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Using N-body simulations, we measure the power spectrum of the effective dark matter density field,
which is defined through the modified Poisson equation in fðRÞ cosmologies. We find that, when
compared to the conventional dark matter power spectrum, the effective power spectrum deviates more
significantly from the ΛCDMmodel. For models with fR0 ¼ −10−4, the deviation can exceed 150%, while
the deviation of the conventional matter power spectrum is less than 50%. Even for models with
fR0 ¼ −10−6, for which the conventional matter power spectrum is very close to the ΛCDM prediction, the
effective power spectrum shows sizeable deviations. Our results indicate that traditional analyses based on
the dark matter density field may seriously underestimate the impact of fðRÞ gravity on galaxy clustering.
We therefore suggest the use of the effective density field in such studies. In addition, based on our findings,
we also discuss several possible methods of making use of the differences between the conventional and
effective dark matter power spectra in fðRÞ gravity to discriminate the theory from the ΛCDM model.
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I. INTRODUCTION

It is well established that the Universe is currently under-
going a period of accelerated expansion [1]. The standard
paradigmholds that this accelerated expansion is caused by a
nonzero cosmological constant. A much discussed alterna-
tive is that a modification to general relativity could also
account for the observed acceleration. However, the dynam-
ics of the solar system heavily constrain the form that any
such modification may take. Any viable theory of gravity
must be indistinguishable from standard general relativity in
high-density environments, such as the Solar System and the
centers of galaxies. A viable theory must also reproduce
the observed expansion history, which is very well fit by the
standard ΛCDM cosmology [2–4].
Chameleon fðRÞ gravity is a class of models where the

effective potential of the scalar field is dependent upon the
local environment [5]. A fifth force is involved which can
be “screened” by the local density field in very deep
potential wells. In regions where the matter density is high
and the potential well is very deep, the fifth force is usually
screened, and gravity behaves just like standard general
relativity. However, in low-density regions of space, there is
no such screening, and the strength of gravity is enhanced
by the fifth force.
There are several observational effects due to such a

modification. However, in order to make competitive
forecasts for constraining fðRÞ gravity with current and
future cosmological surveys, it will be necessary to study
the clustering of galaxies and to produce mock galaxy
catalogs from simulations in fðRÞ gravity.

However, the clustering of galaxies in fðRÞ gravity is very
complicated. The gravitational force produced by the dark
matter field is mediated by the fifth force, which is no longer
the same as that in standard gravity. The relationship between
dark matter halos and the clustering of galaxies is not the
same in fðRÞ gravity compared to the standard model.
Although the clustering of dark matter halos in fðRÞ gravity
has already been studied in the literature [6], it might be a risk
to use the standard darkmatter halos in semianalytical galaxy
formationmodels [7] to analyze the formation and clustering
of galaxies. However, if we define an effective density field,
the gravitational force produced by the effective density field
could still have the same form as that in standard gravity. The
clusteringof galaxies in the effective darkmatter density field
could still follow that in the standard gravity. It is therefore
more interesting to study the effective density field than the
standard dark matter density field when analyzing the
formation and clustering of galaxies.
In Ref. [8], using the effective density field, we studied

the properties of effective halos. We found that the
relationships between the effective mass of a halo and
its dynamical properties closely resemble those in the
ΛCDM cosmology. This is an interesting result. The aim
of this paper is to further extend this idea. We shall not only
focus on halos but also on the entire density field. We shall
study the power spectrum of the effective density field since
in fðRÞ gravity it is closely related to the galaxy power
spectrum which is one of the most important statistical
measures of the clustering of galaxies in cosmology.
This paper is organized as follows. In Sec. II, we

introduce the fðRÞ model studied in this work. In
Sec. III, we discuss the linear and nonlinear perturbation
equations in fðRÞ gravity. We also present the technical*jianhua.he@brera.inaf.it
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details of our simulations. In Sec. IV, we describe our
method of measuring the power spectra of scalar fields,
and we also present the numerical results on the effective
power spectra. In Sec. V, we summarize and conclude
this work.

II. F(R) MODEL

The fðRÞ gravity model is defined with the four-
dimensional modified Einstein–Hilbert action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ
Z

d4xLðmÞ; ð1Þ

where κ2 ¼ 8πG with G being Newton’s constant, g is the
determinant of the metric gμν, LðmÞ is the Lagrangian
density for matter, and fðRÞ is an arbitrary algebraic
function of the Ricci scalar curvature R [9–20] (see
Refs. [21,22] for reviews).
In this work, we consider an fðRÞ model that can

exactly reproduce the ΛCDM background expansion
history [23],

fðRÞ ¼ −6Ω0
dH

2
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The indices in the above expression are given by

qþ ¼ 1þ ffiffiffiffiffi
73

p

12
; rþ ¼ 1þ

ffiffiffiffiffi
73

p

6
; pþ ¼ 5þ ffiffiffiffiffi

73
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2F1½a; b; c; z� is the hypergeometric function. When
c > b > 0, the hypergeometric function has the integral
representation

2F1½a; b; c; z� ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
×
Z

1

0

tb−1ð1 − tÞc−b−1ð1 − ztÞ−adt; ð3Þ

where ΓðxÞ is the Euler gamma function. 2F1½a; b; c; z� is a
real function that is well defined in the range −∞ < z < 1.
H0 is the present Hubble constant. Ω0

m is the matter density
today, and Ω0

d ¼ 1 −Ω0
m. D is an additional parameter that

characterizes the fðRÞ model. For the instability issue as
discussed in Ref. [24], D should be constrained as D < 0.
The model predicts a lower bound for the scalar curvature R
across the Universe,

R ∈ ð4Λ;þ∞Þ; ð4Þ

where

Λ ¼ 3Ω0
dH

2
0: ð5Þ

III. N-BODY SIMULATIONS

In this section, we will briefly summarize the basic
equations that are used in fðRÞ cosmological simulations.

