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Abstract The Xing’an-Inner Mongolia accretionary belt in the southeastern segment of the Central Asian
Orogenic Belt (CAOB) was produced by the long-lived subduction and eventual closure of the Paleo-Asian
Ocean and by the convergence between the North China Craton and the Mongolian microcontinent. Two
ophiolite belts have been recognized: the northern Erenhot-Hegenshan-Xi-Ujimqin ophiolite belt and the
southern Solonker-Linxi ophiolite belt. Most basalts in the northern ophiolite belt exhibit characteristics of
normal-type to enriched-typemid-ocean ridge basalt affinities with depletedNd isotopic composition (εNd(t)>+5),
comparable to modern Eastern Pacific mid-ocean ridge basalts. Most basaltic rocks in the southern belt show
clear geochemical features of suprasubduction zone-type oceanic crust, probably formed in an arc/back-arc
environment. The inferred back-arc extension along the Solonker-Linxi belt started at circa 280Ma. Statistics
of all the available age data for the ophiolites indicates two cycles of seafloor spreading/subduction, which
gave rise to two main epochs of magmatic activity at 500–410Ma and 360–220Ma, respectively, with
a gap of ~50million years (Myr). The spatial and temporal distribution of the ophiolites and concurrent igneous
rocks favor bilateral subduction toward the two continental margins in the convergence history, with final
collision at ~230–220Ma. In the whole belt, signals of continental collision and Himalayan-style mountain
building are lacking. We thus conclude that the Xing’an-Inner Mongolia segment of the CAOB experienced two
cycles of seafloor subduction, back-arc extension, and final “Appalachian-type” soft collision.

1. Introduction

The Central Asian Orogenic Belt (CAOB) is generally thought to have resulted from the closure of the Paleo-Asian
Ocean, which lay between the two major continents of the North China Craton (NCC) and the Siberian
Craton [e.g., Jahn et al., 2000; Jahn, 2004; Buslov et al., 2001; Badarch et al., 2002; Windley et al., 1990, 2007;
Xiao et al., 2003, 2009a, 2009b, 2013; Cocks and Torsvik, 2007; Kröner et al., 2007]. However, it remains debatable
as to when the Paleo-Asian Ocean started and finally closed and where the ultimate suture is located [e.g., Chen
et al., 2000; Li, 2006; Xiao et al., 2009a; Han et al., 2011; Xu et al., 2013; Eizenhöfer et al., 2014]. It is also unclear
whether this huge orogenic belt had been a long-lived, incessant, and independent event or it had evolved with
discontinuous, multiple stages or cycles of orogenic movements during its long histories. Meanwhile, many
researchers declared that this huge orogenic belt is an accretionary orogenic belt that had evolved for a long
period of time since the Neoproterozoic [e.g., Kröner et al., 2007; Windley et al., 2007; Xiao et al., 2009a; Long
et al., 2012], rather than a collisional orogen like the Himalaya. Others suggested that it had an orogenic process
of strong collision, mountain building, long period of postcollisional delamination, extension, and relevantmag-
matism [Jahn et al., 2009; Han et al., 2011; Xu et al., 2013]. Several subdivision schemes in terms of the tectonic
architecture, e.g., multiple suture zones, multiple accretion complexes, and multiple orogenic belts, of the east-
ern part of the CAOB have been proposed [Wang and Liu, 1986; Chen et al., 2000; Badarch et al., 2002; Xiao et al.,
2003, 2009a; Xu et al., 2013, 2014; Eizenhöfer et al., 2014], whichmade this regionmore confusing to understand.

Ophiolites, as fragments of ancient oceanic lithosphere [e.g., Coleman, 1977; Dewey and Bird, 1971], play
irreplaceable roles in the recognition and reconstruction of the evolution history of an ancient ocean, includ-
ing the opening, closure, development of subduction system(s), and the consequent orogeny [Dilek,
2003; Dilek et al., 2007; Dilek and Furnes, 2011; Song et al., 2013]. Ophiolites occur in both collisional-type
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(i.e., Alpine, Himalayan, and Appalachian) and accretionary-type (i.e., North American Cordilleran) orogenic
belts, marking major fossil plate boundaries between amalgamated plates or accreted terranes [Lister and
Forster, 2009; Dilek and Furnes, 2011]. Two essential types, the subduction-unrelated ophiolites and
subduction-related ophiolites, were summarized byDilek and Furnes [2011]. The subduction-unrelated ophio-
lites include continental margin, mid-ocean ridge with normal and enriched MORB signatures, and plume
type (plume proximal ridge and oceanic plateau). Subduction-related ophiolites include suprasubduction
zone and volcanic arc types (also known as suprasubduction zone type (SSZ type)).

The Xing’an-Inner Mongolia accretionary belt of the CAOB, with an area of 1,600,000 km2, is a ~400 km wide
and highly debated orogenic belt that has been extensively studied for more than 20 years. This belt is char-
acterized by various accretionary complexes, interpreted as island arcs, fore-arc or back-arc basins, ophiolites,
and microcontinents, dating from the Neoproterozoic to the Mesozoic [e.g., Xiao et al., 2003, 2009a; Xu et al.,
2013]. It is also distinguished by the massive generation of juvenile crust in the Phanerozoic [Jahn et al., 2000;
Jahn, 2004; Kröner et al., 2007; Windley et al., 2007]. Ophiolites in this belt have drawn particular attention to
their petrography, geochemistry, and geochronology [Liu et al., 2003;Miao et al., 2007, 2008; Xiao et al., 2003,
2009a; Jian et al., 2008, 2010, 2012; Liu et al., 2013; Z. Zhang et al., 2015]. Plutonic and volcanic rocks along this
orogenic belt have also been extensively documented in the last two decades [see Xu et al., 2014].

Though extensively studied, high-precision geochemical and age data for these ophiolites or suspected
ophiolite suites are limited. In this paper, we present new data for ophiolites in the Linxi-Xi-Ujimqin region.
We also provide a comprehensive summary for ophiolites and the concurrent igneous rocks and their spatio-
temporal constraints that allow the reconstruction of the evolution history of the Xing’an-Inner Mongolia
accretionary belt.

2. Geological Setting

The Xing’an-Inner Mongolia accretionary belt of the CAOB extends in the ENE direction for more than
2000 km between the NCC and the South Mongolia microcontinent. It is bordered by the Chifeng-Bayan
Oba Fault, or by the Xar Moron Fault, to the south and by the Chagan Obo-Arongqi Fault to the north
[Xiao et al., 2003]. The width of this belt exceeds 400 km (Figure 1).

Division and nomenclature of the tectonic units in this accretionary belt is quite confused. Several tectonic
belts/units, including various suture zones, arcs, orogenic belts, and microcontinent blocks, have been
divided by different authors with different approaches [e.g., Xiao et al., 2003, 2009a; Miao et al., 2007, 2008;
Jian et al., 2008, 2012; Xu et al., 2013, 2014].

As shown in Figure 1, volcanic rocks of Paleozoic age are widespread in the whole accretionary belt, as well as
the two continental margins of the NCC and the Mongolia microcontinent. Granitoid plutons, on the other
hand, are mainly distributed in three belts, the southern margin of the Mongolia microcontinent, the center
of the Xing’an-Inner Mongolia accretionary belt (XIMAB), and the northern margin of the NCC. Both sides of
the Xing’an-Inner Mongolia accretionary belt can be considered as Andean-type active continental margins
on the basis of their intensive, contemporaneous magmatic activities with ages from Early Paleozoic to
Early Triassic [e.g., Xiao et al., 2003, 2009a; Xu et al., 2014; S. Zhang et al., 2014]. Therefore, the studied
Xing’an-Inner Mongolia accretionary belt should be the product of convergence between the NCC and the
Mongolian microcontinent.

The Xing’an-Inner Mongolia accretionary belt of the CAOB mainly consists of ophiolite blocks/fragments,
Paleozoic to Mesozoic volcanic-sedimentary sequences and sedimentary strata, and igneous plutons of vary-
ing composition and age from the Early Paleozoic to Mesozoic. In fact, the overall number of recognized
ophiolite suites or suspected ophiolite complexes is relatively small: fewer than 20; they are sparsely scattered
in the vast zone of the Xing’an-Inner Mongolia segment of the CAOB. We agree that two ophiolite belts can
be roughly subdivided [e.g., Xiao et al., 2003; Miao et al., 2007; Jian et al., 2010; J. Zhang et al., 2015]: the
Solonker-Linxi SSZ-type ophiolite belt in the south and the Erenhot-Hegenshan-Xi-Ujimqin ophiolite belt in
the north. These two belts are separated by the Baolidao-Xilinhot metamorphic-volcanic complex (or arc
complex) (Figure 1). Of the ophiolite blocks/fragments, only two (gabbros from Tulinkai and Sunidzouqi;
see Figure 1 for localities) have been determined to form in the Early Paleozoic [Liu et al., 2003; Jian
et al., 2008].
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Volcanic-sedimentary sequences in the XIMAB include (1) the Early Paleozoic Bainaimiao Group and (2) the
Late Paleozoic Dashizhai Formation. The Bainaimiao volcanic-sedimentary sequence is located in the western
part of the Xing’an-Inner Mongolia segment, the boundary line between the NCC and the CAOB, and consists
of arc-type volcanic rocks of pre-Devonian (>420Ma) age [Bureau of Geology and Mineral Resources of Inner
Mongolia (BGMRIM), 1991; Hsü et al., 1991; Xiao et al., 2003; Jian et al., 2008; Li et al., 2015]. Xiao et al. [2003]
suggested that a south dipping subduction zone near the present position of the Ondorsum mélange in
the Ordovician gave rise to the Bainaimiao arc. The Dashizhai volcanic sequence is widespread in the whole
area of the Xing’an-Inner Mongolia segment, occurring interlayered with Carboniferous and Permian sedi-
mentary strata with ages ranging from 315 to 250Ma (see below). Contemporaneous volcanic rocks also
occur in the two continental margins of the NCC and the South Mongolia block [BGMRIM, 1991].

