modular Treewidth 9

(iii) If C has exactly p ≥ 1 variable modulesX1, . . . , Xp in χ∗v(t) and α(Xi) 6= ∅ for i = 1, . . . , p,
then C(τ |〈χ∗v(t)〉) = select(C, α(X1) · · ·α(Xp)).

Proof Let C ∈ χc(t). We first show (i). Suppose that C has no variable modules in χ∗v(t). Because
τ |〈χ∗v(t)〉 is defined on 〈χ∗v(t)〉, it can only satisfy clauses that contain at least one variable module
from χ∗v(t). Hence, no clause in C is satisfied, that is, C(τ |〈χ∗v(t)〉) = C.

We now show (ii). Suppose that C has some variable module X ∈ χ∗v(t) with α(X) = ∅.
Because α(X) = FX(τ) = ∅, this means that all clauses in CX ⊆ FX , and consequently, all
clauses in C (as CX 6= ∅) are satisfied already by τ |X , and hence by its extensions τ |〈χ∗v(t)〉 and τ .
This means that C(τ |〈χ∗v(t)〉) = C(τ) = ∅, and consequently, θ(C) = C(τ) = ∅ if τ ∈ Nt(α, θ).

Finally we show (iii). Suppose that C has exactly p ≥ 1 variable modules X1, . . . , Xp in χ∗v(t)
and that α(Xi) 6= ∅ for i = 1, . . . , p. Then α(Xi) = FXi(τ) = clause(τ |Xi

) for i = 1, . . . , p
due to Lemma 4. Lemma 3 tells us that C(τ |〈χ∗v(t)〉) = select(C, clause(τ |〈χ∗v(t)〉∩var(C))) =
select(C, clause(τ |X1) · · · clause(τ |Xp)) = select(C, α(X1) · · ·α(Xp)). ut

We will now give the exact details of our dynamic programming, that is, how we compute all
sizes nt(α, θ) over all t ∈ VT in order to be able to compute the desired output

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those shapes (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). Note that S ∗r = ∅
is possible; in that case F is not satisfiable and n = 0.

Recall that the nodes of a tree associated with a nice tree decomposition can be partitioned into
four types of nodes. Our next four lemmas show how to compute the sizes nt(α, θ) for these four
types, i.e., for leaf nodes, introduce nodes, forget nodes and join nodes t, respectively.

Let t be a leaf node, let (α, θ) be a shape for t, and let τ : Xt → {0, 1} be an assignment of
shape (α, θ). If X is a variable module and α(X) is nonempty, then there is a unique assignment
toX that does not satisfy α(X), so assignments which differ from τ onX do not have shape (α, θ).
On the other hand, if α(X) = ∅ then any assignment σ : Xt → {0, 1} which differs from τ only
on X and which satisfies FX still has shape (α, θ). There are 2|X| − |FX | assignments to X that
satisfy FX and the union of variable modules in the domain of α coincides with Xt, so we can
compute the number of assignments with shape (α, θ) as follows.

Lemma 7 Let t be a leaf node and (α, θ) ∈ St. Then nt(α, θ) =
∏
X∈α−1(∅)(2

|X| − |FX |).

Proof Let t be a leaf node and (α, θ) ∈ St. We first prove that a truth assignment τ : Xt → {0, 1}
belongs to Nt(α, θ) if and only if FX(τ) = α(X) for all X ∈ χv(t). The forward implication
holds by definition. To prove the backward implication, suppose that τ : Xt → {0, 1} is a truth
assignment with FX(τ) = α(X) for all X ∈ χv(t). Because (α, θ) ∈ St, we find that Nt(α, θ) 6=
∅ by definition. Let τ∗ ∈ Nt(α, θ). Because t is a leaf, Xt = χv(t). This means that τ = τ |〈χv(t)〉
and τ∗ = τ∗|〈χv(t)〉. Applying Lemma 6 yields that C(τ |〈χv(t)〉) = C(τ∗|〈χv(t)〉) for all C ∈ χc(t).
Moreover, because τ∗ ∈ Nt(α, θ), we have C(τ∗) = θ(C) for all C ∈ χc(t). By combining the
above arguments we find that

C(τ) = C(τ |〈χv(t)〉) = C(τ
∗|〈χv(t)〉) = C(τ

∗) = θ(C)

for all C ∈ χc(t). Hence, τ ∈ Nt(α, θ) as required.
Due to the above we are left to compute the number of truth assignments τ that satisfy FX(τ) =

α(X) for all X ∈ χv(t). Recall that Xt = χv(t). Hence, any truth assignment τ defined on
Xt can be decomposed as

⋃
X∈χv(t)

τX , where each τX has domain X . Because the domains
X ∈ χv(t) are mutually disjoint, we may consider each X ∈ χv(t) separately. Let X ∈ χv(t).
Because (α, θ) ∈ St, we find that Nt(α, θ) 6= ∅ by definition. Hence, α(X) ∈ PFX . First
suppose that α(X) 6= ∅. By Lemma 5, there is exactly one truth assignment τX : X → {0, 1}

10 Daniel Paulusma et al.

with FX(τX) = α(X). Now suppose that α(X) = ∅. Then, by Lemma 5, there are exactly
2|X| − |FX | truth assignments τX : X → {0, 1} with FX(τX) = ∅ = α(X). By combining the
above arguments, we obtain

nt(α, θ) =
∏

X∈χv(t)\α−1(∅)

1 ·
∏

X∈α−1(∅)

(2|X| − |FX |) =
∏

X∈α−1(∅)

(2|X| − |FX |).

Hence we have proven Lemma 7. ut

For an introduce node t we have to distinguish two cases, depending on whether the vertex in-
troduced is a variable module or a clause module. The latter case is simple: if (α, θ) is a shape
for t and τ : Xt → {0, 1} has shape (α, θ) then the projection of τ on a newly introduced clause
module C is entirely determined by the restriction of τ to variables occurring in modules in the
bag χ(t), as clauses in C cannot contain “forgotten” variables. The projection of this restriction
on C is in turn determined by α, so the number of assignments of shape (α, θ) corresponds to the
number of assignments of shape (α, θ′) at the child node t′ of t, where θ′ is obtained by remov-
ing C from the domain of θ. If the vertex introduced is a variable module X , we have to count
assignments τ ′ : Xt′ → {0, 1} which, in combination with an assignment σ : X → {0, 1} with
projection FX(σ) = α(X), yield an assignment τ ′ ∪ σ of shape (α, θ). If τ ′ has shape (α′, θ∗),
when does τ ′ ∪ σ have shape (α, θ)? First, we must have α′(X ′) = α(X ′) for each X ′ ∈ χv(t′).
Since S(τ ′∪σ) = S(τ ′)∩S(σ) for every set S of clauses, we also must have θ(C) = θ′(C)∩C(σ)
for each C ∈ χc(t). The projection C(σ) can be determined from α(X) as follows. If C does
not contain variables from X then C(σ) = C. Otherwise, if C contains variables from X , there
are two cases. If α(X) = ∅ then σ satisfies every clause of C, so C(σ) = ∅. If α(X) 6= ∅,
then C(σ) = select(C, α(X)). Accordingly, we define a mapping gα with domain χc(t) × χv(t)
for each shape (α, θ) ∈ St as follows. When X ∈ χv(t) is not a variable module of a clause
module C ∈ χc(t), we let gα(C, X) = C. Otherwise, we let gα(C, X) = ∅ if α(X) = ∅, and
gα(C, X) = select(C, α(X)) if α(X) 6= ∅. This lets us state and prove the following.

Lemma 8 Let t ∈ VT be an introduce node with child t′, such that χ(t) \ χ(t′) = {S}. Let
(α, θ) ∈ St. Moreover, let α′ = α|χv(t′) and θ′ = θ|χc(t′).