A. Nonlinear perturbation equations
and screening mechanism

The formation of large-scale structure in fðRÞ gravity is
governed by the modified Poisson equation

∇2ϕ ¼ 16πG
3

δρ −
δR
6

ð6Þ

as well as an equation for the scalar field fR ≡ df
dR. If the

amplitude of the scalar field jfRj is very small (jfRj ≪ 1),
the equation of motion for fR can be presented as

∇2δfR ¼ 1

3c2
½δR − 8πGδρ�; ð7Þ

where ϕ denotes the gravitational potential, δfR ¼
fRðRÞ − fRðR̄Þ, δR ¼ R − R̄, and δρ ¼ ρ − ρ̄. The overbar
denotes the background quantities, and ∇ is the derivative
with respect to the physical coordinates. Combining
Eqs. (6) and (7), we have

∇2ϕN ¼ 4πGδρ; ð8Þ

where

ϕN ¼ ϕþ c2δfR
2

ð9Þ

is the lensing potential [25]. If we define an effective
density field, the modified Poisson equation, Eq. (6), can be
cast into the same form as Eq. (8),

∇2ϕ ¼ 4πGδρeff ; ð10Þ

where δρeff ≡ Geff
G δρ and Geff is the effective Newtonian

constant which is defined by

Geff ¼
�
4

3
−

δR
24πGδρ

�
G: ð11Þ

Geff characterizes the strength of gravity among massive
particles in fðRÞ gravity.
As is well known, in linear theory, fðRÞ gravity can be

ruled out due to the enhancement of gravity relative to the
standard gravityGeff ∼ 4

3
G. This conclusion is regardless of

the functional form of fðRÞ (also see Appendix A). Thus, a
screening mechanism is essential for fðRÞ theories to evade
stringent local tests of gravity. However, there are two
aspects of the screening mechanism in fðRÞ theory to
consider:
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(i) A high curvature, R ∼ 8πGρ, should be recovered in
high-density regions.

(ii) The fifth force, ∇fR, should be sufficiently sup-
pressed in high-density regions as well.

Given the fact that the functional form of fðRÞ is usually
chosen as limR→þ∞jfRj ¼ 0, if a high curvature can be
achieved in high-density regions, the fifth force will be
automatically suppressed: ∇δfR ¼ ∇fR → 0. However, it
is important to note that a high density does not imply a
high curvature in fðRÞ gravity. As is discussed in Ref. [26],
the condition for high curvature in high-density regions in
fðRÞ gravity is closely related to the inequality

c2jδfRj ≤
���� − ϕ

2

���� ≤
���� − 2

3
ϕN

����: ð12Þ

Here, in addition to our previous numerical study [26], we
also provide a strict mathematical proof of the above
inequality, making use of Green’s function. The details
can be found in Appendix A. Based on Eq. (12), a
necessary condition for the high curvature in high-density
regions requires that the depth of the local potential well
j − ϕj is close to or above the value of the background field
j − ϕj≳ 2c2jf̄Rj [25,26]; a sufficient condition for the low
curvature in high-density regions is that j − ϕj ≪ 2c2jf̄Rj.
If expressed in terms of the Newtonian potential j − ϕN j,
j − ϕN j≳ 3

2
c2jf̄Rj is a weaker necessary condition for the

high curvature, but j − ϕN j ≪ 3
2
c2jf̄Rj is a stronger suffi-

cient condition for the low curvature in high-density
regions.

B. Cosmological simulations of f ðRÞ gravity
Our cosmological simulations are performed using the

ECOSMOG code [27] which itself is based on the N-body
code RAMSES [28]. The box size is Lbox ¼ 150h−1 Mpc.
The number of particles is N ¼ 2563. The cosmological
parameters are Ω0

b ¼ 0.049, Ω0
c ¼ 0.267, Ω0

d ¼ 0.684,
h ¼ 0.671, ns ¼ 0.962, and σ8 ¼ 0.834, which are the
Planck 2013 [3] best-fit values for the standard ΛCDM
model. We use the Mpgrafic package [29] to generate
initial conditions at z ¼ 49. We choose the parameter
fR0 for our fðRÞ model as fR0 ¼ −10−6, fR0 ¼ −10−5,
and fR0 ¼ −10−4. In addition to the fðRÞ simulations, we
also implement a suite of ΛCDM simulations with the same
box size, cosmological parameters, and initial conditions as
control.

IV. POWER SPECTRUM

A. Impact of background field f R
As we have seen above, the scalar field fR enters the

field Eqs. (6) and Eq. (7) via RðfRÞ. Thus, to numerically
solve the equations, we need to have analytical expressions
of RðfRÞ, which can in principle be obtained by inverting

fRðRÞ, which itself can be derived from Eq. (2). However,
Eq. (2) is complicated, and it is difficult to extract RðfRÞ
analytically. Following Ref. [26], we will instead use fitting
formulas for RðfRÞ.
In this work, we propose an improved fitting formula of

RðfRÞ for our fðRÞ model

RðfRÞ ¼ 12Ω0
dH

2
0 þ 3Ω0

m

��
D
fR

� 1
pþ − ηe−ð

fR
D Þα

�
H2

0; ð13Þ

where α and η are fitting parameters. Figure 1 shows
the accuracy of this improved fitting formula compared
to the exact expression obtained from Eq. (2) and the
one used in Ref. [26]. η and α depend on Ωm, and their
values here are taken as η ¼ 1.3038, α ¼ 0.3733 for
Ωm ¼ 0.316. However, they are independent of D and
fR0. Figure 1 shows that when R≳ 10R0 the error of the
fitting formula is well below 1%, when R ∼ R0 the error is
around 2%, and the overall error is always smaller than 4%
for R > 4ð1þ βmÞΛ where βm ¼ 10−3.
To examine the impact of the accuracy of the fitting for

RðfRÞ on matter power spectra, we implement a test
simulation, using the same initial conditions as in our
previous work [26]. The number of particles in the test is
N ¼ 2563, and the box size is Lbox ¼ 150h−1 Mpc. We
choose fR0 ¼ −10−5 for illustrative purposes since this
model has the most complex shape of the power spectrum

FIG. 1 (color online). Upper panel: β ¼ RðfRÞ=4Λ − 1 as a
function of fR. It is clear that the accuracy of the fitting formula
used in this work has been improved significantly particularly
for small R. Lower panel: The error of fitting formulas.
When R≳ 10R0, the error is below 1%. When R ∼ R0, the
error is around 2%. The error is always less than 4% for
R > 4ð1þ βmÞΛ, where βm ¼ 10−3.