Metamorphic rocks occur discontinuously along a NEE direction in a belt in the middle section of the XIMAB.
They have been named the “Xilinguole complex” and considered to be Precambrian basement with some
rocks of Mesoproterozoic age [BGMRIM, 1991; Xu et al., 2013]. This metamorphic complex mainly consists
of greenschist facies to upper amphibolite facies metamorphosed sedimentary and volcanic rocks, but its
metamorphic age is poorly constrained. Together with the well-developed igneous rocks, a metamorphic-
magmatic belt was determined by Xiao et al. [2003, 2009a], namely, “the Baolidao island arc,” as a consequence
of northward seafloor subduction.

Therefore, a significantly improved understanding of the tectonic evolution of the orogenic belt is now
emerging thanks to detailed studies on ophiolites and relevant igneous rocks, which enable us to make a new
and simplified subdivision for tectonic units from north to south: the SouthMongolian active continentalmargins

Figure 1. Geological map of the Xing’an-Inner Mongolia Accretionary Belt of the CAOB showing tectonic units (modified after Xiao et al. [2003] andMiao et al. [2007]).
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along the southern part of the Mongolian microcontinent, the Erenhot-Hegenshan-Xi-Ujimqin ophiolitic
accretionary belt, the Baoligdao-Xilinhot arc complex, the Solonker-Linxi back-arc belt with SSZ-type ophiolites,
and the North China continental margin along the northern NCC (Figure 1).

3. Analytical Methods
3.1. Bulk Rock Major and Trace Elements Analyses

Bulk rock major and trace elements analysis was done at the Geological Lab Center, China University of
Geosciences, Beijing (CUGB). Major elements were analyzed using a Leeman Prodigy inductively coupled
plasma-optical emission spectroscopy system with high-dispersion Echelle optics. Based on rock standards
AGV-2, W-2 (U.S. Geological Survey: USGS), GRS-1, and GSR-3 (national geological standard reference material
of China), the analytical precisions (1σ) for most major elements are better than 1%with the exception of TiO2

(~1.5%) and P2O5 (~2.0%). Loss on ignition was determined by placing 1 g of samples in the furnace at 1000°C
for several hours before being cooled in a desiccator and reweighed.

Bulk rock trace element analysis was done on an Agilent-7500a inductively coupled plasma-mass spectrometry
(ICP-MS) at the Institute of Earth Science, China University of Geosciences, Beijing. Roughly 40mg of sample
powder was dissolved in an equal mixture of subboiling distilled HNO3 and HF with a Teflon digesting vessel
on a hot plate at 285°C for 48 h using high-pressure bombs to aid digestion/dissolution. The sample was then
evaporated to incipient dryness, refluxedwith 6 NHNO3, and heated again to incipient dryness. The sample was
then dissolved in 2mL of 3 N HNO3 using high-pressure bombs for a further 24h to ensure complete
digestion/dissolution. After digestion, the sample was diluted with Milli-Q water (18MΩ) to a final dilution
factor of 2000. Rock standards AGV-2, W-2, and BHVO-2 (USGS) were used to monitor the analytical accuracy
and precision. Analytical accuracy, as indicated by relative difference between measured and recommended
values, is better than 5% for most elements and 10–15% for Cu, Zn, Gd, and Ta.

3.2. In Situ Zircon U-Pb Dating

Six samples including gabbro, sheeted dyke, and pillow basalt were chosen for in situ zircon U-Pb dating.
Zircon grains were separated by standard heavy-liquid and magnetic techniques and purified by

Figure 2. Geological map of the Xi-Ujimqin ophiolite with dated gabbro and sheeted dyke (?) samples (revised after
Li et al. [2012]).
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handpicking under a binocular microscope at the Langfang Regional Geological Survey, China. They were
then embedded in epoxy resin discs and polished down to about half-sections to expose the grain interiors.
Cathodoluminescence (CL) images were acquired to observe the internal structures of zircon grains, using a
CL spectrometer (Garton Mono CL3+) equipped on a Quanta 200F environmental scanning electron micro-
scope at scanning conditions of 15 kV and 120 nA at Peking University.

Measurement of U-Th-Pb isotopes for samples 13XL30, 13XL31, 13XL40, 13XL59, and 13XL77 was done using
a Cameca IMS-1280 SIMS in the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing.
The instrument description and analytical procedure are given in Li et al. [2009]. The primary O2

� ion beam
spot is about 20–30μm in size. Analysis of the standard zircon Plésovice was interspersed with analysis of
unknowns. Each measurement consists of seven cycles. Pb/U calibration was performed relative to zircon

Figure 3. Photos showing various lithologies of ophiolites in the XIMAB. (a) Massive basalts (sheeted dyke?) in the Xi-Ujimqin ophiolite; single-chilled margins cannot
be seen due to the weathering. (b and c) Spilitic basalt with pillow structure in the Diyanmiao ophiolite. (d) Sheeted dykes with 100% diabase dykes and ambiguous
single-sided chilling border in the Daqing pasture ophiolite. (e) Pillow basalts and red chert that strongly deformed by late thrusting fault in the Daqing pasture
ophiolite. (f) Pillow basalts in the Wudaoshimen region. (g) Far view of the Xingshuwa ophiolite. (h) Rodingite dyke in serpentinite in the Xingshuwa ophiolite.
(i) Sheeted dykes in the Ondorsum ophiolite. (j) Deformed pillow basalts in the Ondorsum ophiolite. (k) Red radiolarian chert in the Ondorsum ophiolite.
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standard Plésovice (337Ma) [Sláma et al., 2008]; U and Th concentrations were calibrated against zircon stan-
dard 91500 [Wiedenbeck et al., 1995]. A long-term uncertainty of 1.5% (1σ relative standard deviation, RSD) for
206Pb/238U measurements of the standard zircons was propagated to the unknowns [Li et al., 2010], despite
that the measured 206Pb/238U error in a specific session is generally 1% (1σ RSD). Measured compositions
were corrected for common Pb using nonradiogenic 204Pb. Corrections are sufficiently small to be insensitive
to the choice of common Pb composition, and an average of present-day crustal composition [Stacey and
Kramers, 1975] is used for the common Pb assuming that the common Pb is largely a surface contamination
introduced during sample preparation. Data reduction was carried out using the Isoplot/Ex v. 3.0 program
[Ludwig, 2003]. Uncertainties on individual analyses in data tables are reported at 1σ level; Concordia U-Pb
ages are quoted with 95% confidence level. In order to monitor the external uncertainties of SIMS U-Pb zircon
dating calibrated against Plésovice standard, an in-house zircon standard Qinghu was alternately analyzed as
an unknown together with other unknown zircons. The measurements on Qinghu zircon yield Concordia

Figure 4. Photomicrographs of various rocks in ophiolites from the XIMAB. (a) Mylonitized gabbro showing elongated clinopyroxenes (Cpx) and dynamic recrystal-
lized plagioclase (13XL30, Xi-Ujimqin ophiolite). (b) Ophitic (or intergranular) texture of the massive basalt (sheeted dyke?) showing well-developed plagioclase laths
with fine-grained Cpx (13XL31, Xi-Ujimqin ophiolite). (c) Weakly altered pillow basalts with pilotaxitic texture (13XL-34, Xi-Ujimqin ophiolite). (d) Strongly altered
pillow basalts with epidote (Ep) (13XL-35, Xi-Ujimqin ophiolite). (e) Pillow basalt showing spilite texture with long, skeletal or acicular intergrown crystals of albite
+ clinopyroxene (13XL40, Diyanmiao ophiolite). (f) Ophitic texture of the sheeted dyke (13XL-77, Daqing pasture ophiolite). (g) Pilotaxitic texture of the pillow basalt
with Cpx phenocryst (13XL-63, Daqing pasture ophiolite). (h) Ophitic texture of the pillow basalt (13LX-02, Wudaoshimen). (i) Serpentized harzburgite with deformed
orthopyroxene (Opx) and spinel (Sp) (right corner) (13LX38, Xingshuwa ophiolite). (j) Rodingite showing diopside (Di) and prehnite (Prh) with a fine-grained zircon
(Zrn). Grossular is not shown in this photo (13LX34, Xingshuwa ophiolite).
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ages of 160.2 ± 0.8Ma and 159.3 ± 1.9Ma, which are identical within error with the recommended value of
159.5 ± 0.2Ma [Li et al., 2013].