(i) If S ∈ χv(t), then nt(α, θ) =

∑

θ∗∈T

nt′(α
′, θ∗) if α(S) 6= ∅

(2|S| − |FS |)
∑

θ∗∈T

nt′(α
′, θ∗) if α(S) = ∅,

where T = { θ∗ | (α′, θ∗) ∈ St′ and θ∗(C) ∩ gα(C, S) = θ(C) for all C ∈ χc(t) }.

(ii) If S ∈ χc(t), then nt(α, θ) = nt′(α, θ
′).

Proof We first prove (i). We write X = S. Note that χc(t) = χc(t
′). Hence T is well defined. Let

E = {σ : X → {0, 1} | FX(σ) = α(X)}, and let

M = E ×
⋃
θ∗∈T

Nt′(α
′, θ∗).

We will show that f : τ 7→ (τ |X , τ |Xt′) is a bijection from Nt(α, θ) to M . Then afterward we
are left to compute the size of M , which we will prove to be equal to the right hand side of the
equation in (i). For proving that f is a bijection from Nt(α, θ) to M we must show that f is into
and bijective.

Claim 1. The mapping f is into.
We prove Claim 1 as follows. Let τ ∈ Nt(α, θ), and let τ ′ = τ |Xt′ . We will show that τ |X ∈ E
and that τ ′ ∈ Nt′(α′, θ∗) for some θ∗ ∈ T .

Because τ ∈ Nt(α, θ), we have FX(τ) = α(X). Because all clauses in FX only contain
variables fromX , we find that FX(τ |X) = FX(τ). Hence, FX(τ |X) = α(X), which implies that
τ |X ∈ E.

Model Counting for CNF Formulas of Bounded Modular Treewidth 11

We now show that τ ′ ∈ Nt′(α′, θ∗) for some θ∗ ∈ T . Let C ∈ Ft′\χc(t′). Then C ∈ Ft\χc(t).
Because τ ∈ Nt(α, θ), this means that τ satisfies C. By condition 2 of the definition of a tree
decomposition, X /∈ var(C). Hence, τ ′ satisfies C. This means that τ ′ is of shape (αt

′

τ ′ , θ
t′

τ ′), so
τ ′ ∈ Nt′(αt

′

τ ′ , θ
t′

τ ′). Because τ ′ is the restriction of τ on Xt′ , we find that αt
′

τ ′(X
′) = FX

′
(τ ′) =

FX
′
(τ) = α′(X ′) for all X ′ ∈ χv(t′). Consequently, αt

′

τ ′ = α′.
We now show that θt

′

τ ′ ∈ T . In order to do this, we are left to prove that θt
′

τ ′(C) ∩ gα(C, X) =
θ(C) for all C ∈ χc(t). Let C ∈ χc(t). Lemma 2 tells us that C(τ) = C(τ ′∪τ |X) = C(τ ′)∩C(τ |X).
Because FX

′
(τ) = α(X ′) for all X ′ ∈ χv(t), we can use Lemma 6. First suppose that X is not a

variable module of C. Then C(τ |X) = C by Lemma 6 (i). Hence, θt
′

τ ′(C)∩gα(C, X) = C(τ ′)∩C =
C(τ ′)∩C(τ |X) = C(τ) = θ(C). Now suppose that X is a variable module of C. If α(X) = ∅, then
θ(C) = ∅ by Lemma 6 (ii). Hence, θt

′

τ ′(C) ∩ gα(C, X) = θt
′

τ ′(C) ∩ ∅ = ∅ = θ(C). If α(X) 6= ∅,
then C(τ |X) = select(C, α(X)) by Lemma 6 (iii). Hence,

θt
′

τ ′(C) ∩ gα(C, X) = C(τ ′) ∩ select(C, α(X)) = C(τ ′) ∩ C(τ |X) = C(τ) = θ(τ).

We conclude that θt
′

τ ′ ∈ T . Because we already deduced that αt
′

τ ′ = α′, we have found that
τ ′ ∈ Nt′(α′, θ∗) for some θ∗ ∈ T , namely θ∗ = θt

′

τ ′ . Because we already deduced that τ |X ∈ E,
this means that (τ |X , τ ′) ∈M . Hence, f is into, which proves Claim 1.

Claim 2. The mapping f is bijective.
We prove Claim 2 as follows. By construction, f is injective. Below we show that f is surjective.

Let (τX , τ ′) ∈ M . Then τX ∈ E and τ ′ ∈ Nt′(α
′, θ∗) for some θ∗ ∈ T . Because τX has

domain X , and τ ′ has domain Xt′ , and X ∩Xt′ = ∅, we can well define τ = τX ∪ τ ′. Note that
f(τ) = (τX , τ

′). We must show that τ ∈ Nt(α, θ). Let C ∈ Ft \ χc(t). Then C ∈ Ft′ \ χc(t′), as
χc(t) = χc(t

′). Because τ ′ ∈ Nt′(α′, θ∗), we find that τ ′ satisfies C. Because τ is an extension of
τ ′, this means that τ satisfies C. Hence, τ is of shape (αtτ , θ

t
τ).

First we show that αtτ = α. Because τ is an extension of τ ′, and τ ′ has domain Xt′ ⊇ 〈χv(t′)〉,
we find that τ and τ ′ agree on 〈χv(t′)〉. This means that FX

′
(τ) = FX

′
(τ ′) for all X ′ ∈ χv(t′).

Hence αtτ |χv(t′) = α′. By using the definition of a shape and our assumption that τX ∈ E, we find
that αtτ (X) = FX(τ) = FX(τX) = α(X). We conclude that αtτ = α.

Now we show that θtτ = θ. Let C ∈ χc(t). Lemma 2 tells us that C(τ) = C(τ ′ ∪ τX) =
C(τ ′) ∩ C(τX). Moreover, we may use Lemma 6, as τ ∈ Nt(α

t
τ , θ

t
τ) and αtτ = α, and hence

FX(τ) = α(X). According to Lemma 6, we have C(τ |X) = C if X is not a variable module of C,
whereas otherwise C(τ |X) = ∅ if α(X) = ∅, and C(τ |X) = select(C, α(X)) if α(X) 6= ∅. This
means that C(τ |X) = gα(C, X). Then

θtτ (C) = C(τ) = C(τ ′) ∩ C(τX) = θ∗(C) ∩ C(τ |X) = θ∗(C) ∩ gα(C, X) = θ(C),

where the latter equality follows from our assumption that θ∗ ∈ T . Hence, θtτ = θ. Because we
already deduced that αtτ = α, we have found that τ ∈ Nt(α, θ). This means that f is surjective,
which completes the proof of Claim 2.

We are left to determine |M |. Because equivalence classes are mutually disjoint, we find that

|M | = |E| × |
⋃
θ∗∈T

Nt′(α
′, θ∗)| = |E|

∑
θ∗∈T

|Nt′(α′, θ∗)| = |E|
∑
θ∗∈T

nt′(α
′, θ∗),

where |E| = 1 if α(X) 6= ∅ and |E| = 2|X| − |FX | otherwise, due to Lemma 5. This completes
the proof of (i).

We now prove (ii). We write C = S. Note that χv(t) = χv(t
′). We claim that τ ∈ Nt(α, θ) if and

only if τ ∈ Nt′(α, θ′).
First suppose that τ ∈ Nt(α, θ). Because θ′ is the restriction of θ to χc(t′), we immediately

find that τ ∈ Nt′(α, θ′).

12 Daniel Paulusma et al.

Now suppose that τ ∈ Nt′(α, θ′). Then, as χv(t) = χv(t
′), we find that FX(τ) = α(X) for all

X ∈ χv(t). Because τ ∈ Nt′(α, θ′), we also find that τ satisfies Ft′ \ 〈χc(t′)〉. The latter implies
together with χc(t) = χc(t

′) ∪ {C} that τ satisfies Ft \ 〈χc(t)〉. Because τ ∈ Nt′(α, θ′) and θ′ is
the restriction of θ to χc(t′), we obtain C′(τ) = θ′(C′) = θ(C′) for all C′ ∈ χc(t′) = χc(t) \ {C}.
Hence we are left to show that C(τ) = θ(C).