EFFECTIVE DARK MATTER POWER SPECTRA IN fðRÞ … PHYSICAL REVIEW D 92, 103508 (2015)

103508-3



and most complicated screening situation at z ¼ 0. The
numerical results are shown in Fig. 2, in which the upper
panel shows the relative difference between the power
spectra of our fðRÞ and the ΛCDM model,

ΔP=P ¼ PfðRÞ=PΛCDM − 1; ð14Þ

at z ¼ 0, measured by using the POWMES [30] code. The
lower panel shows the relative difference on the power
spectra between this work and our previous work:

����Pprevious work

Pthis work
− 1

���� × 100%:

We find a good agreement on the measured power spectra:
the relative difference is below 1% up to k ∼ 5h=Mpc, and
even on the smallest scales probed by this simulation
(k ∼ 10h=Mpc), it is less than 3%. We therefore conclude
that the error induced by the fitting formula of RðfRÞ has
been controlled within a fairly reasonable range.

B. Power spectra of scalar fields

To achieve a high spatial resolution in simulations, the
RAMSES code employs the adaptive mesh refinement
(AMR) technique. The simulation box is initially covered
by a domain mesh with a fixed resolution. Each cell of the
domain mesh is hierarchically refined according to some
predefined criteria (e.g., a density threshold) during the
simulation. Although the domain mesh resolution in our
simulation is only 2563, the highest resolution of the refined

cells could be as high as ð215Þ3 ¼ 327683. The physical
quantities (e.g., densities, potentials) are assigned on the
AMR grid, at the centers of the cells, during the simulation.
In this work, we make use of this AMR grid to measure

the power spectra of various scalar fields (δρ, δρeff , ϕ, ϕN ,
c2δfR). Our method is similar to measuring the power
spectrum of gas pressure in hydrodynamical simulations
[28]. Unlike the density field, other scalar fields such as the
gas pressure and various potentials cannot be easily
sampled by particles without bias. The AMR grid is
therefore a natural choice for this work. To do this, we
record the values of these fields at different levels of the
AMR grid for each snapshot. However, we only use the leaf
cells (which are not refined) at each snapshot. The leaf cells
can seamlessly cover the whole simulation domain.
As discussed in Appendix B, the power spectrum of a

continuous scalar field uð~xÞ, where u represents any one of
δρ, δρeff , ϕ, ϕN , and c2δfR, is defined by

hUð~k1ÞUð~k2Þ�i≡ ð2πÞ3δDð~k1 − ~k2ÞPuðkÞ; ð15Þ

where Uð~kÞ is the Fourier transform of uð~xÞ and δD is the
Dirac delta function. Although this definition assumes a
continuous scalar field, in practice the power spectrum
can only be measured by discrete samplings. Usually, the
scalar field is sampled on a set of regularly spaced grid
points and then analyzed by using the fast Fourier trans-
form (FFT). As explained in Appendix B, the biggest
problem of using FFT to measure the power spectrum is the
aliasing effect, namely the discrete Fourier transform does
not give the power spectrum of the scalar field but a sum of
aliases of the continuous Fourier transform of the scalar
field

PFFT
u ð~kÞ ¼

X
n̂

Puð~kþ 2kNn̂Þ; ð16Þ

where kN ¼ πNg

L is the Nyquist frequency, L is the box size,
Ng is the number of cells in one dimension of the FFT
mesh, and n̂ is a position vector which indicates the alias.
Without prior knowledge of the power spectrum (e.g., its
shape), it is impossible to remove the aliasing effect from
the true signal. However, it is possible to minimize such
aliasing effects by increasing the resolution of the FFT
mesh. If the Nyquist frequency is high enough, the alias can
be separated from the true signal in the main region
0 < k < 2kN , and so its effect can be minimized.
In this work, we assign the values of scalar fields to the

FFT grid without smoothing

u~xg ¼ uð~xÞj~x¼~xg ;

where ~xg represents the positions of the FFT grid points and
u~xg is the sampled signal on those points. This is equivalent

FIG. 2 (color online). The power spectra measured from our
previous and current simulations using POWMES. The relative
difference is well below 1% for k < 5h=Mpc, and the difference
on small scales k > 5h=Mpc is less than 3%.
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to interpolating the scalar field uð~xÞ from the leaf AMR
cells to the FFT grid points ~xg directly. In detail:

(i) If the leaf AMR cell is coarser than or the same
coarseness as the FFT cell, we assign the value of the
scalar field in the AMR cell to all of the FFT grid
points that are contained within the AMR cell.

(ii) If the leaf AMR cell is finer than the FFT cell, we
interpolate values from the eight nearest surrounding
AMR grid points to the FFT grid.