Measurements of U-Th-Pb isotopes for sample 13LX34 were carried out on an Agilent-7500a quadrupole induc-
tively coupled plasma-mass spectrometry coupled with a New Wave SS UP193 laser sampler (LA-ICP-MS) at
CUGB. Laser spot size of 36μm, laser energy density of 8.5 J/cm2, and a repetition rate of 10Hz were applied
for analysis. National Institute of Standards and Technology 610 glass and Harvard zircon 91500 [Wiedenbeck
et al., 1995] were used as external standards, Si as internal standard, and zircon standard TEMORA (417Ma) from
Australia [Black et al., 2003] as the secondary standard. The software GLITTER (ver. 4.4, Macquarie University) was
used to process the isotopic ratios and element concentrations of zircons. The common lead correction was
done following Andersen [2002]. Age calculations and plots of concordia diagrams were made using
Isoplot/Ex v. 3.0 program [Ludwig, 2003]. Analytical details are described in Song et al. [2010].

All the results for zircon U-Pb analyses are given in Tables S1 and S2 in the supporting information.

3.3. Bulk Rock Sr-Nd Isotope Analyses

Separation and purification of Rb, Sr, Sm, and Nd were done using conventional ion exchange procedures
in the ultraclean room of MOE key laboratory of orogenic belts and crustal evolution, Peking University.
The Sr and Nd isotopic ratios were measured using a Thermo-Finnigan Triton thermal ionization mass
spectrometer at Tianjin Institute of Geology and Mineral Resources. The 87Rb/86Sr and 147Sm/144Nd ratios
were calculated based on Rb, Sr, Sm, and Nd contents determined by ICP-MS. Mass fractionation was corrected
by normalizing the measured 87Sr/86Sr and 143Nd/144Nd against 86Sr/88Sr ratio of 0.1194 and 146Nd/144Nd ratio
of 0.7219, respectively. Rock standard BCR-2 was used to evaluate the separation and purification process of Rb,
Sr, Sm, and Nd, which yielded weighted mean 87Sr/86Sr ratio of 0.704992±7 (2σ, n=94) and 143Nd/144Nd ratio
of 0.512634±1 (2σ, n=97). In order to monitor the data quality during the course of analysis, National Bureau
of Standards 987 Sr standard and LRIG Nd standard were analyzed and gave weighted mean 87Sr/86Sr ratio of
0.710240±2 (2σ, n=96) and 143Nd/144Nd ratio of 0.512198±3 (2σ, n=46).

4. Results
4.1. The Xi-Ujimqin Ophiolite

The Xi-Ujimqin ophiolite is located at 44°29′42″N, 118°8′2″E, ~43 km east of Xi-Ujimqin county town (Figure 1),
and was first reported by Li et al. [2012]. The outcrops are of poor quality, and contacts between various rock
types in this ophiolite complex are not well exposed in the field. The lithologies include strongly serpentinized

Figure 5. (a) Cr# [Cr/(Cr + Al)] versus Mg# [Mg/(Mg+ Fe2+)] diagram for spinels from Diyanmiao pillow basalts, Xingshuwa
rodingites, and peridotites of ophiolites in the XIMAB. Ranges of the MORB and abyssal peridotite are from Dick and Bullen
[1984] and Tamura and Arai [2006], and range of boninite is from Xia et al. [2012]. Melting trend (annotated by %melting) is
from Pearce et al. [2000]. (b) TiO2 versus Al2O3 diagram for spinels in rocks of ophiolites in the XIMAB [after Kamenetsky
et al., 2001].
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peridotite (mantle section), cumulate gabbro, pillow and massive basalts, and radiolarian chert (Figure 2). The
serpentinite occurs within the cumulate gabbro and is strongly foliated. No ultramafic cumulate has been found
in this section. Somemassive basalts show ambiguous structure of sheeted dykes (Figure 3a), whichmay reflect
the spreading center. The pillow basalts occur as a layer of ~ 500m in thickness.

Table 1a. Whole-Rock Major and Trace Element Compositions of Xi-Ujimqi Ophiolite in the XIMABa

Xi-Ujimqi Ophiolite

13XL-28 13XL-29 13XL-30 13XL-31a 13XL-31b 13XL-32 13XL-33 13XL-34

Sample SD SD Gabbro SD SD Gabbro PB PB

SiO2 48.40 47.79 48.45 47.99 46.39 45.54 50.55 49.07
TiO2 1.33 1.20 0.17 0.80 0.93 1.17 1.17 1.33
Al2O3 17.06 17.09 15.08 19.03 18.32 12.68 13.30 13.40
Fe2O3t 9.68 9.19 4.86 7.04 7.18 9.71 11.06 10.57
MnO 0.16 0.16 0.09 0.10 0.10 0.26 0.16 0.17
MgO 7.97 7.78 11.71 6.93 7.52 8.49 7.04 7.51
CaO 11.25 12.87 17.32 13.16 13.48 17.51 9.01 9.66
Na2O 2.67 2.67 0.29 3.18 3.30 0.21 3.14 3.75
K2O 0.82 0.54 0.16 0.20 0.20 0.03 0.15 0.16
P2O5 0.15 0.14 0.01 0.06 0.07 0.14 0.10 0.11
LOl 0.80 0.73 1.00 1.64 1.64 4.42 3.35 3.35
Mg# 65.8 66.4 84.9 69.7 70.9 67.1 59.8 62.3

Trace Elements (ppm)
Li 19.51 31.96 23.5
Sc 21.66 20.46 56.76 24.100 66.84 8.830 31.760 78.04
Ti 8569 7512 1019 5336 5555 7866 9196 7959
V 230.6 213.8 190.8 213.4 346.4 291.5 343.0 490.8
Cr 309.6 303.2 1621.2 293.2 477.0 17.4 242.6 348.0
Co 37.46 34.82 38.02 29.60 44.06 26.89 43.74 56.76
Ni 128.61 142.52 247.20 101.36 146.22 26.87 69.22 87.86
Cu 18.41 40.16 53.06 5.29 7.04 7.92 72.66 84.3
Zn 73.87 60.30 21.86 29.12 34.60 61.10 73.32 76.02
Ga 16.29 14.93 9.89 12.71 14.50 14.88 13.31 14.056
Rb 19.75 16.17 4.47 3.23 5.00 0.47 3.89 4.944
Sr 192.4 192.5 91.2 243.2 277.4 408.0 208.6 208.6
Y 26.00 23.38 6.47 20.04 24.80 18.03 31.98 34.5
Zr 55.51 45.56 5.01 43.36 45.98 56.83 83.84 78.047
Nb 2.417 2.332 0.166 1.044 1.045 1.963 1.397 1.368
Cs 2.181 3.474 0.087 0.071 0.184 0.035 0.579 1.246
Ba 82.02 49.86 34.20 68.80 61.28 16.52 58.30 46.88
La 3.923 3.626 0.312 1.781 1.832 3.744 2.532 2.296
Ce 12.363 10.876 0.569 5.842 5.892 11.168 8.900 7.902
Pr 2.053 1.846 0.138 1.064 1.057 1.785 1.614 1.423
Nd 10.350 9.330 0.861 5.922 6.086 8.628 8.750 8.064
Sm 3.407 3.062 0.380 2.278 2.336 2.663 3.298 2.980
Eu 1.228 1.143 0.170 0.784 0.757 2.072 1.228 1.083
Gd 4.494 4.004 0.638 3.282 3.188 3.409 4.784 4.090
Tb 0.807 0.720 0.121 0.604 0.561 0.607 0.908 0.747
Dy 5.128 4.550 0.898 3.928 3.726 3.871 6.046 5.062
Ho 1.113 0.995 0.208 0.868 0.780 0.852 1.356 1.094
Er 3.062 2.742 0.635 2.408 2.218 2.393 3.850 3.190
Tm 0.439 0.392 0.092 0.341 0.313 0.349 0.575 0.464
Yb 2.651 2.374 0.604 2.072 1.918 2.181 3.624 2.958
Lu 0.378 0.344 0.091 0.301 0.277 0.323 0.547 0.440
Hf 1.517 1.331 0.140 1.177 1.198 1.557 2.115 2.096
Ta 0.228 0.180 0.015 0.118 0.066 0.126 0.095 0.085
Pb 13.654 3.354 0.273 0.708 0.509 2.413 0.731 0.638
Th 0.394 0.262 0.006 0.074 0.030 0.158 0.124 0.070
U 0.137 0.098 0.006 0.034 0.024 0.141 0.055 0.032

aSD = sheeted dyke; PB = pillow basalt.
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The gabbros are strongly mylonitized with elongated clinopyroxene (Cpx) and fine-grained, recrystallized
plagioclase (Figure 4a). The massive basalts or doleritic dykes show ophitic texture (or intergranular texture)
with well-developed plagioclase laths and fine-grained Cpx (Figure 4b). Some pillow basalts are weakly
altered with pilotaxitic texture (Figure 4c), and some are strongly altered by epidote and chlorite
(Figure 4d). The peridotite is strongly serpentinized without olivine and pyroxene relics. Spinels are

Table 1b. Whole-Rock Major and Trace Element Compositions of Diyanmiao Ophiolite in the XIMAB