Because (α, θ) ∈ St, there exists a truth assignment τ∗ ∈ Nt(α, θ). By condition 2 of the defi-
nition of a tree decomposition, all variable modules of C that are inXt must belong to χv(t). Hence,
C(τ) = C(τ |〈χv(t)〉), and similarly, C(τ∗) = C(τ∗|〈χv(t)〉). Because α(X) = FX(τ) = FX(τ∗)
for all X ∈ χv(t), we may use Lemma 6. As a result of Lemma 6, we obtain that C(τ |〈χv(t)〉) =
C(τ∗|〈χv(t)〉). This means that C(τ) = C(τ |〈χv(t)〉) = C(τ∗|〈χv(t)〉) = C(τ) = θ(C). We conclude
that τ ∈ Nt(α, θ). This completes the proof of Lemma 8 (ii). ut

When reasoning about the relation between the shapes of a forget node and those of its child node,
we are going to consider extensions of the functions α and θ comprising a shape (α, θ). Viewing
functions as sets of pairs, we are going to identify, for instance, the set {(S,Π)}with the function f
with domain {S} such that f(S) = Π .

To compute the number of assignments of shape (α, θ) for a forget node t we again have
to consider two cases. Upon forgetting a variable module X , we take the sum over all possible
extensions of α to X . Whenever a clause module C is forgotten, we have to look up the count for
the corresponding shape at the child node where C is satisfied, that is, where the projection of C is
empty, so as to ensure that Condition (c) is met.

Lemma 9 Let t ∈ VT be a forget node with child t′, such that χ(t) = χ(t′) \ {S} for a module
S ∈ χ(t′). Let (α, θ) ∈ St.

(i) If S ∈ χv(t′), then nt(α, θ) =
∑

Π∈PFS

nt′(α ∪ {(S,Π)}, θ).

(ii) If S ∈ χc(t′), then nt(α, θ) = nt′(α, θ ∪ {(S, ∅)}).

Proof We first prove (i). We write X = S. Let M =
⋃
Π∈PFX

Nt′(α ∪ {(X,Π)}, θ). Because
equivalence classes are mutually disjoint, we observe that

|M | =
∑

Π∈PFX

nt′(α ∪ {(X,Π)}, θ).

Hence, we are done after showing that τ ∈ Nt(α, θ) if and only if τ ∈M .
First suppose that τ ∈ Nt(α, θ). Let C ∈ Ft′ \ χc(t′). Because χc(t) = χc(t

′), we find
that C ∈ Ft \ χc(t). Hence τ satisfies C by the definition of a shape. As Xt′ = Xt, this means
that τ is has a shape with respect to t′ as well, that is, τ ∈ Nt′(α

t′

τ , θ
t′

τ). Let C ∈ χc(t). Then
θt
′

τ (C) = C(τ) = θ(C). As χc(t) = χc(t
′), we find that θt

′

τ = θ. Let X ′ ∈ χv(t) = χv(t
′) \ {X}.

Then αt
′

τ (X
′) = FX

′
= α(X ′). Let Π = αt

′

τ (X) = FX(τ) ∈PFX . Hence, αt
′

τ = α ∪ {X,Π}.
We conclude that τ ∈ Nt(α ∪ {(X,Π)}, θ), and thus τ ∈M .

Now suppose that τ ∈ M . Then τ ∈ Nt′(α ∪ {(X,Π)}, θ) for some Π ∈ PFX . This imme-
diately implies that τ ∈ Nt(α, θ).

We now prove (ii). We write S = C. We are done after showing that τ ∈ Nt(α, θ) if and only
if τ ∈ Nt′(α, θ ∪ {(C, ∅)}). First suppose that τ ∈ Nt(α, θ). Then τ satisfies Ft \ 〈χc(t)〉, and
hence, τ satisfies C ∈ Ft \ χc(t), that is, C(τ) = ∅. Combining this with τ ∈ Nt(α, θ) implies
that τ ∈ Nt′(α, θ ∪ {(C, ∅)}). Now suppose that τ ∈ Nt′(α, θ ∪ {(C, ∅)}). Then τ ∈ Nt(α, θ)
immediately follows. ut

We move on to join nodes. To count the number of assignments τ : Xt → {0, 1} with shape (α, θ)
for a join node t, we count pairs (τ1, τ2) of assignments τ1 : Xt1 → {0, 1} and τ2 : Xt2 → {0, 1}
such that τ1 and τ2 agree on variable modules in the bag of t and such that τ1 ∪ τ2 has shape
(α, θ). Let τ1 : Xt1 → {0, 1} and τ2 : Xt2 → {0, 1} be assignments of shapes (α1, θ1) and

Model Counting for CNF Formulas of Bounded Modular Treewidth 13

(α2, θ2), respectively. Then the projection of the “union” τ1 ∪ τ2 (provided that it exists) satisfies
S(τ1∪τ2) = S(τ1)∩S(τ2) for every set S of clauses. Accordingly, τ1∪τ2 is of shape (α, θ) if and
only if τ1 is of shape (α, θ1) and τ2 is of shape (α, θ2), where θ(C) = θ1(C) ∩ θ2(C) for each C ∈
χc(t). Given shapes (α, θ1) and (α, θ2), how many pairs of assignments τ1 and τ2 of these shapes
agree on variable modules in χv(t), as a fraction of the product nt1(α, θ1)nt2(α, θ1)? We know
that if α(X) is nonempty there is a unique assignment σ : X → {0, 1} such that FX(σ) = α(X),
so the assignments τ1 and τ2 must agree on every suchX . For the remaining variable modules, that
is, those satisfying α(X) = ∅, we only know that both τ1|X and τ2|X satisy FX , and τ1|X agrees
with τ2|X only in one out of 2|X| − |FX | cases. Accordingly, the product nt1(α, θ1)nt2(α, θ1)
overestimates nt(α, θ) by a factor corresponding to the product

∏
(2|X| − |FX |) where X ranges

over variable modules such that α(X) = ∅. This allows us to compute nt(α, θ) as follows.

Lemma 10 Let t ∈ VT be a join node with children t1 and t2. Let (α, θ) ∈ St. Moreover, let
T1,2 = { (θ1, θ2) | (α, θ1) ∈ St1 , (α, θ2) ∈ St2 , and θ1(C) ∩ θ2(C) = θ(C) for all C ∈ χc(t) }.
Then the following equality holds:

nt(α, θ) =
1∏

X∈α−1(∅)
(2|X| − |FX |)

∑
(θ1,θ2)∈T1,2

nt1(α, θ1) · nt2(α, θ2).

Proof By the definition of a nice tree decomposition, we have χ(t) = χ(t1) = χ(t2). Hence,
χv(t) = χv(t1) = χv(t2) and thus Xt = Xt1 = Xt2 , and moreover, χc(t) = χc(t1) = χc(t2) and
thus Ft = Ft1 = Ft2 . We will use these equations throughout the proof, but first we define two
sets M ′ and M ⊆M ′ in the following way:

M ′ =
⋃

(θ1,θ2)∈S1,2

(Nt1(α, θ1)×Nt2(α, θ2))

M = { (τ1, τ2) ∈M ′ | τ1|〈χv(t)〉 = τ2|〈χv(t)〉 }.

We will show that f : τ 7→ (τ |Xt1
, τ |Xt2

) is a bijection from Nt(α, θ) to M . Then afterward we
are left to compute the size of M , which we will prove to be equal to the right hand side of the
equation in the statement of Lemma 10. For proving that f is a bijection from Nt(α, θ) to M we
must show that f is into and bijective.