This method enables us to measure the power spectra of any
scalar field, and we call it the AMR-FFT method for
convenience. Before presenting our results, we will perform
several tests on this method.
Our first test is about the accuracy of the AMR-FFT

method when applied to the power spectrum of the dark
matter density field,PmðkÞ.PmðkÞ can bemeasured to a high
accuracy directly from the darkmatter particles.We adopt the
results from the POWMES code as a control. POWMES is based
on a method of Taylor expansion of trigonometric functions
and can yield an unbiased and nearly alias-free estimation of
PmðkÞ. For the purpose of comparison, we only focus on one
realization and choose fðRÞ models with different param-
eters as well as the ΛCDM model. These simulations share
the same initial conditions. In Fig. 3, we show the darkmatter
power spectra for the ΛCDM model measured using our
AMR-FFTmethodwith different resolutions of theFFTgrid.
As shown in Fig. 3, the accuracy of the AMR-FFT method
depends strongly upon the resolution of the FFT grid. A low
resolution measurement such as 5123 (kN=4 ∼ 2.68h=Mpc)
gives very poor accuracy on the power spectrum on small

scales k > kN=4. However, with a much higher resolution,
such as 40963 (kN=4 ∼ 20h=Mpc), this method agrees with
the POWMES code very well. Further, we also show in
Fig. 4 the quantity ΔP=P as defined in Eq. (14) for different
fðRÞ models. Again, using the 40963 FFT grid, the
AMR-FFT method agrees with POWMES better than 1%
out to k ∼ 10h=Mpc.
In Ref. [31], a multigrid method which is based on a

hierarchy of nested cubic Cartesian grids is proposed in
order to save the use of memory in the computation of the
FFT. The power spectra can be measured by dividing the
volume of a box into small cubes and then stacking
the small cubes into a coadded density field. Instead of
using a single high resolution FFT, only a few times of
relatively low resolution FFT are needed in this method.
The final power spectrum is obtained by combining the
different “band power”measurements obtained from differ-
ent volumes of the stacked density fields [31]. In Fig. 4, we
also present the power spectrum measured using this
method. However, as shown in Fig. 4, the stacked density
yields about 3% error on the power spectrum relative to
POWMES. To get more accurate results, we therefore do not
use this method in this work.
Our second test concerns the measurement of the

power spectrum of the effective density field, δeff , which
is defined by

δeff ≡ δρmeff

ρ̄m
¼ Geff

G
δρm
ρ̄m

: ð17Þ

FIG. 3 (color online). The power spectrum of the ΛCDMmodel
measured from the POWMES code (the solid line) and our AMR-
FFT method with different resolutions. Our highest resolution
measurement 40963 agrees with the POWMES code very well out
to k ∼ 10h=Mpc.

FIG. 4 (color online). The relative differences of the conven-
tional dark matter power spectra with respect to theΛCDMmodel
for different fðRÞ models. The 20483 FFT measurements yield
about 5% relative differences on small scales (dotted lines), while
the high resolution measurements 40963 (dashed lines) agree with
POWMES (solid lines) better than 1%. The stars indicate the results
obtained by stacking density fields.
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Using the AMR-FFT method, the power spectrum of δeff
can be measured in a similar way to that of the density field.
For illustrative purposes, we only focus on the fðRÞ model
with fR0 ¼ −10−5, and the results are shown in Fig. 5. As a
comparison, we also present the dark matter power spec-
trum PmðkÞ. Compared with PmðkÞ, the effective power
spectrum Pmeff

ðkÞ is enhanced due to the enhancement of
gravity. However, Pmeff

ðkÞ should not exceed 16
9
PmðkÞ since

the maximal enhancement of gravity is 1=3. This upper
limit is indicated by the dashed line in Fig. 5.
To further test the validity and accuracy of our AMR-

FFT method on the power spectrum of the effective density
field, instead of using the regular grid for sampling the
effective density field, we sample the effective density field
at the positions of dark matter particles. We treat the
effective density field as discrete mass-weighted dark
matter particles

ρmeff
ð~xÞ ≈ Geff

G
ρmð~xÞ ¼

Geff

G

X
i

mδDð~x − ~xiÞ

¼
X
i

Geffð~xiÞm
G

δDð~x − ~xiÞ

¼
X
i

meffð~xiÞδDð~x − ~xiÞ; ð18Þ

in which m is the true mass of particles and meff ≡ Geff
G m is

the effective mass. Although the discrete particles induce

shot noise, the Fourier transform of the density field, in
principle, can be evaluated accurately by a direct sum over
the modes of the Fourier transform of each particle,

ρmeff
ð~kÞ ¼

X
i

meffð~xiÞe−i~k·~xi : ð19Þ

However, this method is numerically unfeasible for N-body
simulations since they usually contain a large number of
particles and Eq. (19) does not have a fast algorithm like the
FFT due to the irregular distribution of points. In practice,
in order to improve the efficiency, the power spectrum of
discrete particles can be measured by assigning particles to
a regular grid and then analyzing them using the FFT. The
assignment of particles is equivalent to smoothing the
underlying density field and then putting the averaged
values on an FFT grid. This smoothing effect, however, can
be exactly corrected afterward. Furthermore, with the aid of
further correction strategies (e.g. Ref. [32]), the aliasing
effect can be significantly suppressed, and a reasonable
accuracy of the power spectrum can be obtained with less
computational expense. Although this method is not fully
free of bias and aliasing in general, it provides an alter-
native way to our AMR-FFT method for measuring the
power spectrum of the effective density field. We therefore
use it as a cross check of our measurement of Pmeff

.
In high-density regions δ ≫ 1, the mass-weighted sam-

pling should be unbiased, and the power spectrum of the
mass-weighted particles should be close to the power
spectrum of the effective density field. Since the
POWMES code has not been tested for mass-weighted
particles, we instead use our own code. Our code follows
the method as proposed in Ref. [32]. We remove the
aliasing effect by assuming a power law Pmeff