Diyanmiao Ophiolite

13XL-40 13XL-41 13XL-48 13XL-50 13XL-55 13XL-57 13XL-58 13XL-59 13XL-61 13XL-42 13XL-43 13XL-44

Sample PB PB PB PB PB PB PB Gabbro Gabbro PB PB PB

SiO2 50.89 53.65 51.89 47.99 51.84 50.19 42.01 44.46 45.46 46.31 50.25 45.22
TiO2 0.825 0.825 0.838 0.873 1.449 0.816 0.844 0.095 0.374 0.812 0.746 0.718
Al2O3 12.53 11.07 12.74 13.45 13.13 12.83 13.07 15.55 10.46 12.30 11.58 10.47
Fe2O3t 8.85 7.90 8.64 9.76 10.00 8.86 10.42 3.56 8.35 9.08 8.83 8.83
MnO 0.172 0.139 0.151 0.167 0.184 0.151 0.234 0.075 0.315 0.195 0.145 0.220
MgO 8.97 8.59 8.47 10.14 7.48 9.65 5.15 9.81 13.85 6.46 4.76 5.02
CaO 10.48 10.14 9.60 10.18 8.34 9.89 16.28 21.67 17.30 17.12 15.89 21.27
Na2O 3.90 3.40 4.00 3.28 4.13 3.64 1.94 0.17 0.37 2.56 2.21 1.64
K2O 0.09 0.07 0.11 0.14 0.11 0.07 0.77 0.02 0.02 0.46 0.04 0.06
P2O5 0.063 0.069 0.063 0.069 0.423 0.067 0.082 0.017 0.024 0.073 0.081 0.062
LOl 3.01 3.99 3.35 3.76 2.73 3.68 9.04 4.44 3.32 4.49 5.30 6.28
Mg# 70.3 71.7 69.5 70.8 44.8 71.7 53.5 86.5 79.4 62.4 55.7 57.0

Trace Elements (ppm)
Li 18.30 19.36 17.33 27.97 15.14 22.56 15.73 8.95 10.19 9.85 7.52 8.74
Sc 34.84 34.08 36.43 38.54 21.99 35.06 29.58 17.22 37.07 31.34 29.98 20.41
Ti 4945 4945 5023 5232 8686 4889 5062 571 2241 4869 4472 4305
V 226.9 197.1 233.8 241.9 176.5 221.3 233.6 75.1 220.5 242.9 251.1 226.7
Cr 449.4 457.1 485.9 509.5 13.2 445.4 28.9 464.1 504.6 410.7 397.6 344.7
Co 39.06 36.63 41.94 44.99 16.29 40.81 26.21 20.80 37.80 31.90 37.70 32.09
Ni 154.73 174.38 197.24 184.42 14.95 173.34 15.38 125.14 160.66 109.12 127.89 97.45
Cu 72.56 56.77 87.82 71.91 31.40 74.31 52.99 32.00 35.52 57.22 50.15 72.45
Zn 60.98 55.38 59.66 72.71 119.40 60.45 79.00 20.01 42.50 55.58 72.09 49.18
Ga 10.02 9.14 9.89 12.19 21.67 11.07 15.53 10.34 10.52 14.17 14.93 14.15
Rb 1.35 0.95 1.70 2.73 2.19 1.00 14.62 0.32 0.20 5.15 0.60 0.66
Sr 156.4 107.8 155.1 164.0 688.8 125.5 319.8 56.2 66.5 164.6 92.1 106.8
Y 16.07 15.78 16.33 18.12 31.60 16.00 14.50 3.31 10.20 16.56 17.51 13.63
Zr 56.59 55.43 57.03 59.49 156.78 54.77 34.15 24.04 9.74 51.99 49.69 44.49
Nb 0.66 0.63 0.67 0.68 2.56 0.63 0.46 0.17 0.13 0.61 0.59 0.51
Cs 0.81 0.85 1.17 1.29 0.47 1.09 0.86 0.05 0.07 0.58 0.85 0.39
Ba 28.30 29.45 35.54 40.07 28.02 38.12 89.24 4.08 10.87 135.22 29.34 35.91
La 1.69 1.35 1.55 1.83 6.14 1.81 2.47 0.96 0.27 1.85 2.11 1.63
Ce 5.83 4.97 5.54 6.42 18.83 6.03 6.81 2.04 1.04 5.97 5.51 5.00
Pr 1.01 0.90 0.96 1.10 3.01 1.01 1.09 0.27 0.21 1.02 1.04 0.87
Nd 5.37 4.90 5.29 5.96 15.17 5.38 5.54 1.07 1.31 5.35 5.54 4.54
Sm 1.79 1.73 1.79 1.97 4.43 1.76 1.76 0.28 0.61 1.75 1.79 1.49
Eu 0.77 0.70 0.75 0.81 1.77 0.79 0.74 0.14 0.29 0.86 0.80 0.73
Gd 2.44 2.38 2.53 2.75 5.63 2.44 2.31 0.41 1.11 2.53 2.50 2.13
Tb 0.47 0.45 0.47 0.51 0.95 0.47 0.40 0.09 0.24 0.45 0.47 0.39
Dy 2.96 2.90 3.00 3.32 5.77 2.92 2.51 0.53 1.68 2.94 3.02 2.49
Ho 0.66 0.66 0.68 0.75 1.25 0.65 0.57 0.14 0.41 0.65 0.69 0.57
Er 2.01 2.00 1.99 2.16 3.68 1.94 1.69 0.41 1.29 1.96 2.04 1.71
Tm 0.28 0.27 0.28 0.30 0.50 0.27 0.24 0.07 0.19 0.27 0.28 0.24
Yb 1.79 1.78 1.80 1.98 3.22 1.75 1.54 0.43 1.28 1.75 1.82 1.53
Lu 0.28 0.27 0.28 0.31 0.50 0.27 0.25 0.08 0.20 0.27 0.29 0.24
Hf 1.59 1.52 1.56 1.66 3.89 1.48 1.13 0.54 0.39 1.44 1.37 1.24
Ta 0.08 0.05 0.06 0.05 0.16 0.06 0.02 0.14 0.02 0.05 0.04 0.02
Pb 0.38 0.74 0.41 0.28 2.82 1.18 1.80 3.41 0.61 3.41 1.18 1.08
Th 0.12 0.04 0.08 0.06 0.42 0.04 0.48 0.40 0.01 0.04 0.05 0.03
U 0.12 0.07 0.14 0.09 0.31 0.08 0.39 0.04 0.01 0.24 0.28 0.20
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characterized by low TiO2 (0.05–0.06wt%) and relatively low Cr# [100Cr/(Cr +Al) = 51.4–53.5] and plot in the
abyssal peridotite field (Table S3 and Figure 5).
4.1.1. Major and Trace Elements
Four sheeted dyke, two pillow basalt and two gabbroic samples were selected for whole-rock major and
trace element analysis (Tables 1a, 1b, 1c). The sheeted dyke samples have higher Al2O3 (17–19wt%),
lower Fe2O3t (7–9.68wt%), and higher Mg# [100Mg/(Mg+ Fe2+) = 66–71] than those of the two basaltic

Table 1c. Whole-Rock Major and Trace Element Compositions of Daqing Pasture and Wudaoshimen Ophiolites in the XIMAB

Daqing Pasture Phiolite Wudaoshimen Basalts

13XL-67 13XL-68 13XL-69 13XL-70 13XL-75 13XL-76 13LX01 13LX02 13LX03

Sample SD SD SD SD SD SD PB PB PB

SiO2 49.37 49.18 47.86 45.52 47.59 48.71 45.10 49.76 50.01
TiO2 1.655 1.076 1.280 1.397 1.111 1.447 1.72 1.61 1.66
Al2O3 10.42 12.08 12.02 12.19 12.45 11.70 13.84 13.30 13.61
Fe2O3t 13.98 11.20 12.74 13.74 11.72 13.07 16.09 14.08 12.59
MnO 0.223 0.166 0.204 0.210 0.183 0.200 0.33 0.24 0.25
MgO 9.57 11.60 11.10 10.81 10.93 9.88 8.38 7.25 7.15
CaO 8.48 7.92 8.92 9.62 9.95 8.20 8.00 5.48 7.74
Na2O 2.80 3.16 2.69 2.34 2.37 3.27 3.32 3.80 3.73
K2O 0.18 0.06 0.16 0.13 0.25 0.06 0.31 0.20 0.51
P2O5 0.121 0.079 0.083 0.086 0.076 0.109 0.19 0.18 0.18
LOl 3.05 3.31 2.80 3.60 3.23 3.21 2.97 3.93 2.42
Mg# 61.5 70.7 67.0 64.7 68.5 63.8 54.8 54.5 57.0