Claim 1. The mapping f is into.
We prove Claim 1 as follows. Let τ ∈ Nt(α, θ). We write τ1 = τ |Xt1

and τ2 = τ |Xt2
. Note that

τ = τ1 ∪ τ2 and that f(τ) = (τ1, τ2).
We first show that τ1 satisfies Ft1 \ 〈χc(t1)〉. Let C be a clause module in Ft1 \ χc(t1) =

Ft \ χc(t) (as Ft1 = Ft and χc(t1) = χc(t)). Because τ ∈ Nt(α, θ) and C ∈ Ft \ χc(t), we find
that C(τ) = ∅. By condition 3 of a tree decomposition, C ∈ Ft1 \ χc(t1) may only occur in a bag
χ(t′) if t′ belongs to the subtree of T rooted by t1. By condition 2 of a tree decomposition, every
variable module of C belongs to at least one bag that also contains C. Hence all variable modules of
C belong to Xt1 . This means that C(τ1) = C(τ) = ∅. Hence, τ1 satisfies Ft1 \ 〈χc(t1)〉. By exactly
the same arguments, we deduce that τ2 satisfies Ft2 \ 〈χc(t2)〉.

Because τ1 satisfies Ft1 \ 〈χc(t1)〉, we find that τ1 is of shape (αt1τ1 , θ
t1
τ1) ∈ St1 . Similarly,

because τ2 satisfies Ft2 \ 〈χc(t2)〉, we find that τ2 is of shape (αt2τ2 , θ
t2
τ2) ∈ St2 . Because τ1, τ2,

and τ all agree on 〈χv(t)〉, we deduce that FX(τ1) = FX(τ2) = FX(τ) for all variable modules
X in χv(t1) = χv(t2) = χv(t). Hence, αt1τ1 = αt2τ2 = α.

We now show that (θt1τ1 , θ
t2
τ2) ∈ T1,2. Because αt1τ1 = αt2τ2 = α, we have (α, θt1τ1) ∈ St1 and

(α, θt2τ2) ∈ St2 . Let C ∈ χc(t). Because τ = τ1 ∪ τ2, we may apply Lemma 2 to deduce that
C(τ) = C(τ1) ∩ C(τ2). Using the definition of a shape, this yields that

θ(C) = C(τ) = C(τ1) ∩ C(τ2) = θt1τ1(C) ∩ θ
t2
τ2(C).

14 Daniel Paulusma et al.

Hence, (θt1τ1 , θ
t2
τ2) ∈ T1,2. We conclude that (τ1, τ2) ∈ M ′. Because τ1 = τ |Xt1

and τ2 = τ |Xt2
,

and moreover, χv(t1) = χv(t2) = χv(t), we find that τ1|〈χv(t)〉 = τ2|〈χv(t)〉. Hence (τ1, τ2) ∈M ,
which means that f is into. This completes the proof of Claim 1.

Claim 2. The mapping f is bijective.
We prove Claim 2 as follows. By construction, f is injective. Below we show that f is surjective.

Let (τ1, τ2) ∈ M . Then τ1 and τ2 have domains Xt1 and Xt2 , respectively. Because Xt1 ∩
Xt2 = 〈χv(t)〉 on which τ1 and τ2 agree by the definition ofM , we may define τ = τ1∪τ2. Because
(τ1, τ2) ∈ M ⊆ M ′, we find that τ1 ∈ Nt1(α, θ1) and τ2 ∈ Nt2(α, θ2) for some (θ1, θ2) ∈ T1,2.
Then, by definition, τ1 satisfies Ft1 \ 〈χc(t1)〉 and τ2 satisfies Ft2 \ 〈χc(t2)〉. Hence, τ = τ1 ∪ τ2
satisfies (Ft1\〈χc(t1)〉)∪(Ft2\〈χc(t2)〉) = Ft\〈χc(t)〉. BecauseXt = Xt1 = Xt2 , or equivalently,
Xt = Xt1 = Xt2 , this means that τ is of shape (αtτ , θ

t
τ) ∈ St. Because τ and τ1 agree on 〈χv(t)〉,

we find that αtτ = α. We now prove that θtτ = θ. Let C ∈ χc(t). By using Lemma 2 and the
definitions of a shape and the set T1,2, we find that

θtτ (C) = C(τ) = C(τ1) ∩ C(τ2) = θ1(C) ∩ θ2(C) = θ(C).

Hence, θtτ = θ. As we already deduced that αtτ = α, we find that τ ∈ Nt(α, θ). This completes
the proof of Claim 2.

We are left to determine the cardinality ofM . For this purpose we first determine |M ′|. Because
Nt1(α, θ1)×Nt2(α, θ2) and Nt1(α, θ

′
1)×Nt2(α, θ′2) are disjoint for θ1 6= θ′1 or θ2 6= θ′2, we find

that

|M ′| =
∑

(θ1,θ2)∈T1,2

nt1(α, θ1) nt2(α, θ2). (2)

In order to determine |M |we consider an equivalence relation∼ defined on 2Xt1×2Xt2 as follows.
We let (τ1, τ2) ∼ (τ ′1, τ

′
2) if each of the following three conditions are satisfied:

(i) τ1 = τ ′1
(ii) τ2|Xt2\〈χv(t2)〉 = τ ′2|Xt2\〈χv(t2)〉

(iii) FX(τ2) = FX(τ ′2) for all X ∈ χv(t2).

In particular, condition (ii) has the following crucial implication. If (τ1, τ2) ∼ (τ1, τ
′
2), then due

to this condition τ ′2 can only differ from τ2 on 〈χv(t2)〉. We will now compute the size of the
equivalence classes [(τ1, τ2)] of∼ with (τ1, τ2) ∈M ′ and then show that in fact all pairs (τ1, τ ′2) ∈
[(τ1, τ2)] belong to M ′. We then prove that exactly one pair (τ1, τ ′2) of such an equivalence class
belongs to M . We will use this information together with equality (2) to compute the size of |M |.

Let (τ1, τ2) ∈ M ′, that is, τ1 ∈ Nt1(α, θ1) and τ2 ∈ Nt2(α, θ2) such that (θ1, θ2) ∈ T1,2 for
some suitable θ1 and θ2. Consider any pair (τ1, τ ′2) ∈ [(τ1, τ2)]. By definition, (τ1, τ2) ∼ (τ1, τ

′
2).

Recall that τ ′2 can only differ from τ2 on 〈χv(t)〉. By the definitions of ∼ and of a shape, we have
FX(τ ′2) = FX(τ2) = α(X) for all X ∈ χv(t). By Lemma 5, the number of truth assignments
τX : X → {0, 1} with FX(τX) = α(X) is equal to 1 if α(X) 6= ∅ and equal to 2|X| − |FX |
otherwise. Hence α(X) 6= ∅ implies that τ2|X = τ ′2|X , whereas there exist 2|X| − |FX | ways to
define τ ′2 on X if α(X) = ∅; note that τ ′2 satisfies FX if and only if τ ′2|X satisfies FX . Because
the variable modules in χv(t) are mutually disjoint, we then find that

|[(τ1, τ2)]| =
∏

X∈α−1(∅)

(2|X| − |FX |). (3)

As noted, we now show that [(τ1, τ2)]∩M ′ = [(τ1, τ2)]. Suppose that (τ1, τ2) ∼ (τ1, τ
′
2). We claim

that (τ1, τ ′2) ∈ M ′. By assumption, τ1 ∈ Nt1(α, θ1) and (θ1, θ2) ∈ T1,2. Hence, in order to prove
this claim, it suffices to prove that τ ′2 ∈ Nt2(α, θ2).