∝ kα for the
power spectrum on large k, where α is a fitting parameter.
Following Ref. [32], we also correct the shot noise induced
by the discrete sampling of particles and the smoothing
window function of the particle assignment. The results are
shown as red stars in Fig. 5. As a demonstration of our
code, we also present the measurement of the dark matter
power spectra Pm from the dark matter particles using our
code. As is indicated by the blue stars, our code yields the
same results as the POWMES code and the AMR-FFT
method. As for the power spectrum of the effective density
field, on small scales the mass-weighted sampling agrees
very well with the results from our AMR-FFT method.
However, on large scales, there are some deviations. This
can be expected because the sampling of mass-weighted
dark matter particles is biased in low-density regions for the
effective density field. In these regions, Eq. (18) is less
accurate, and, moreover, there might be few or no dark
matter particles in low-density regions while the effective
density field is continuous and cannot be zero.
In addition to the above tests, we also make several

consistency tests. From the Poisson equations, Eqs. (8)

FIG. 5 (color online). The power spectrum of the effective
density field measured by our AMR-FFT method (red solid line).
The red stars indicate the power spectrum of the mass-weighted
particles. For comparison, the power spectra of the dark matter
density field are also shown. Our code (blue stars), the POWMES
code (green triangles), and the AMR-FFT method (blue solid
line) agree well on the power spectrum of the dark matter density
field Pm.
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and (10), the power spectra of potentials and density fields
should follow the relations

Pϕ ¼
�
3

2
Ω0

m

�
2 H4

0

a2k4
Pmeff

;

PϕN
¼

�
3

2
Ω0

m

�
2 H4

0

a2k4
Pm: ð20Þ

In our simulations, the potentials are obtained by using a
relaxation method in real space [27], which is different from
the FFT method. It is therefore important to check the
consistency of the above relations. In Fig. 6, we show the
directly measured power spectra of ϕ, ϕN , and the corre-
sponding power spectra derived from the density fields (the
right-hand sides of the above equations). Most strikingly, the
numerical results agreeverywell over 12ordersofmagnitude.
This serves not only as a test of the consistency but also as a
check of the AMR-FFT method employed in this work.
Finally, besides the above consistency relations, accord-

ing to Eq. (12), the power spectra of the scalar fields should
also satisfy the following inequalities:

Pc2δfRðkÞ ≤
1

4
PϕðkÞ ≤

4

9
PϕN

ðkÞ: ð21Þ

In Fig. 7, we show the ratio of 1
4
Pϕ=Pc2δfR and

4
9
PϕN

=Pc2δfR
as a function of k, from which we can see that
indeed Eq. (21) holds on scales from k ∼ 0.06h=Mpc
to k ∼ 10h=Mpc.

C. Power spectra of the effective density field

The above tests give us confidence in the validity and
accuracy of our AMR-FFT method. In this subsection, we

present the power spectra of the effective density field
measured by averaging over five realizations of simula-
tions. Following the results of those tests, we use a 40963

FFT grid in this subsection to measure the power spectra of
density fields and various potentials.
In Fig. 8, we show the ratio of the power spectra of the

two potentials:

FIG. 6 (color online). The power spectra of ϕN (blue triangles)
and ϕ (red stars) measured using our AMR-FFT method as
compared with the spectra derived from the density fields
(solid lines).

FIG. 7 (color online). The ratio of 1
4
Pϕ=Pc2δfR and

4
9
PϕN

=Pc2δfR
as a function of k.

FIG. 8 (color online). The ratio of the power spectra Pϕ=PϕN
¼

Pmeff
=Pm as a function of k. The lower and upper dashed lines

indicate the value of 1 and 16=9, respectively. The ratio of the
spectra should satisfy 1 < Pϕ=PϕN

< 16=9. For fR0 ¼ −10−4,
due to the lack of screening, Pϕ=PϕN

is very close to 16=9. For
fR0 ¼ −10−6, the screening mechanism works efficiently, and so
Pϕ=PϕN

is close to 1.
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Pϕ

PϕN

¼ Pmeff

Pm
: ð22Þ

As indicated in Fig. 8, the ratio satisfies 1 < Pϕ=PϕN
<

16=9 for all simulated fðRÞ models, consistent with the
prediction by Eq. (21). For fR0 ¼ −10−4, due to the lack of
an efficient Chameleon screening, the gravitational force is
enhanced by 1=3, and therefore Pϕ=PϕN

is very close to
16=9. On the other hand, for fR0 ¼ −10−6, the screening
mechanism works efficiently, and hence Pϕ=PϕN

is very
close to 1. The situation for fR0 ¼ −10−5 is somewhere in
between, as expected.
Next, we show the relative difference of the effective

power spectra with respect to the ΛCDM model. In Fig. 9,
we present ΔPm=PΛCDM and ΔPmeff

=PΛCDM for the simu-
lated fðRÞ models. As expected, compared with the dark
matter power spectra, the effective power spectra show
more significant deviations from the ΛCDM model. For
fR0 ¼ −10−4, ΔPmeff

=PΛCDM is about three times as large
as ΔPm=PΛCDM, which is because the former contains
contributions from both the latter and the fact that Geff is
substantially enhanced compared with G. Even for
fR0 ¼ −10−6, the effective power spectra show sizeable
deviations (about 15%) from the ΛCDM model.

D. Halo-halo power spectrum

As shown in the previous subsection, the power spectra
of PϕN

are quite different from Pϕ in fðRÞ gravity. This is

an interesting feature, which can be used to discriminate the
fðRÞ theory from other dark energy theories. To achieve
this, however, we need to measure the power spectra of PϕN

and Pϕ independently. The lensing potential, ϕN , can be
measured directly from weak lensing surveys. Upcoming
galaxy surveys such as the Euclid mission [33] have the
power to measure PϕN

accurately on large scales.
The focus here is on how to measure Pϕ, which is,

indeed, nontrivial. One possible method is to measure the
galaxy cluster-cluster power spectrum. In fact, from Fig. 8,
it can be seen that the differences between PϕN

and Pϕ also
exist on relatively large scales. Pϕ on large scales can be
probed by the cluster-cluster power spectrum. In practice, it
is more convenient to work with the ratio PEff