Trace Elements (ppm)
Li 8.01 9.53 13.31 14.56 9.99 9.46 29.00 23.48 19.48
Sc 44.01 41.35 45.53 48.64 42.89 44.52 48.26 47.94 47.02
Ti 9,924 6452 7,671 8,377 6,661 8676 12,819 13,006 12,562
V 339.4 229.6 324.2 356.9 291.2 347.3 452.6 439.6 403.6
Cr 128.9 327.6 163.5 173.4 167.9 193.4 137.5 193.5 192.1
Co 39.92 28.42 39.87 36.65 33.85 41.84 54.61 47.58 47.00
Ni 46.33 55.81 60.31 53.36 53.99 55.52 65.96 129.74 148.22
Cu 48.22 46.89 54.35 56.96 46.26 64.97 52.16 64.20 63.80
Zn 110.26 69.35 96.45 101.59 74.44 97.77 122.98 155.98 129.48
Ga 12.63 11.48 17.18 18.93 14.93 16.33 20.41 17.36 16.66
Rb 4.46 0.37 3.25 1.72 3.26 0.37 11.63 5.96 9.46
Sr 83.6 120.9 129.0 120.2 173.8 116.8 170.6 172.7 250.0
Y 30.63 21.21 27.75 30.50 27.70 28.75 46.57 46.92 44.44
Zr 89.67 54.47 74.92 80.68 62.95 87.33 144.28 144.76 140.54
Nb 1.29 0.77 0.96 1.06 0.91 1.33 3.13 3.35 3.13
Cs 0.54 0.08 0.29 0.28 0.25 0.19 11.11 7.02 2.81
Ba 27.49 19.32 11.62 9.19 31.11 14.74 63.48 60.10 304.20
La 2.60 2.03 2.11 2.24 2.48 2.56 4.09 4.25 4.16
Ce 9.16 6.25 7.40 8.04 7.44 8.80 14.22 14.82 13.99
Pr 1.63 1.19 1.35 1.45 1.30 1.56 2.57 2.68 2.54
Nd 9.04 6.46 7.47 8.16 7.33 8.52 14.05 14.50 14.00
Sm 3.12 2.24 2.71 2.90 2.55 3.01 5.08 5.18 5.01
Eu 1.18 0.95 1.11 1.19 1.30 1.22 1.64 1.67 1.79
Gd 4.60 3.12 4.01 4.31 3.81 4.30 6.95 7.11 6.78
Tb 0.86 0.59 0.77 0.84 0.73 0.81 1.25 1.29 1.21
Dy 5.53 3.77 4.92 5.45 4.73 5.20 8.45 8.58 8.16
Ho 1.25 0.85 1.13 1.25 1.09 1.19 1.83 1.87 1.76
Er 3.79 2.55 3.47 3.78 3.26 3.53 5.35 5.43 5.12
Tm 0.52 0.36 0.48 0.53 0.45 0.51 0.78 0.80 0.74
Yb 3.32 2.28 3.15 3.40 2.83 3.23 5.06 5.07 4.79
Lu 0.52 0.35 0.49 0.52 0.43 0.50 0.76 0.77 0.70
Hf 2.69 1.58 2.25 2.46 1.99 2.59 3.31 3.35 3.23
Ta 0.09 0.05 0.07 0.07 0.06 0.25 0.19 0.22 0.22
Pb 0.84 1.74 1.22 0.98 0.37 0.51 0.93 1.04 0.68
Th 0.10 0.07 0.07 0.06 0.22 0.08 0.17 0.24 0.15
U 0.06 0.03 0.54 0.07 0.06 0.05 0.09 0.15 0.14
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samples. They are all tholeiitic and compositionally similar to N (normal)-type MORB with normal contents
of SiO2 (48–51wt%), TiO2 (0.81–1.33wt%), MgO (6.9–8wt%), and varying Cr and Ni. In the primitive man-
tle (PM) normalized multielement diagram, all sheeted dykes and pillow basalts show similar patterns to
present-day N-type MORB (Figure 6a), except for variably enriched Cs, Rb, Ba, U, and Pb (not shown in
the diagrams) and for a weak negative Zr-Hf anomaly in the sheeted dyke samples. All basaltic samples
have strong enrichment of Sr with Sr/Sr* of 1.25–3.4. The two gabbroic samples have high CaO, MgO, low
REE contents, and positive Sr (Sr/Sr* = 3.1–9.6) and Eu (Eu/Eu* = 1.1–2.1) anomalies (Figure 6a).
4.1.2. Formation Ages
One gabbro (13XL30) and one dolerite (sheeted dyke; see Figures 3a and 4b) (13XL31) samples were
selected for zircon U-Pb dating. Zircons from the two samples are colorless and show rectangle or irregular
shapes with long axes of 50–100μm and length/width ratios of 1.2–1.5. The CL images display straight and
wide oscillatory growth bands (Figures 7a and 7b), which are interpreted as typical features for zircons from
mafic volcanic or gabbroic rocks [e.g., Song et al., 2010]. Zircons from sample 13XL30 show varying U
(20–314 ppm) and Th (10–1221 ppm) with Th/U ratios of 0.49–3.89. Analyses of 17 zircon grains using SIMS
yield apparent 206Pb/238U ages of 371–340Ma, giving an intercept age of 356 ± 5Ma on the TW diagram,
which is consistent with the weighted mean age of 356 ± 5Ma (mean square weighted deviate (MSWD)
= 2.8) (Figure 8a).

Zircons from sample 13XL31 show variably low U (8–50 ppm) and Th (2–17 ppm) with Th/U ratios of 0.2–0.53.
Twenty analyses yield apparent 206Pb/238U ages of (341–320Ma) with a weighted mean age of 329 ± 3Ma
(MSWD=1.7), and all the analyses form an intercept age of 331 ± 2Ma (MSWD=1.0) on the TW diagram
(Figure 8b). The age data of the two samples suggest that the Xi-Ujimqin ophiolite formed in the Early
Carboniferous (356–330Ma).

4.2. Diyanmiao Ophiolite With Spilitic Pillow Basalt

The Diyanmiao ophiolite is located in the Diyanmiao area, ~15 km east of the Xi-Ujimqin ophiolite (Figure 1). It
consists of serpentinized peridotite, cumulate gabbro, pillow basalt, and chert. Most gabbro samples are
strongly altered by actinolite and prehnite with a few Cpx relics. Pillow basalts have been found in several
localities around this area. The pillows show yellow to dark brown colors and are 20–100 cm long
(Figures 3b and 3c). Vesicles are rare in the pillows, suggesting that the lava lacks fluids or was erupted under
deep water. Calcite veins are common in many pillows. All the basaltic samples exhibit a spilite texture with
long, skeletal or acicular intergrown crystals of albite + clinopyroxene, similar to the spinifex texture of koma-
tiites (Figure 4e). Unknown phenocrysts can be observed as single crystals all altered into iron-rich pumpel-
lyite. Spinel occurs as fine-grained, euhedral crystals both as phenocrysts and in the matrix. Mineral
compositions analyzed using electron probe microanalyzer are given in Table S4. Plagioclase crystals are
Na rich (with Ab= 80–95). Clinopyroxene (Cpx) is augite with high Al2O3 (5.25–6.10%), TiO2 (0.96–1.63%),
and Cr2O3 (0.29–0.86%). Jadeite component in the Cpx can reach up to 12.55–14.23mol%. Spinels are
characterized by relatively high MgO and Al2O3 and low Cr2O3 with Mg# [Mg/(Mg+ Fe2+) = 0.61–0.63] and
Cr# [Cr/(Cr + Al) = 0.48–0.50]. In diagrams for spinels (Figure 5), they all plot in the MORB field.
4.2.1. Geochemical Composition
We selected two gabbroic and seven basaltic samples formajor and trace element analysis (Tables 1a, 1b, 1c). All
the pillow basalts are characterized by relatively low TiO2 (0.83–1.45wt%), low K2O (0.02–0.14wt%), high Na2O
(3.4–4.13wt%), MgO (7.5–10.2wt%), and Mg# (69.5–71.7), and high compatible elements Cr and Ni. One pillow
basalt sample (13XL55) shows an enriched trace element composition similar to E-MORB. The other six pillow
basaltic samples resemble N-type MORB, depleted in immobile incompatible elements, such as Th, Nb, Ta, Zr,
Hf, and REE (Figure 6b), and enriched in Cs, Rb, Ba, Sr, U, and Pb, suggesting strong seawater alteration.

The two gabbroic samples exhibit complicated compositions and have much lower concentrations of immo-
bile trace elements than N-MORB.
4.2.2. Formation Age
One gabbro sample (13XL59) and one pillow basalt sample (13XL40, Figure 3b) were selected for zircon U-Pb
dating. More than 100 zircon grains were recovered from the gabbro sample, and about 50 grains from the
pillow basalt sample, of ~5 kg for each. Zircons from the gabbro sample (13XL59) are colorless, euhedral
crystals with varying long axis (50–150μm and length/width ratios of 1.2–2.5). CL images show dark to inter-
mediate luminescence with straight and wide oscillatory growth bands (Figure 6c). Zircons from sample
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Figure 6. Primitive mantle-normalized multielement spidergrams for ophiolites from the XIMAB of the CAOB. Normalization values are from Sun and McDonough
[1989]. Mobile elements, such as Cs, Rb, Ba, U, and Pb, are not shown.
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13XL59 show highly variable U (24–442 ppm) and Th (11–236 ppm) with Th/U ratios of 0.29–0.85. Eighteen
analyses of 18 zircons yield apparent 206Pb/238U ages of 352–338Ma with a weighted mean of 346 ± 2Ma
(MSWD=1.1) (Figure 7c).

Zircons from the spilitic pillow basalt (13XL40) are small euhedral crystals with long axes less than 100μm, dark
luminescence, and weak or no growth bands (Figure 7d). Both U (212–902ppm) and Th (191–1120ppm) are
much higher than those in zircons from the gabbroic samples with varying Th/U (0.54–1.24). Twelve analyses
yield apparent 206Pb/238U ages of (321–295Ma) with a weighted mean of 305±4Ma (MSWD=2.0), which is

Figure 7. Cathodoluminescence (CL) images for zircons from gabbroic and basaltic samples in ophiolites from the XIMAB
of the CAOB.
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Figure 8. Concordant diagrams of zircon SIMS and LA-ICP-MS analyses for gabbroic and basaltic/doleritic samples in ophiolites from the XIMAB of the CAOB. (a and b)
SIMS analyses for zircon from gabbro and dolerite (sheeted dyke?) in the Xi-Ujimqi ophiolite. (c) SIMS analyses for zircon from a gabbro in the Diyanmiao ophiolite.
(d) SIMS analyses for zircon from a spilitic basalt in the Diyanmiao ophiolite. (e) SIMS analyses for zircon from a sheeted dyke in the Daqing pasture ophiolite.
(f) LA-ICP-MS analyses for zircon from a rodingite in the Xingshuwa ophiolite.
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interpreted to be the formation age of the pillow basalt
(Figure 7d). Two analyses give 848±12Ma (concordant) and 808
±11Ma (discordant), which may be zircon xenocrysts (Table 2).