Let X ∈ χv(t2). Our assumption that τ2 ∈ Nt2(α, θ2) and condition (iii) of the definition of ∼
imply that FX(τ ′2) = FX(τ2) = α(X).

Model Counting for CNF Formulas of Bounded Modular Treewidth 15

Now, let C ∈ χc(t2). By condition (ii) of the definition of ∼ we obtain C(τ ′2|Xt2
\〈χv(t2)〉) =

C(τ2|Xt2
\〈χv(t2)〉). Because FX(τ ′2) = FX(τ2) = α(X) for all X ∈ χv(t2), we can use Lemma 6

to deduce that C(τ ′2|〈χv(t2)〉) = C(τ2|〈χv(t2)〉). Then, by using Lemma 2 and the definition of a
shape, we obtain

C(τ ′2) = C(τ ′2|Xt2\〈χv(t2)〉)∩C(τ
′
2|〈χv(t2)〉) = C(τ2|Xt2\〈χv(t2)〉)∩C(τ2|〈χv(t2)〉) = C(τ2) = θ2(C).

Finally, letC ∈ Ft2\〈χc(t2)〉. In order to prove that (Ft2\〈χc(t2)〉)(τ ′2) = ∅we must show that
τ ′2 satisfiesC. Our assumption that τ2 ∈ Nt2(α, θ2) implies that (Ft2 \〈χc(t2)〉)(τ2) = ∅. Hence τ2
satisfies C, that is, C contains a literal x with τ2(x) = 1. Let X be the variable module to which x
belongs, and let C be the clause module to which C belongs. Then X and C are adjacent in I∗(F).
By condition 2 of a tree decomposition, X and C belong to some common bag χ(t′). Because
C ∈ Ft2 \ 〈χc(t2)〉, we have C ∈ Ft2 \ χc(t2). Then, by condition 3 of a tree decomposition, t′

must be a node not equal to t2 in the subtree of T rooted at t2. Hence, X ∈ Xt2 \ χv(t2), which
means that x ∈ Xt2 \ 〈xv(t2)〉. Then τ ′2(x) = τ2(x) = 1 due to condition (ii) of the definition
of ∼, which means that τ ′2 satisfies C. Hence, we have proven that (Ft2 \ 〈χc(t2)〉)(τ ′2) = ∅. We
conclude that τ ′2 ∈ Nt2(α, θ2), and consequently, (τ1, τ ′2) ∈M ′.

As noted, our next step is to prove that exactly one pair from [(τ1, τ2)] belongs to M . Recall
that M consists of those truth assignment pairs of M ′ of which both truth assignments agree on
χv(t) = χv(t1) = χv(t2). We first show that the pair (τ1, τ ′2) defined by τ ′2|〈χv(t2)〉 = τ1|〈χv(t2)〉
and τ ′2|Xt2

\〈χv(t2)〉 = τ2|Xt2
\〈χv(t2)〉 belongs to [(τ1, τ2)]∩M . Because τ1 ∈ Nt1(α, θ1), we have

FX(τ1) = α(X) for all X ∈ χv(t1) = χv(t2). Because τ1|〈χv(t2)〉 = τ ′2|〈χv(t2)〉, this means
that FX(τ ′2) = α(X) for all X ∈ χv(t2). Similarly, because τ2 ∈ Nt2(α, θ2), we have FX(τ2) =
α(X) for allX ∈ χv(t2). Hence, FX(τ2) = FX(τ ′2) for allX ∈ χv(t2), which is condition (iii) of
the definition of ∼. As conditions (i) and (ii) of ∼ are satisfied by the way we constructed (τ1, τ

′
2),

we find that (τ1, τ ′2) ∈ [(τ1, τ2)]. As we already showed that [(τ1, τ2)] ∩ M ′ = [(τ1, τ2)], this
means that (τ1, τ ′2) ∈ M ′. Consequently, (τ1, τ ′2) ∈ M , as τ1|〈χv(t)〉 = τ ′2|〈χv(t)〉 by construction.
We conclude that (τ1, τ ′2) ∈ [(τ1, τ2)] ∩M . Hence, at least one pair from [(τ1, τ2)] belongs to M .

We now show that at most one pair from [(τ1, τ2)] belongs to M . Let (τ1, τ ′2) and (τ1, τ
′′
2) be

two pairs from M that are in [(τ1, τ2)]. Then, by the definition of ∼, truth assignments τ ′2 and τ ′′2
agree on Xt2 \ 〈χv(t2)〉 = Xt \ 〈χv(t)〉. By the definition of M , we have τ1|〈χv(t)〉 = τ ′2|〈χv(t)〉
and τ1|〈χv(t)〉 = τ ′′2 |〈χv(t)〉. Consequently, τ ′2|〈χv(t)〉 = τ ′′2 |〈χv(t)〉. Hence we find that τ ′2 = τ ′′2 .
This proves that at most one pair from [(τ1, τ2)] belongs to M .

We conclude that exactly one pair from [(τ1, τ2)] belongs to M . Then the result follows from
combining this fact with equations (2) and (3). ut

As we will explain later in more detail, our algorithm is based on repeatedly applying Lem-
mas 7–10. In order to this, we must be able to check in polynomial time whether a pair (α, θ)
belongs to St for some t ∈ VT . The first statement of the next lemma deals with this. Recall that `
is the length of F and that k is the modular incidence treewidth of F .

For simplicity, our runtime bounds assume a unit cost model. Bounds that account for the
complexity of arithmetic on (n + 1)-bit integers (where n is the number of variables of an input
formula) can be obtained by multiplying the given bounds with a runtime bound δ of an algorithm
that multiplies two (n + 1)-bit integers, as multiplication is the computationally most expensive
operation we require. Using the algorithm of Schönhage and Strassen [22], for instance, one gets
δ = O(n log(n) log(log(n))).

Lemma 11 Let t ∈ VT . Let χt and nt′(α′, θ′) be given for all (α′, θ′) ∈ St′ and all children t′

of t. Then it is possible in O(`2k+2) time to check whether a pair (α, θ) with α(X) ∈PFX for all
X ∈ χv(t) and θ(C) ∈P(C,Xt) for all C ∈ χc(t) is in St, and if so, to compute nt(α, θ).

Proof Let t ∈ VT , and let (α, θ) be a pair with α(X) ∈ PFX for all X ∈ χv(t) and θ(C) ∈
P(C,Xt) for all C ∈ χc(t). We distinguish four cases depending on whether t is a leaf, introduce,

16 Daniel Paulusma et al.

forget or join node of T . If t is an introduce or forget node, then we split the corresponding case
into two subcases. For all cases except for Case 1 and Case 2b, which both require some extra
consideration, we show that we may simply compute the expression for nt(α, θ) as prescribed
by a corresponding lemma (one of Lemmas 8–10) which either tells us that (α, θ) /∈ St (if the
expression has a value of 0) or gives us nt(α, θ) otherwise.

Case 1. t is a leaf node.
We claim that (α, θ) ∈ St if and only if the following four conditions hold:

(i) 2|X| − |FX | ≥ 1 for all X ∈ χv(t) with α(X) = ∅.
(ii) θ(C) = C for all C ∈ χc(t) with no variable modules in χv(t).

(iii) θ(C) = ∅ for all C ∈ χc(t) with a variable module X ∈ χv(t) for which α(X) = ∅.
(iv) θ(C) = select(C, α(X1) · · ·α(Xp)) for all p ≥ 1 and all C ∈ χc(t) with exactly p variable

modules X1, . . . , Xp from χv(t), for which in addition α(Xi) 6= ∅ for i = 1, . . . , p.

In order to see this, first suppose that (α, θ) ∈ St. Then there exists a truth assignment τ ∈
Nt(α, θ) by definition. Let X ∈ χv(t) with α(X) = ∅. Then FX(τ) = α(X) = ∅, which means
that 2|X| − |FX | ≥ 1. Hence, condition (i) holds. Because t is a leaf node, χv(t) = Xt. Hence,
τ = τ |〈χv(t)〉, which implies that θ(C) = C(τ) = C(τ |〈χv(t)〉) for all C ∈ χc(t). Then, by Lemma 6,
conditions (ii)–(iv) must hold as well.