hh =Phh directly,
where Phh is the halo-halo power spectrum of standard
halos. The advantage of using PEff

hh =Phh is that the ratio is
independent of the halo bias and is practically measurable.
In observations, galaxy clusters can be observed using
different methods such as x-ray observations, lensing, and
the thermal Sunyaev–Zeldovich effect [34]. A wealth of
information about the clusters can be obtained from these
surveys. For example, the true mass can be inferred from
the lensing data or the gas mass-cluster mass scaling
relation [35]; the effective mass can be estimated either
by the temperature-effective mass scaling relation [36] or
by the profiles of gas density and temperature in x-ray
surveys. In practice, we can first identify the clusters in x-
ray surveys and measure the effective mass of each cluster.
Then we divide the clusters into different mass bins. We
measure PEff

hh for each mass bin. Similarly, we can measure
Phh for each mass bin as well. In the ΛCDM model, for a
given mass bin, the measurements of PEff

hh and Phh should
be the same PEff

hh =Phh ¼ 1. However, in fðRÞ gravity, PEff
hh

and Phh can be different. There are two main reasons for the
differences. The major one is due to mass calibration.
Given a mass bin, the number of clusters with masses
determined by effective mass will be quite different from
the number determined by the true mass (see mass
functions in Ref. [8]). The second reason is due to the
positions of cluster centers. The centers of effective masses
do not necessarily overlap with the true masses, especially
for small clusters. Since the power spectrum encompasses
the above two effects, it should be more useful than the
mass function to test fðRÞ gravity.
Next, we test the above idea using simulations. We

construct halo catalogs using a modified version of the
AMIGA Halo Finder (AHF) [37]. In halo-halo power spectrum
Phh, the halo number density fields are represented by
unweighted particles. We therefore can use the POWMES

code to measure the power spectrum. In Fig. 10, we present
the ratio of the effective halo power spectrum to the
standard halo power spectrum for different fðRÞ models.
Different colors represent different mass bins. In Fig. 10,
note that shot noise has already been subtracted. On
relatively large scales, the values of effective halo power

FIG. 9 (color online). The relative differences of power spectra
with respect to the ΛCDMmodel for the dark matter density field
(triangles with solid lines) and the effective density field (solid
circles with dashed lines), respectively. The power spectra of the
effective density fields Pmeff

show more significant deviations
from the ΛCDM model than those of the dark matter density
field Pm.

JIAN-HUA HE, BAOJIU LI, AND ADAM J. HAWKEN PHYSICAL REVIEW D 92, 103508 (2015)

103508-8



spectra are less than those of the standard halos PEff
hh =Phh <

1 for a given mass bin. As shown in Fig. 10, on relatively
large scales (k < 0.2h=Mpc), for fR0 ¼ −10−4 and
fR0 ¼ −10−5, the ratio PEff

hh =Phh deviates from the
ΛCDM prediction (the dashed line) at a level of almost
1σ. For fR0 ¼ −10−6, due to the screening mechanism, the
ratio for massive clusters (M > 1013.5M⊙=h) is consistent
with the ΛCDM prediction. However, for less massive
clusters (M < 1013.5M⊙=h), the deviations are over 3σ.
Further, it can also be found that for fR0 ¼ −10−4 and
fR0 ¼ −10−5 the errors on the ratio are greater than for
fR0 ¼ −10−6. This is because the effective power spectra
have larger scatters for the former two cases than for fR0 ¼
−10−6 as shown in Fig. 9. The large errors on small scales
(k > 0.2h=Mpc) are due to shot noise. In particular, for the
most massive clusters (M > 1013.5M⊙=h), we only have a
few hundred samples. The level of shot noise is quite high
there. Finally, due to the limited box size and number of
realizations, the simulations performed in this work tend to
over estimate the errors. With a larger simulation box and
more realizations, the error bars can be reduced, and the
deviations of the fðRÞ models from the ΛCDM model
should be more clear. The results presented above therefore
are very conservative.

V. SUMMARY AND DISCUSSION

In this work, we have studied the nonlinear power
spectra of scalar fields in fðRÞ gravity, using a suite of
N-body simulations. We have illustrated in detail our

AMR-FFT method for measuring the power spectra of
scalar fields. Using this method, we have measured the
power spectra of the potentials and the effective density
fields. Our main results are summarized as follows:

(i) We have verified the inequality

c2jδfRj ≤
���� − ϕ

2

���� ≤
���� − 2

3
ϕN

����; ð23Þ

in Fourier space by comparing the power spectra of
the potentials. As is discussed in Ref. [26], the above
inequality is closely related to the screening mecha-
nism in fðRÞ gravity. Its validity is important for
predicting the screening theoretically.

(ii) We find that, compared with the dark matter power
spectra, the effective power spectra differ more
significantly from the ΛCDM model. Even for
fR0 ¼ −10−6, the effective power spectrum shows
a sizeable signal of deviation.

We have tested that these conclusions are applicable to
other fðRÞmodels as well. For the Hu–Sawicki model [25],
we find similar results as presented in Ref. [38].
Since the formation and clustering of galaxies in fðRÞ

gravity is more closely related to the effective density field
rather than the dark matter density field itself, our findings
indicate that the traditional statistics of the dark matter
density field such as the power spectrum or equivalently the
two-point correlation function may seriously underpredict
the impact of modifications of gravity on the clustering of
galaxies. However, it should be noted that, although the

FIG. 10 (color online). The ratio of the effective halo power spectrum to the standard halo power spectrum for different fðRÞ models.
PEff
hh is measured from the effective catalog, and Phh is measured from the standard catalog. Different colors represent different mass

bins. In the effective catalog, the effective mass of the halo is used, and in standard halo catalog, the conventional mass is used. On
relatively large scales (k < 0.2h=Mpc), for fR0 ¼ −10−4 and fR0 ¼ −10−5, the ratio deviates from the ΛCDM prediction (the dashed
line) at a level of 1σ. For fR0 ¼ −10−6, due to the screening mechanism, the ratio for massive clusters (M > 1013.5M⊙=h) is consistent
with the ΛCDM prediction. However, for less massive clusters (M < 1013.5M⊙=h), the deviations are over 3σ.
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power spectrum of the effective density field in fðRÞ
gravity is significantly different from that in the ΛCDM
model, we should caution that these large deviations are
likely to be highly degenerate with galaxy bias. Robust
constraints on fðRÞ gravity can thus only be obtained once
we have a solid knowledge of the expected biasing of
galaxies in fðRÞ cosmologies.
Nevertheless, it is interesting to find that the power

spectrum PϕN
is quite different from Pϕ in fðRÞ gravity.