4.3. Daqing Pasture Ophiolite

The Daqing pasture ophiolite outcrops are between Linxi and Xi-
Ujimqin (Figure 1) and were first reported by Liu et al. [2013]. It
occurs as thrusting slices on to the strongly deformed Permian
strata (Figure 9). This ophiolite consists mainly of sheeted dykes
(Figure 3d), pillow basalts, and chert (Figure 3e), i.e., the upper
part of the ophiolite suite. The sheeted dykes are 0.3–0.6m wide,
and each has a clear one-sided chilled margin. They show ophitic
texture with well-developed plagioclase laths and fine-grained
Cpx (Figure 4f). Most pillow basalts are deformed and fractured
to various extent, and the fresh sample shows pilotaxitic texture
with orientated plagioclase laths and Cpx phenocrysts
(Figure 4g). In fact, the foliated basalts, as termed by Liu et al.
[2013], exhibit geochemical characters of cumulate gabbro with
positive Eu, Sr anomalies, negative Nb-Ta-Ti anomalies, and
much lower REE abundances than the pillow basalts. Zircons
from two samples have been previously dated to give a mean
age of 318–315Ma [Liu et al., 2013].

All pillow basalts show geochemical characteristics of low-K tho-
leiite with normal abundances of SiO2, Al2O3, TiO2, Mg, and Mg#

(0.46–0.51). Except for variably enriched LILEs, U, and Pb, all sam-
ples are similar to present-day N-type MORB (Figure 4c). The
sheeted dykes in this study also show low-K tholeiitic composi-
tions but have higher MgO (9.57–11.60wt%), Mg# (Mg/(Mg
+ Fe) = 0.62–0.71), Cr (129–328 ppm), and Ni (46–60 ppm) than
the pillow basalts. In contrast to the pillow basalts, the sheeted
dykes have slightly low REE abundances but similar Chondrite-
normalized REE patterns. In the PM-normalized multielement
spidergrams (Figure 6c), the sheeted dykes exhibit more
depleted Th, Nb, and Ta than the pillow basalts and the
present-day N-type MORB.

Zircon separates from the sheeted dyke sample (13XL77,
Figure 3d) are colorless, euhedral, or broken grains with varying
long axial length (50–100μm). CL images display straight and
wide oscillatory growth bands, similar to zircons from gabbroic
samples (Figure 7e). Zircons have high U (335–460ppm) and Th
(124–270ppm) with Th/U ratios of 0.37–0.59. Six zircons yield
apparent 206Pb/238U ages of 304–293Ma, giving a weightedmean
of 298±4Ma (MSWD=0.85). One zircon gives a 207Pb/206Pb age
of 2603±5Ma, and the other two give 1719±21Ma and 1724
±16Ma (Figure 8e), which are most likely contaminated from
the NCC basement.

Together with the ages of gabbroic samples determined by Liu
et al. [2013], our age data indicate that the Daqing ophiolite
was formed from 320 to 300Ma.

4.4. Wudaoshimen Pillow Basalts

A thick layer of pillow basalts (>500m) occurs in the
Wudaoshimen area, 62 km west of Linxi (Figure 1). The basaltsTa
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all occur as pillows (Figure 3f) and show
ophitic (or intergranular) texture of
euhedral lath-shaped plagioclase crys-
tals and fine-grained Cpx (Figure 4h).
Red radiolarian chert is occasionally
observed as lenses between the pillows
[M. Wang et al., 2014]. Fine-grained
pyroclast-rich sedimentary layers cover
the pillow lava. Previous studies [He and
Shao, 1983; Li, 1987] suggested that they
are Early Paleozoic ophiolites without

age data. Recently, Y. Y. Wang et al. [2014] reported a reliable zircon age for a pillow basalt with ophitic texture;
analysis of 15 zircons (exhibiting CL features of mafic magma) gave a concordant weighted mean age of 277
±3Ma, suggesting that the basalts formed in the Early Permian.

Geochemical analyses of three pillow basalt samples show tholeiitic compositions with normal contents of
SiO2 (45–50wt%), TiO2 (1.6–1.7wt%), MgO (7.15–8.38wt%), high Na2O (3.32–3.80wt%), and low K2O
(0.20–0.51wt%), similar to present-day N-type MORB. They have higher concentrations of incompatible
elements than, but similar patterns to, the present-day N-type MORB (Figure 6d).

4.5. Xingshuwa Ophiolite

The Xingshuwa ultramafic-mafic massif is located in the southern part of the CAOB, ~ 40 km south of
Linxi (Figure 1). It consists of peridotite (mostly harzburgite), pyroxenite, gabbro, diabase dykes,
deformed/metamorphosed basalt, and chert (Figure 3g). Wang and Pan [1997] reported radiolarians of mid-
dle Permian from the red-colored chert. Podiform chromitite was occasionally observed in the peridotite.
All the peridotite samples are strongly serpentinized without relict olivine. Orthopyroxenes occur as pseudo-
morphs and deformed (Figure 4i). Fresh spinel crystals (Figure 4i) are characterized by low TiO2 (0.02–0.06wt%)
and high Cr# [100Cr/(Cr +Al) = 60.7–75.2] (Table S3); they all plot in the fore-arc peridotite field (Figure 5a).

Rodingite occurs as veins of 10–50 cm wide within the peridotite (Figure 3h) and consists of high-Ca minerals
such as prehnite, epidote, tremolite, vesuvianite, grossular, and diopside with fine-grained zircons (Figure 4j).
Original euhedral spinel crystals survive in the matrix and have compositional characters of high Cr2O3

(47.2–51.3wt%), low Al2O3 (13.0–16.8wt%), and MgO (1.3–11.9wt%) with Cr# [100Cr/(Cr +Al)] of 65.6–70.8
(Table S3), plotting in the arc field (Figure 5b). The rodingite veins are compositionally characterized by high
CaO (17.4–30.5wt%), Mg# (64–83), Cr (230–2834 ppm), Ni (146–1173 ppm), low TiO2 (0.2–0.6wt%), and extre-
mely lowNa2O and K2O. All the samples showwide “V-shaped” REE patterns with right-tilted LREE (La to Eu) and
left-tilted HREE (Eu to Lu), and strongly enriched Th, U, Pb, and depleted Rb, Sr, Nb, Ta, and Ti in the primitive
mantle-normalized multielement diagrams (Figure 6e), suggesting intensive fluid alteration.

Zircon grains were separated from one rodingite sample 13LX34 (Figure 3h). They are colorless, euhedral
crystals with dark luminescence and weak oscillatory growth bands (Figure 7f). U-Pb analyses for eight zir-
cons by LA-ICPMS yield apparent 206Pb/238U ages from 288 to 275Ma with a weighted mean of 280 ± 3 Ma
(MSWD=1.14). These zircons have high U (505–3722 ppm) with Th/U ratios of 0.15–0.87. Three zircons form
a discordant line with an upper intercept at 2501 ± 23Ma, and one zircon yields a discordant 207Pb/206Pb age
of 1931 ± 19Ma (Figure 8f). These zircons are most likely derived from the Precambrian basement of the NCC.

The occurrence of rodingite veins in the Xingshuwa peridotite massif suggests seafloor alteration. However,
the high Cr# of spinels in the rodingite indicates that they are different from the abyssal peridotite [Dick and
Bullen, 1984; Niu and Batiza, 1997], and all plot in the arc (island arc magmas) field in the spinel TiO2-Al2O3

diagram (Figure 5) of Kamenetsky et al. [2001]. We conclude that the Xinshuwa ophiolite complex should
be formed in an arc, fore-arc, or back-arc setting.

4.6. Ondorsum Ophiolite

The Ondorsum ophiolite suite is located in western XIMAB, ~ 20 km north of Ondorsum (Figure 1). It has been
studied by different authors for more than 20 years [Hsü et al., 1991; Xiao et al., 2003; Miao et al., 2007; Chu
et al., 2013]. Miao et al. [2007] defined it to be a member of the Ondorsum-Xar Moron ophiolite belt, which

Figure 9. Field section showing occurrence of the Daqing pasture ophiolite
as southward thrusting slices.

Tectonics 10.1002/2015TC003948

SONG ET AL. OPHIOLITES IN XIMAB OF CAOB 2236



contains several ophiolite blocks, including the Ondorsum, Kedanshan, Banlashan, and Xinshuwa, along the
southern portion of the CAOB.

The Ondorsum ophiolite consists predominantly of thick layered pillow lavas withminor sheeted dykes. Gabbro
has not been found in this ophiolite block. Carbonatized peridotite occurs as a dyke-like block of 2–5m wide
and hundreds of meters long. The sheeted dyke unit is composed of 100% dykes (Figure 3i), but one-way
chilled margins are ambiguous. The pillow lavas are deformed showing varying width/length ratios
(Figure 3j). Red-colored radiolarian chert can be observed as thin layers within the pillow lavas (Figure 3k).