Now suppose that conditions (i)–(iv) are satisfied. We choose a truth assignment τ : Xt →
{0, 1} with FX(τ) = α(X) for all X ∈ χv(t) = Xt. This is possible due to the following
reasons. First, α(X) ∈ PFX either means that α(X) = ∅ or α(X) = clause(τX) for some
truth assignment τX : X → {0, 1} due to Lemma 4. Hence, τ = τX on those X ∈ χv(t) with
α(X) 6= ∅, whereas we can choose τ such that FX(τ) = ∅ on variable modules X ∈ χv(t)
with α(X) = ∅ due to condition (i). Because FX(τ) = α(X) for all X ∈ χv(t), we may apply
Lemma 6. This lemma together with conditions (ii)-(iv) and the fact that τ = τ |〈χv(t)〉 implies that
C(τ) = θ(C) for all C ∈ χc(t). We conclude that τ ∈ Nt(α, θ), and consequently, (α, θ) ∈ St.

As we are given χt, we can check conditions (i)–(iv) in time O(`2) ⊆ O(`2k+2). Suppose that
(α, θ) ∈ St. If we have stored the values 2|X| − |FX | for all X ∈ χv(t) with α(X) = ∅ while
checking condition (i), then we can compute nt(α, θ) in time O(`) ⊆ O(`2k+2) due to Lemma 7.

Case 2a. t is a node that introduces a variable module X .
Let t′ be the (only) child of t. In Lemma 8 (i) we defined the set T = { θ∗ | (α′, θ∗) ∈ St′

and θ∗(C) ∩ g(C, S) = θ(C) for all C ∈ χc(t) }. In its proof we introduced the set E = {σ :
X → {0, 1} | FX(σ) = α(X)}. There, we also let M = E ×

⋃
θ∗∈T Nt′(α

′, θ∗) and showed
that nt(α, θ) = |M | if (α, θ) ∈ St. Moreover, if (τX , τ ′) ∈ M , then in Claim 2 of the proof of
Lemma 8 (i) we showed that the truth assignment τ = τX ∪τ ′ belongs toNt(α, θ). Hence, in order
to check whether (α, θ) ∈ St and if so to compute nt(α, θ), we only have to compute the size ofM ,
which is given by the righthand side of the equality in Lemma 8 (i). By inequality (1) and because
T ⊆ St′ , we have that |T | ≤ |St′ | ≤ (|F | + 1)k+1. Then, because we are given nt′(α′, θ′) for
all (α′, θ′) ∈ St′ , we can apply Lemma 8 (i) in time O(`+ (|F |+ 1)k+1) ⊆ O(`2k+2).

Case 2b. t is a node that introduces a clause module C.
Let t′ be the (only) child of t, and let θ′ is the restriction of θ to χc(t′). We claim that (α, θ) ∈ St

if and only if the following four conditions hold:

(i) (α, θ′) ∈ St′ .
(ii) θ(C) = C if C has no variable modules in χv(t).

(iii) θ(C) = ∅ if C has a variable module X ∈ χv(t) for which α(X) = ∅.
(iv) θ(C) = select(C, α(X1) · · ·α(Xp)) if C has exactly p ≥ 1 variable modulesX1, . . . , Xp from

χv(t), for which in addition α(Xi) 6= ∅ for i = 1, . . . , p.

In order to see this, first suppose that (α, θ) ∈ St. Let τ be a truth assignment in Nt(α, θ). Then
τ ∈ Nt′(α, θ′), as observed in the proof of Lemma 8 (ii) as well. Then, by the definition of a tree
decomposition, C contains no variable modules fromXt\χv(t). This, together with our assumption

Model Counting for CNF Formulas of Bounded Modular Treewidth 17

that (α, θ) ∈ St means that θ(C) = C(τ) = C(τ |〈χv(t)〉), whereas (α, θ) ∈ St also implies
that FX(τ) = α(X) for all X ∈ χv(t). Hence, we may apply Lemma 6, which together with
θ(C) = C(τ |〈χv(t)〉) gives us conditions (ii)–(iv).

Now suppose that conditions (i)-(iv) hold. By condition (i), there exists a truth assignment
τ ∈ Nt′(α, θ′). Note that τ is defined onXt′ = Xt. As shown in the proof of Lemma 8 (ii), we have
that FX(τ) = α(X) for all X ∈ χv(t) and C′(τ) = θ(C′) for all C′ ∈ χc(t) \ {C}, and moreover
that τ satisfies Ft \ 〈χc(t)〉. Recall that by the definition of a tree decomposition, C contains no
variable modules from Xt \χv(t). Hence, C(τ) = C(τ |〈χv(t)〉). Then, because FX(τ) = α(X) for
all X ∈ χv(t), we may use Lemma 6 together with conditions (ii)–(iv) to obtain C(τ) = θ(C). We
conclude that τ ∈ Nt(α, θ), and hence, (α, θ) ∈ St.

We can check conditions (ii)-(iv) in time O(`) ⊆ O(`2k+2). The same holds for condition (i),
because we are given nt′(α, θ′) in case (α, θ′) ∈ St′ . Moreover, if we find that (α, θ) ∈ St, then
we only have to set nt(α, θ) = nt′(α, θ

′) due to Lemma 8 (ii).

Case 3a. t is a node that forgets a variable module X .
Let t′ be the (only) child of t. Recall that in the proof of Lemma 9 (i) we defined the set M =⋃
Π∈PFX

Nt′(α ∪ {(X,Π)}, θ) and showed that |M | =
∑
Π∈PFX

nt′(α ∪ {(X,Π)}, θ). More-
over, we proved that τ ∈ Nt(α, θ) if and only if τ ∈M . Hence, in order to check whether (α, θ) ∈
St and if so to compute nt(α, θ), we only have to compute |M |. Because |St′ | ≤ (|F | + 1)k+1

due to inequality (1), this can be done in time O((|F |+ 1)k+1) = O(`2k+2).

Case 3b. t is a node that forgets a clause module C.
Let t′ be the (only) child of t. In the proof of Lemma 9 (ii) we showed that τ ∈ Nt(α, θ) if and only
if τ ∈ Nt′(α, θ ∪ {(C, ∅)}). Hence, in order to check whether (α, θ) ∈ St and if so to compute
nt(α, θ), we only have to test if nt′(α, θ ∪ {(C, ∅)}) is given to us. This can be done in linear time.

Case 4. t is a join node.
Let t1 and t2 be the two children of t. In the proof of Lemma 10 we defined the set T1,2 =
{ (θ1, θ2) | (α, θ1) ∈ St1 , (α, θ2) ∈ St2 , and θ1(C) ∩ θ2(C) = θ(C) for all C ∈ χc(t) }.
We also defined the set M ′ =

⋃
(θ1,θ2)∈S1,2

(Nt1(α, θ1) × Nt2(α, θ2)) as well as the set M =

{ (τ1, τ2) ∈ M ′ | τ1|〈χv(t)〉 = τ2|〈χv(t)〉 } and proved that nt(α, θ) = |M | if (α, θ) ∈ St.
Moreover, if (τ1, τ2) ∈ M , then in Claim 2 of the proof of Lemma 10 we showed that the truth
assignment τ = τ1 ∪ τ2 belongs to Nt(α, θ). Hence, in order to check whether (α, θ) ∈ St

and if so to compute nt(α, θ), we only have to compute the size of M , which was shown to be
equal to 1

β

∑
(θ1,θ2)∈T1,2

nt1(α, θ1) · nt2(α, θ2), where β =
∏
X∈α−1(∅)(2

|X| − |FX |). Because
|St1 | ≤ (|F | + 1)k+1 and |St2 | ≤ (|F | + 1)k+1 due to equality (1) and β can be computed in
O(`2) time, this takes time O(`2 + (|F |+ 1)2k+2) = O(`2k+2). ut

We are now ready to present the proof of our main result, which we restate below.