This can be used to discriminate the theory from theΛCDM
model. We tested this idea by investigating the halo-halo
power spectrum on relatively large scales. Galaxy clusters
can be observed using different methods, and a wealth of
information about the clusters can be obtained. We found
that probing the ratio PEff

hh =Phh is a useful way to test fðRÞ
gravity. On relatively large scales (k < 0.2h=Mpc), for
fR0 ¼ −10−4 and fR0 ¼ −10−5, the ratio deviates from
the ΛCDM prediction at a level of almost 1σ. For
fR0 ¼ −10−6, due to the screening mechanism, the ratio
for massive clusters (M > 1013.5M⊙=h) is consistent with
the ΛCDM prediction. However, for less massive clusters
(M < 1013.5M⊙=h), the deviations are over 3σ. In fact, due
to the limited box size and number of realizations, the
simulations performed in this work tend to overestimate
the errors. Our results therefore can be further improved
with a larger simulation box and more realizations. The
results quoted above are very conservative. It is interesting
to note that the latest all-sky Planck catalog of Sunyaev–
Zeldovich sources [39] has already accumulated over 103

clusters. The clusters are distributed over a large area of
the sky. If the pointed x-ray followup information is
available in the future, the catalog can be used to test fðRÞ
gravity. Further, the upcoming eROSITA survey [40] will
have the ability to discover over 105 clusters. The shot
noise of the measured power spectrum can be reduced
significantly.
Our idea can also be further extended. It is interesting to

know that the ratio Pϕ=PϕN
is strongly scale dependent

especially when k < 0.2h=Mpc (see Fig. 8), on which
scales the galaxy bias is expected to be approximately scale
independent. Unlike the halo number density field, the total
number density field of galaxies, including both central
and satellite galaxies, ought to have a close tie with the
effective density field. This is because, for massive halos
M > 1013M⊙=h, the total number of satellite galaxies
formed inside such halos should relate to the effective
mass rather than the true mass of the halos. Thus, if we
work with the assumption that galaxies are tracers of the
effective density field, then their clustering properties can
be used to infer the power spectrum of the potential Pϕ. The
power spectrum of the lensing potential PϕN

can then be
inferred from weak lensing data. Future galaxy surveys
such as the Euclid mission [33] will measure both of these
statistics in the same region of the sky on large scales. By
combining these two pieces of information, we may be able

to place robust constraints on fðRÞ gravity. However, this
method requires an understanding of galaxy formation in
fðRÞ gravity. We therefore shall elaborate on this idea in
detail in future work.
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APPENDIX A: INEQUALITIES

In this Appendix, we provide a strict proof of Eq. (12).
We shall start with the case of a single particle and then
generalize it to scalar fields.
In the linear regime, δR can be linearized as

δR ≈
1

fRR
δfR ¼ 3c2m2

effδfR; ðA1Þ

where m2
eff ¼ 1=ð3c2fRRÞ is the effective mass for the

scalar field. For a point mass particle, under the boundary
conditions limr→þ∞δfR ¼ limr→þ∞ϕN ¼ 0, the linearized
Eqs. (7) and (8) have solutions

δfR ¼ 2Gm
3c2

e−meffr

r
;

ϕN ¼ −
Gm
r

: ðA2Þ

where m is the mass of the particle. The potential δfR is of
the Yukawa type which will be suppressed on scales above
the Compton length λc ¼ 1=meff . From Eq. (9), we obtain

ϕ ¼ −
Gm
r

−
Gm
3

e−meffr

r
: ðA3Þ

On large scales r ≫ λc, therefore,

e−meffr → 0;

the gravity ϕ goes back to the standard gravity ϕ ∼ ϕN.
However, on small scales r ≪ λc,

e−meffr → 1;

fðRÞ gravity has a 1=3 enhancement relative to standard
gravity ϕ ∼ 4

3
ϕN. fðRÞ gravity is therefore invalid in the

linear regime regardless of the functional form of fðRÞ.
Further, in the large-field limit [41,42], meff → 0, the

exponential term in Eq. (A2) becomes
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e−meffr → 1:

jδfRj obtains its maximal value. From Eq. (A3), in this
extreme case, we have

c2jδfRj ≈
���� − ϕ

2

����: ðA4Þ

On the other hand, in the small-field limit [41],meff → þ∞
(e.g. the early Universe, when perturbations are small), the
potential δfR will be significantly suppressed,

c2jδfRj ≪
���� − ϕ

2

����: ðA5Þ

In general cases, for the linearized equations, given a finite
volume V of the density field, under the boundary con-
dition

lim
j~xj→þ∞

uð~xÞ ¼ 0;

the potential is simply the superposition of the potentials
generated by local density fields,

uð~xÞ ¼
Z Z Z

V
d~x0Gð~x; ~x0Þδρð~x0Þ; ðA6Þ

where uð~xÞ standards for the scalar fields c2δfR, ϕN , and ϕ,
respectively. Gð~x; ~x0Þ is Green’s function which is given by

Gð~x; ~x0Þ ¼

8>>><
>>>:

2G
3j~x−~x0j e

−meff j~x−~x0j; ðc2δfRÞ;
− G

j~x−~x0j ; ðϕNÞ;
− G

j~x−~x0j −
G

3j~x−~x0j e
−meff j~x−~x0j; ðϕÞ:

ðA7Þ

In high-density regions δρ ≫ 1, the contribution from the
low-density regions (δρ≲ 0) to the total scalar field
compared to the local contribution from the high-density
region itself can be neglected. From Green’s functions
Eq. (A7), it follows that

c2jδfRj ≤
���� − ϕ

2

���� ≤
���� − 2

3
ϕN

����: ðA8Þ

The above inequality holds everywhere in high-density
regions [26]. However, in low-density regions, the inequal-
ity Eq. (12) may not hold everywhere because the local
contribution from the underdense regions (δρ < 0) may
cancel out the contribution from distant high-density
regions to the local total scalar field. δfR and −ϕN may
have different signs. The absolute values of δfR and −ϕN
may have very complicated relations.

APPENDIX B: ALIAS SUM

Let uð~xÞ be a continuous scalar field. The Fourier
transform and its inverse transform are given by

Uð~kÞ ¼
Z

d3~xuð~xÞe−i~k·~x;

uð~xÞ ¼
Z

d3~k
ð2πÞ3Uð~kÞei~k·~x: ðB1Þ

The two-point correlation function is defined by

huð~x1Þuð~x2Þ�i

¼
Z

d3~k1d3~k2
ð2πÞ6 hUð~k1ÞUð~k2Þ�ieið~k1·~x1−~k2·~x2Þ: ðB2Þ

If we define the power spectrum of the scalar field uð~xÞ as

hUð~k1ÞUð~k2Þ�i≡ ð2πÞ3δð~k1 − ~k2ÞPuðkÞ; ðB3Þ
then the two-point correlation function can be written as

ξð~x1 − ~x2Þ≡ huð~x1Þuð~x2Þ�i

¼ 1

ð2πÞ3
Z

d3~kPuðkÞei~k·ð~x1−~x2Þ: ðB4Þ

In practice, we can only treat the continuous scalar field
uð~xÞ on discrete grids ~xg ¼ L

Ng
n̂, where Ng is the number of

grid cells in one dimension, L is the box size, and n̂ ¼
nxx̂þ nyŷþ nzẑ describes the position of grid points with
nx; ny; nz being integers. On the discrete grids, the inte-
gration of Eq. (B1) can be approximated as a sum over cells
with volume dx3 ≈ L3

N3
g
,

~Uð~kÞ ¼ L3

N3
g

X
n̂0
u~xge

−i~k·~xg ; ðB5Þ

where u~xg ¼ uð~xÞj~x¼~xg . The inverse Fourier transform of
Eq. (B5) can be presented as

u~xg ¼
Z

2kN

0

Z
2kN

0

Z
2kN

0

dkxdkydkz
ð2πÞ3

~Uð~kÞei~k·~xg ; ðB6Þ

where kN ¼ πNg

L is the Nyquist frequency. The relation

between ~Uð~kÞ and Uð~kÞ can be obtained by noting that

u~xg ¼ uð~xÞj~x¼~xg ¼
Z

dk3

ð2πÞ3Uð~kÞei~k·~xg

¼
Z

2kN

0

Z
2kN

0

Z
2kN

0

dkxdkydkz
ð2πÞ3

×
X
n̂

Uð~kþ 2kNn̂Þei~k·~xg ; ðB7Þ
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where in the last equality we have used

ei~k·~xg ¼ eið~kþ2kNn̂Þ·~xg : ðB8Þ

Comparing Eq. (B7) with Eq. (B6), we obtain

~Uð~kÞ ¼
X
n̂

Uð~kþ 2kNn̂Þ: ðB9Þ

The discrete Fourier transform is simply the sum of replicas
of the continuous Fourier transform. This result is known as
the “alias sum”.
Next, we evaluate the two-point correlation Eq. (B2) on

discrete grids. Given that dk31 ¼ dk32 ≈ ð2πL Þ3, Eq. (B4) can
be approximated as

huð~x1Þuð~x2Þ�i ≈
1

L6

X
k̂1;k̂2

hUk̂1
U�

k̂2
ieiðk̂1·x̂1−k̂2·x2Þ

¼ 1

ð2πÞ3
X
k̂

�
2π

L

�
3 hjUk̂j2i

L3
eik̂·ð~x1−~x2Þ

≈
1

ð2πÞ3
Z

dk3
hjU~kj2i
L3

eik̂·ð~x1−~x2Þ; ðB10Þ

where k̂ ¼ 2π
L n̂ indicates the discrete grids in the Fourier

space and Uk̂ ¼ Uð~kÞj~k¼k̂. In the above derivations, we
have used

hUk̂1
U�

k̂2
i≡ hjUk̂j2iδDk̂1;k̂2 ; ðB11Þ

so that the correlation function is only dependent on the
spacial separation ~r ¼ ~x2 − ~x1.
Comparing Eq. (B10) with Eq. (B4), we have

Puðk̂Þ ¼
hjUk̂j2i
L3

: ðB12Þ

Using Eq. (B9), we have

PFFT
u ðk̂Þ≡ hj ~Uk̂j2i

L3

¼ L3

N6
g
hFFT½u~xg �2i

¼
P

n̂hjUk̂þ2kNn̂
j2i

L3

¼
X
n̂

Puðk̂þ 2kNn̂Þ; ðB13Þ

where FFT½u~xg � ¼
P

n̂u~xge
−ik̂·~xg is the fast Fourier trans-

form of the discrete grid points u~xg .
Under the assumption of ergodicity, the ensemble

average can be replaced by a spatial average. The isotropic
power spectrum can be estimated by

PFFT
u ðkÞ ¼ 1

L3Nk

X
k∈Δk

j ~Ukj2; ðB14Þ

where Nk is the number of modes which fall into the
spherical shell Δk at k.
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