Geochemical analyses (data from Chu et al. [2013]) show that basalts from the Ondorsum ophiolite are
tholeiitic with high TiO2 (1.3–3.2wt%), Na2O (2.5–5.3wt%), and low K2O (0.01–0.57wt%). In the Nb/Y versus
Zr/Ti diagram [Winchester and Floyd, 1977], these basalts distribute from the subalkaline basalt field to the
alkaline basalt field. In the multielement diagram, these volcanic rocks exhibit patterns resembling
present-day E-MORB (Figure 6f), except for the strong U enrichment.

The formation age of the Ondorsum ophiolite was poorly constrained because of the difficulty of dating fine-
grained basalts.Miao et al. [2007] reported analyses for three zircon grains from a pillow basalt sample, giving
an age of ~ 260Ma. Chu et al. [2013] reported zircon ages of six pillow basalt samples; five samples with 117
zircon grains yielded clusters of ages from 237Ma to 2734Ma, and one sample yielded a reasonable weighted
mean age of 246 ± 3Ma (n= 12, MSWD=1.9). These ages suggest that the Ondorsum ophiolite most likely
formed in the Late Permian to Early Triassic.

4.7. Other Ophiolite Suites
4.7.1. Ophiolite Complexes in the Hegenshan Region
The Hegenshan region is located in the northern part of the Xing’an-Inner Mongolia accretionary belt
(Figure 1). This region contains four large ultramafic-mafic massifs plus several small ones with
massive/podiform chromitite ore deposits (Figure 1) and has been classified into the Eranhot-Hegenshan
ophiolite belt, which was considered to be the best representation of the Paleo-Asian Ocean [e.g., Bao
et al., 1994; Nozaka and Liu, 2002; Miao et al., 2008; Jian et al., 2010, 2012; Xiao et al., 2009a]. The
Chaogenshan-Hegenshan massifs in the southwest consist of serpentinized harzburgite and lherzolite,
cumulate gabbro and anorthosite, greenschist facies metamorphosed basalts, and diabase and anorthosite
dykes [Robinson et al., 1999; Miao et al., 2008; Jian et al., 2010]. Geochemical analyses show that metabasalts
and mafic dykes have features of both N-MORB and E-MORB [Robinson et al., 1999; Miao et al., 2008]
(Figure 6g). Sensitive high-resolution ion microprobe (SHRIMP) analyses for zircons from two gabbro samples
gave weighted mean ages of 298 ± 9Ma, 252 ± 9Ma, and 295± 15Ma, respectively, whereas zircons from a
granodiorite dyke that intruded the ultramafic massif gave a weighted mean age of 244 ± 4Ma [Miao et al.,
2008]. However, Jian et al. [2012] reported zircon SHRIMP analyses from six gabbroic samples in the
Chaogenshan-Hegenshan massifs, and all samples yielded complicated ages ranging from 500Ma to
125Ma with peaks at 135Ma, 176Ma, 235Ma, 271Ma, and 306Ma. CL images of the analyzed zircons also
show a complex inner structure, implying that they may come from multiple sources, but we cannot rule
out the possibility of contamination during zircon separation.

The Xiaobaliang peridotite massive, next to the Hegenshan massif to the northeast, consists of a major ultra-
mafic body with gabbro and plagiogranite dykes. No cumulate gabbro nor pillow basalts were observed. Jian
et al. [2012] reported a zircon SHRIMP age of 354 ± 7Ma for microgabbro and 333± 4Ma for plagiogranite.
The Wusnihei peridotite massif in the northeast segment of the ophiolite belt, as described by Jian et al.
[2012], is similarly dominated by serpentinized lherzolite, with subordinate harzburgite, dunite and pyroxe-
nite, and gabbroic (gabbro, troctolite, and anorthosite) dykes. Zircons from a volcanic breccia gave a
weighted mean age of 300 ± 2Ma [Jian et al., 2012].
4.7.2. Eastern Erenhot Ophiolite
The Eastern Erenhot ophiolite is located ~60 km east of the Erenhot city, near the China-Mongolia border
(Figure 1). It has been recognized as one of the fragments of the Erenhot-Hegenshan ophiolite belt [Liang,
1994; Robinson et al., 1999] and recently studied by Z. Zhang et al. [2015]. This ophiolite is composed of ser-
pentinized ultramafic rocks with subordinate gabbros, mafic lavas, red-colored radiolarian chert, and minor
plagiogranite dykes. The basaltic rocks show characteristics of N-MORB affinities with depleted Th, Nd, Ta,
and LREEs (Figure 6f). Zircons from two gabbro samples and one plagiogranite sample yielded weighted
mean ages of 354.2 ± 4.5Ma, 353.3 ± 3.7Ma, and 344.8 ± 5.5Ma, respectively [J. Zhang et al., 2015].
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4.7.3. Mandula Ophiolitic (?) Complex in the Solonker Belt
The Mandula ophiolitic (?) complex is located in the Solonker belt, or Solonker suture of Xiao et al. [2003], in
the western section of the XIMAB (Figure 1). Jian et al. [2010] distinguished four geological units from south to
north: (1) the Hugiert-Chaganhadamiao volcanic-plutonic sequence with pillow and massive volcanic and
plutonic rocks, (2) the Mandula fore-arc mélange, (3) mid-Permian alluvial sediments, and (4) Early Permian
bimodal volcanic rocks. Lithologies associated with the ophiolite in the Mandula region are fragments of
serpentinized peridotite, gabbro, diabase dykes, plagiogranite, and red chert.

Geochemical analyses (data from Jian et al. [2010] and Chen et al. [2012]) show that the diabase dykes have
enriched trace element compositions of E-MORB affinity, except for an obvious Nb-Ta negative anomaly rela-
tive to Th and La (Figure 6h). All other basalts exhibit characteristics of IAT with strong depletion of Nb and Ta
relative to Th and La and strongly enriched Sr (Sr/Sr* = 1.03–5.98) (Figure 6h). Jian et al. [2010] suggested that
theMandula ophiolite complex formed in an environment of suprasubduction zone (SSZ), whereas Chen et al.
[2012] argued that they formed in a rift or a small oceanic basin. Zircon U-Pb analysis by SHRIMP for two dia-
base samples gave weighted mean ages of 274.4 ± 2.5Ma and 252.5 ± 2.3Ma [Jian et al., 2010], respectively.
Chen et al. [2012] reported a zircon weightedmean age of 278.5 ± 3.0Ma from gabbro and 273.7 ± 1.0Ma for a
basalt. Therefore, the Mandula ophiolite was formed in Permian times.

4.8. Sr-Nd Isotopes

All the Sr-Nd isotopic data of ophiolites in the XIMAB, including those in the literature and newly analyzed in
this study, are presented in Figure 10. Rock types include (cumulate) gabbro, diabase dyke, basalt, and plagi-
ogranite, and all have εNd(t)>+2. The gabbro and basaltic rocks from the Hegenshan ophiolite complex have
highest εNd(t) and lowest ISr; most plot in the field of present-day MORB, suggesting that they are comparable
to the Sr-Nd isotopic compositions of major modern ocean crust. Rodingites from the Xingshuwa ophiolite
complex have the lowest εNd(t) (+2.5–+3.3) and highest ISr (t) (~0.707). The deviation of ISr from the mantle
array reveals strong seafloor alteration.

All the samples show a rough trend of increasing enrichment from north (Hegenshan region) to south
(Xingshuwa region), suggesting an increase of continental contamination from oceanic crust to island arc
or back-arc setting.

5. Discussion
5.1. Spatiotemporal Variation of Ophiolites in the XIMAB

As shown in Figure 1, ophiolite blocks/massifs are scattered in a ~400 km wide zone in the XIMAB. Such a
wide zone has been suggested to have resulted from continuous accretion by multistage trench retreat or
multiple subduction zones in the same time [e.g.,Windley et al., 2007; Xiao et al., 2008, 2009a]. Several researchers
have tried to give a clear subdivision of tectonic units for this wide zone on the basis of the ophiolite distribution

Figure 10. Sr-Nd isotopic compositions of various rocks from ophiolite complexes in the Xing’an-InnerMongolia accretionary
belt of the CAOB. Data are from Miao et al. [2008], Zhang and Wu [1998], Jian et al. [2010], Chen et al. [2012] and this study.
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[Miao et al., 2007; Jian et al., 2010, 2012;
Li, 2006; Xiao, 2009a; Xu et al., 2013,
2014], but these subdivisions have been
based on limited data with limited com-
positional variations in time and space.
Combining previous studies [e.g., Xiao
et al., 2003, 2009a; Jian et al., 2010; Miao
et al., 2007, 2008; Z. Zhang et al., 2015],
two ophiolite belts, i.e., the Erenhot-
Hegenshan belt in the north and
Solonker-Linxi belt in the south, which
are separated by the Baolidao-Xilinhot
metamorphic-volcanic-plutonic belt (or
arc complex) [e.g., Chen et al., 2009], have
been recognized.