Theorem 1 #SAT can be solved in time O(`3k+4) on CNF formulas that have modular incidence
treewidth at most k and length `.

Proof (of Theorem 1) Let F be a formula with modular incidence treewidth at most k. We first
construct I(F) and then contract all its modules in order to obtain I∗(F). This can be done in
O(`2) time. By using Bodlaender’s algorithm [2] we obtain in O(`2) time a tree decomposition of
I∗(F) of width at most k. Recall that Kloks [14] showed that such a tree decomposition can be
converted in O(`2) time to a nice tree decomposition (T, χ, r) of width at most k that has at most
4|VI∗(F)| ≤ 4` nodes. Also recall that the desired output is

n =
∑

(α,θ)∈S ∗r

nr(α, θ),

where S ∗r consists of those shapes (α, θ) ∈ Sr with θ(C) = ∅ for all C ∈ χc(r). In order to
compute n, we compute the sizes nt(α, θ) for all t ∈ VT . Here we follow a bottom-up approach

18 Daniel Paulusma et al.

starting at the leaves. This approach enables us to use Lemma 11, which we apply for each node
t ∈ VT and each (α, θ) with α(X) ∈PFX for allX ∈ χv(t) and θ(C) ∈P(C,Xt) for all C ∈ χc(t)
and which takes O(`2k+2) time per call. As soon as we are of distance 2 from a node t, we can
forget the size nt(α, θ).

For all t ∈ Vt, inequality (1) provides an upper bound of (|F | + 1)k on the number of pairs
(α, θ) with α(X) ∈ PFX for all X ∈ χv(t) and θ(C) ∈ P(C,Xt) for all C ∈ χc(t). This upper
bound, together with the O(`2k+2) time for each call to Lemma 11, means that it takes at most
time O((|F |+1)k+1`2k+2) ⊆ O(`3k+3) in total to compute the sizes nt(α, θ) for a node t. As the
total number of nodes is at most 4`, we find that the total running time is at most O(4` · `3k+3) ⊆
O(`3k+4). ut

4 Conclusion

We proved that #SAT is polynomial-time tractable for any class of formulas of bounded modular
incidence treewidth. Modular incidence treewidth combines treewidth and module contraction, a
powerful preprocessing technique widely used in combinatorial optimization. As shown, the re-
sulting parameter is incomparable with the most general structural parameters for which #SAT is
known to be tractable. With this result, we approach the frontier of tractability from a new direc-
tion. On the other side, one can find β-hypertree width and incidence clique-width. It remains open
whether #SAT is polynomial-time for classes of formulas for which one of the latter two parameters
is bounded. Graphs of small clique-width that do not contain large bipartite subgraphs are known
to have small treewidth [3]. This gives us some reason to believe that our techniques may carry
over to the case of bounded incidence clique-width.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with backtracking search. J. Artif. Intell.
Res. 34, 391–442 (2009)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6),
1305–1317 (1996)

3. Courcelle, B.: The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications.
Theoretical Computer Science 299(13), 1 – 36 (2003)

4. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. of Computer and System
Sciences 46(2), 218–270 (1993)

5. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-
width. Theory Comput. Syst. 33(2), 125–150 (2000)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable
in monadic second-order logic. Discr. Appl. Math. 108(1-2), 23–52 (2001)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discr. Appl. Math. 101(1-3), 77–114 (2000)
8. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-

width. Discr. Appl. Math. 156(4), 511–529 (2008)
9. Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems for formulas of bounded rank-width.

Fund. Inform. 123(1), 59–76 (2013)
10. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.)

Handbook of Satisfiability, vol. 185, pp. 633–654. IOS Press (2009)
11. Gottlob, G., Pichler, R.: Hypergraphs in model checking: acyclicity and hypertree-width versus clique-width. SIAM J.

Comput. 33(2), 351–378 (2004)
12. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Computer Science Review 4(1),

41–59 (2010)
13. Kaski, P., Koivisto, M., Nederlof, J.: Homomorphic hashing for sparse coefficient extraction. In: 7th International

Symposion on Parameterized and Exact Computation (IPEC 2012), LNCS, vol. 7535, pp. 147–158. Springer (2012)
14. Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin (1994)
15. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Com-

puter Science 481, 85–99 (2013)
16. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)
17. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest com-

mon subsequence problems. J. of Computer and System Sciences 67(4), 757–771 (2003)

Model Counting for CNF Formulas of Bounded Modular Treewidth 19

18. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2),
153–190 (1991)

19. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2), 273–302 (1996)
20. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)
21. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted model counting. In: Proceedings, The

Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 475–482. AAAI Press / The MIT Press
(2005)

22. Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7(3-4), 281–292 (1971)
23. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: E. Giunchiglia, A. Tacchella (eds.) Theory and

Applications of Satisfiability, 6th International Conference, SAT 2003, Selected and Revised Papers, Lecture Notes in
Computer Science, vol. 2919, pp. 188–202. Springer Verlag (2004)

24. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

20 Daniel Paulusma et al.

A The Proof of Theorem 2

Recall that the W[1]-hardness reduction of Theorem 2 is exactly the same as the reduction in
the proof of the result from [15] that states that SAT is W[1]-hard when parameterized by the
β-hypertree width. To be more precise, only Claim 1 in the proof of Theorem 2 is new.

Theorem 2 SAT is W[1]-hard, when parameterized by the modular incidence treewidth of the input
formula.

Proof A clique in a graph is a subset of vertices that are mutually adjacent. A k-partite graph is
balanced if its k partition classes are of the same size. A partitioned clique of a balanced k-partite
graph G = (V1, . . . , Vk, E) is a clique K with |K ∩ Vi| = 1 for i = 1 . . . , k. We devise a
parameterized reduction from the following problem, which is W[1]-complete [17].

PARTITIONED CLIQUE
Instance: A balanced k-partite graph G = (V1, . . . , Vk, E).
Parameter: The integer k.
Question: Does G have a partitioned clique?

Before we describe the reduction we introduce some auxiliary concepts. For any three variables
z, x1, x2, let F (z, x1, x2) denote the formula consisting of the clauses

{z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}.

This formula has exactly three satisfying assignments, corresponding to the vectors 000, 101, and
110. Hence each satisfying assignment sets at most one out of x1 and x2 to true, and if one of
them is set to true, then z is set to true as well (“z = x1 + x2”). Taking several instances of
this formula we can build a “selection gadget.” Let x1, . . . , xm and z1, . . . , zm−1 be variables.
We define F=1(x1, . . . , xm; z1, . . . , zm−1) as the union of F (z1, x1, x2),

⋃m−1
i=2 F (zi, zi−1, xi+1),

and {{zm−1}}. Now each satisfying assignment of this formula sets exactly one variable out of
{x1, . . . , xm} to true, and, conversely, for each 1 ≤ i ≤ m there exists a satisfying assignment that
sets exactly xi to true and all other variables from {x1, . . . , xm} to false.

Now we describe the reduction. Let G = (V1, . . . , Vk) be a balanced k-partite graph for k ≥ 2.
We write Vi = {vi1, . . . , vin}. We construct a formula F . As the variables of F we take the vertices
of G plus new variables zij for 1 ≤ i ≤ k and 1 ≤ j ≤ n − 1. We put F =

⋃k
i=0 Fi where

the formulas Fi are defined as follows: F0 contains for any u ∈ Vi and v ∈ Vj (i 6= j) with
uv /∈ E the clause Cu,v = {u, v } ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v } }; for i > 0 we define
Fi = F=1(vi1, . . . , v

i
n; z

i
1, . . . , z

i
n−1). To prove the theorem it suffices to show the following two

claims.

Claim 1. The modular incidence treewidth of F is at most
(
k
2

)
+ 1.

For 1 ≤ i ≤ k, let Di
1, . . . , D

i
n be the vertices in I(F) with N(Di

1) = {zi1, vi1, vi2} , N(Di
j) =

{zij , zij−1, vij+1} for 2 ≤ j ≤ n−1 and N(Di
n) = {zin−1}. In I(F), the set of vertices Cu,v can be

partitioned into modules C1 . . . , Cm, wherem ≤
(
k
2

)
. By deleting these modules, we obtain a graph

I ′(F) that consists of k connected components corresponding to the subgraphs of I(F) induced
by {vi1, . . . , vin, zi1, . . . , zin−1, Di

1, . . . , D
i
n} for 1 ≤ i ≤ k. Note that these components are trees,

so the treewidth of I ′(F) is 1. Thus the graph obtained from I ′(F) by contracting modules has
treewidth 1. We can turn the corresponding tree decomposition into a tree decomposition of I∗(F)
that has width m + 1 ≤

(
k
2

)
+ 1 by simply adding the set of m clause modules {C1, . . . , Cm} to

each bag.

Claim 2. G has a partitioned clique if and only if F is satisfiable.

To prove Claim 2 we first suppose that G has a partitioned clique K. We define a partial truth
assignment τ : V → {0, 1} by setting τ(v) = 1 for v ∈ K, and τ(v) = 0 for v /∈ K. This partial

Model Counting for CNF Formulas of Bounded Modular Treewidth 21

assignment satisfies F0, and it is easy to extend τ to a satisfying truth assignment of F . Conversely,
suppose that F has a satisfying truth assignment τ . Because of the formulas Fi, 1 ≤ i ≤ k, τ sets
exactly one variable viji ∈ Vi to true. Let K = {v1j1 , . . . , v

k
jk
}. The clauses in F0 ensure that viji

and vi
′

ji′
are adjacent in G for each pair 1 ≤ i < i′ ≤ k, hence K is a partitioned clique of G. This

proves Claim 2. ut

B The Missing Proof inside Example 2

Recall that in Example 2 we defined a formula ψm for m ≥ 1 as follows. We let x1, . . . , xm,
y1, . . . , ym be 2m distinct variables. Then we let ψm consist of the clauses Ci for 1 ≤ i ≤ m
where Ci = {yi, x1, . . . , xm}, along with m singleton clauses {x1}, . . . , {xm}. In this appendix
we show the following result. Note that all necessary terminology not stated in Section 2 is defined
inside the proof.

Proposition 4 For all m ≥ 1, the signed incidence clique-width of ψm is at most 4.

Proof Let C be a finite set. A C-labeled graph is a pair (G,λ) where G is a directed graph and λ
is a mapping λ : V (G)→ C, called a C-labeling of G. Let G = (G,λ) be a C-labeled graph and
let a, b ∈ C with a 6= b. We define the following two unary operations on labeled graphs:

– We let αa,b(G) = (G′, λ), where G′ is the graph obtained from G by introducing an arc (v, w)
for any pair of vertices v, w ∈ V (G) such that λ(v) = a and λ(w) = b.

– We let ρa→b(G) = (G,λ′), where λ′(v) = b if λ(v) = a and λ′(v) = λ(v) otherwise, for any
v ∈ V (G).

Moreover, for a set of vertices U ⊆ V (G), we let G[U] denote the C-labeled graph (G[U], λ|U),
where λ|U denotes the restriction of λ to U . The disjoint union G1 ⊕G2 of two C-labeled graphs
G1 and G2 is defined in the obvious way.

Let G = (G,λ) and G′ = (G′, λ′) be C-labeled graphs. We write G→ G′ if V (G′) = V (G)
and one of the following conditions holds:

1. G = G1 ⊕G2,G
′ = G1 ⊕ ρa→b(G2) or

2. G = G1 ⊕G2,G
′ = G1 ⊕ αa,b(G2),

where G1,G2 are C-labeled graphs and a, b ∈ C with a 6= b. A C-construction [7] of a labeled
graph G is a sequence G0,G1, . . . ,Gn of C-labeled graphs satisfying the following properties:

1. G0 = (G0, λ0) such that E(G0) = ∅;
2. Gi → Gi+1 for 0 ≤ i < n;
3. Gn = G.

By Proposition 3.1 of [7] a directed labeled graph G has directed clique-width at most k if and
only if G has a C-construction for some set C of cardinality k.

Note that the signed incidence graph of a formula is a directed graph and that the signed inci-
dence clique-width of a formula is equal to the directed clique-width of the signed incidence graph.
In line with [7], we view unlabeled (directed) graphs as labeled graphs where all vertices have the
same label. We give a C-construction of (Im, λ1), where Im denotes the signed incidence graph of
ψm, λ1 is aC-labeling of Im such that λ1(v) = 1 for each v ∈ V (Im), andC = {1, 2, 3, 4}. Recall
that ψm = {Ci, Di | 1 ≤ i ≤ m }, where Ci = {yi, x1, . . . , xm} and Di = {xi}. Accordingly,
V (Im) =

⋃m
i=1{xi, yi, Ci, Di} and E(Im) =

⋃m
i=1{(xi, Di), (yi, Ci)} ∪ { (xi, Cj) | 1 ≤ i, j ≤

m }.
Let G0 denote the (directed) graph with V (G0) = V (Im) = V and E(G0) = ∅, and let λ

denote the C-labeling of G0 given by

λ(Di) = 1, λ(xi) = 2, λ(Ci) = 3, λ(yi) = 4,

22 Daniel Paulusma et al.

for 1 ≤ i ≤ m. The graph G0 = (G0, λ) will be the initial graph in our C-construction. For
1 ≤ i ≤ m, the graph Gi is simply the graph Gi−1 with an arc from xi to Di. This can be
expressed as

Gi = Gi−1[V \ {xi, Di}]⊕ α2,1(Gi−1[{xi, Di}]). (4)

Under the assumption that

Gi−1 = Gi−1[V \ {xi, Di}]⊕Gi−1[{xi, Di}], (5)

this implies that Gi−1 → Gi. Condition (5) is satisfied initially since G0 does not contain any
edges, and the definition in (4) ensures that it remains true for 1 ≤ i ≤ m.

For m+ 1 ≤ i ≤ 2m, we let Gi be Gi−1 with an additional arc from yi to Ci. That is,

Gi = Gi−1[V \ {yi, Ci}]⊕ α4,3(Gi−1[{yi, Ci}]). (6)

Again, this implies that Gi−1 → Gi provided that

Gi−1 = Gi−1[V \ {yi, Ci}]⊕Gi−1[{yi, Ci}]. (7)

It follows from the construction of Gm and the definition in (6) that condition (7) must be satisfied
for each m + 1 ≤ i ≤ 2m. We let G2m+1 = (G2m+1, λ) = α2,3(G2m), introducing all arcs
(xi, Cj) with 1 ≤ i, j ≤ m. Since G2m+1 = Im and Gi → Gi+1 for 0 ≤ i ≤ 2m we find that the
sequence G0,G1, . . . ,G2m+1 is aC-construction of (Im, λ). Finally, we replace redundant labels
by setting G2m+2 = ρ2→1(G2m+1), G2m+3 = ρ3→1(G2m+2), and G2m+4 = ρ4→1(G2m+3)
to obtain a C-construction of (Im, λ1). We conclude that Im has directed clique-width at most
|C| = 4. Hence, the signed incidence clique-width of ψm (which is equal to the directed clique-
width of Im, as observed above) is at most |C| = 4 as well. ut