Figure 11 and Table 3 show all the reli-
able zircon U-Pb ages from the litera-
ture and this study. Of all the ophiolite
complexes in this belt, only two have
been determined to be formed in the
Early Paleozoic. Zircons from cumulate

gabbro/metagabbro in the Tulinkai ophiolitic complex (Figure 1) give two 206Pb/238U weighted mean ages
of 457 ± 4Ma and 480 ± 2.4Ma [Miao et al., 2007; Jian et al., 2008], and cumulate gabbro in the Sonitzouqi
complex (Figure 1) gives a weighted mean age of 483 ± 2Ma [Jian et al., 2008]. There is a ~ 90Myr gap
between 450Ma and 360Ma for which no ophiolite complex has been identified. Ophiolite complexes
appeared again at ~360Ma, the beginning of Carboniferous, and lasted continuously until ~245Ma, the
end of Early Triassic. These ages form twomajor peaks at 360–340Ma (peak at 349Ma) and 300–270Ma (peak
at 286Ma). This ~90Myr gap of the ophiolite in this belt indicates two individual spreading or preservation
events of ocean crust in the long history of the Paleo-Asian Ocean, which is consistent with the relevant
arc magmatism in the XIMAB of the CAOB (see below).

5.2. Formation Environments of Ophiolites: Subduction or No Subduction?

The tectonic environment of ophiolite emplacement has been a long-standing matter of debate [e.g.,
Miyashiro, 1975; Pearce et al., 1984; Pearce, 2003, 2008; Pearce and Robinson, 2010; Dilek et al., 2007; Dilek
and Furnes, 2011]. Dilek and Furnes [2011] simply subdivided ophiolites into “subduction-related” and
“subduction unrelated” and indicated that their lithological and geochemical characteristics vary with
spreading rate, proximity to plumes or trenches, mantle temperature, mantle fertility, and the availability
of fluids. Generally, troctolite can be crystallized in dry conditions [Gaetani et al., 1993; Niu et al., 1999] and
is common in modern ocean crust generated in both fast- and slow-spreading ridges [e.g., Arai and
Matsukage, 1996; Drouin et al., 2010; Gillis et al., 2014], whereas wehrlite occurs in hydrous conditions and
is common in subduction-related setting. These two rock types, which may occur in the cumulate section
of the ophiolites, are effective indicators of their formation environments [e.g., Pearce, 2003, 2008].

Most ophiolites in the studied region are dismembered or altered by late metamorphism and deformation,
without well-preserved cumulate sections. The sheeted dykes in some ophiolite complexes as described
above, on the other hand, should represent the relics of the spreading ridge, which convincingly demon-
strate that they must be generated in the spreading center of either an ocean or a back-arc basin.

The depleted Nd isotopic data (εNd(t) +5–+11) for most ophiolites (except for rodingites in the Xingshuwa
ophiolite and the gabbro in the Early Paleozoic Tulinkai ophiolite), similar to isotopes of the EPR basalts
(εNd(t) +7 ~+12) [White et al., 1987], indicate that they were derived from the depleted mantle source with
subsequent seafloor weathering/alteration (Figure 9), which exclude the possibility of marginal ophiolites
forming in an rift or a young ocean basin (e.g., Red Sea-type ocean-continent transitions) [Dilek and Furnes,
2011]. All the basaltic rocks, including pillow lavas and sheeted and isolated dykes in the ophiolites, are tho-
leiitic in major element compositions, and most are N-type MORB with depleted REE patterns [(La/Sm)N< 1

Figure 11. Distribution of zircon U-Pb ages from ophiolites in the XIMAB
of the CAOB. Data are from Liu et al. [2003], Miao et al. [2007, 2008], Jian
et al. [2008, 2010, 2012], Chen et al. [2012], Chu et al. [2013], Y. Y. Wang
et al. [2014], S. Zhang et al. [2014], and this study.
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and (La/Yb)N< 1], with the exception of enriched E-MORB-type basalts in the Ondorsum ophiolite and
Hegenshan ophiolite (Figure 12a). In the Nb/Th versus Nb/Ta diagram (Figure 12b), most basaltic samples
have higher-than-primitive mantle (PM) Nb/Th ratios and are comparable with basalts from the modern
Eastern Pacific Rise. Basalts from the Mandula ophiolite (280–250Ma) and rodingites from the Xingshuwa
ophiolite (280Ma) have extremely low Nb/Th and Nb/La ratios, suggesting contamination by continental
crust and/or subduction zone fluids.

In the Nb-Zr-Y discrimination diagram [Meschede, 1986], most basaltic rocks plot in the N-MORB field; some plot in
the E-MORB andWPT fields (Figure 12c). However, in the Th-Hf-Ta diagram ofWood [1980] (Figure 12d) and Th/Yb
versus Ta/Yb diagram (Figure 12e), basalts from the Mandula ophiolite and rodingites from the Xingshuwa
ophiolite exhibit evolved Th relative to Ta, Hf, and HREEs and plot in CAB and IAT fields associated with
back-arc environments, suggesting that subduction zone fluids may have interacted with the sources of these
basaltic rocks. In the Cr-Y diagram (Figure 12f), most data plot in theMORB field, while basalts from theMandula
ophiolite plot in the IAB field and some rodingites from the Xingshuwa ophiolite fall in the boninite field.

In summary, on the basis of whole-rock chemical and Sr-Nd isotopic compositions, we conclude that most
ophiolite complexes in the XIMAB of the CAOB, such as those from Eastern Erenhot (360–350Ma), the
Hegenshan-Xiaobaliang (350–295Ma), the Xi-Ujimjin and Diyanmiao (360–300Ma), the Daqing pasture
(320–300Ma), and the Ondorsum (~260–245Ma), are most likely subduction unrelated and comparable to
the modern fast-spreading Eastern Pacific Rise (EPR). The Mandula ophiolite (280–250Ma) in the western

Table 3. Summary on Reliable Zircon Ages of Ophiolites in the XIMAB

Ophiolite Dating Rock Age (Ma) Reference

Early Paleozoic Ophiolite
Tulinkai cumulate gabbro 457 ± 4 Miao et al. [2007]

metagabbro 479.6 ± 2.4 Jian et al. [2008]
Sonitzuoqi cumulate gabbro 482.5 ± 1.7 Jian et al. [2008]

Erenhot-Hegenshan-Xi-Ujimqin Ophiolite Belt
Hegengshan gabbro 298 ± 9 Miao et al. [2008]

leucogabbro 252 ± 9 Miao et al. [2008]
leucogabbro 295 ± 15 Miao et al. [2008]

Xiaobaliang gabbro 354 ± 7 Jian et al. [2012]
gabbro 333 ± 4 Jian et al. [2012]

Wusnihei basaltic rock 300.3 ± 2 Jian et al. [2012]
Xi-Ujimqin gabbro 356 ± 4.7 This study

sheeted dyke (?) 329 ± 3 This study
Diyanmiao gabbro 346 ± 2.4 This study

pillow basalt 304 ± 4 This study
Daqing basalt/gabbro 318 ± 3 Liu et al. [2013]

basalt/gabbro 315 ± 4 Liu et al. [2013]
sheeted dyke 299 ± 4 This study

Eastern Erenhot gabbro 354 ± 3 S.-H. Zhang et al. [2014]
gabbro 353.3 ± 3.7 S.-H. Zhang et al. [2014]

plagiogranite 344.8 ± 5.5 S.-H. Zhang et al. [2014]
Xilin Hot gabbro 323 ± 5 Jian et al. [2007]

gabbro 280 ± 0 Jian et al. [2007]

Solonker-Linxi Ophiolite Belt
Solonker gabbro 297 ± 2 Jian et al. [2010]

diabase dyke 252.5 ± 2.3 Jian et al. [2010]
Ondorsum Wulangou 260 ± 5 Miao et al. [2008]

Wulangou 246 ± 4 Chu et al. [2013]
Xingshuwa rodingite 280 ± 3 This study
Banlashan cumulate gabbro 256 ± 3 Miao et al. [2008]
Solon Oba cumulate gabbro 279 ± 10 Miao et al. [2007]
Mandula gabbro 278.5 ± 3 Chen et al. [2012]

basalt 274 ± 1 Chen et al. [2012]
diabase dyke 274.4 ± 2.5 Jian et al. [2010]

gabbro 284 ± 4 Jian et al. [2010]
plagiogranite 288 ± 6 Jian et al. [2010]

Wudaoshimen pillow basalt 277 ± 3 M. Wang et al. [2014]
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section of the Solonker-Linxi belt and the Xingshuwa ophiolite (280Ma) in the eastern section of the
Solonker-Linxi belt show clear geochemical signatures of a suprasubduction zone (SSZ) setting. These
subduction-related ophiolites suggest that back-arc extension occurred in the southern part of the orogen,
which, in turn, requires southward oceanic subduction started at least in the Early Permian (~280Ma).

Nevertheless, ophiolites, no matter in what environment they occur, should represent the existence of a
disappeared, medium- to large-scale ocean(s) that evolved from the beginning of the Carboniferous to the

Figure 12. Discrimination diagrams for ophiolites from the XIMAB of the CAOB. See text for details. Data for the Daqing
pasture ophiolite are from Liu et al. [2013] and this study, Eastern Erenhot from J. Zhang et al. [2015], Hegenshan ophio-
lite from Miao et al. [2008], Ondorsum from Chu et al. [2013], and Mandula from Chen et al. [2012]. Other data are from this
study. EPR (Eastern Pacific Ridge) basalts are from Niu and Hekinian [1997], Niu et al. [1999, 2001, 2002], Niu and O’Hara,
2009, and Regelous et al. [1999]. The values for N-MORB, EMORB, OIB, and PM (primitive mantle) are from Sun and
McDonough [1989].
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Early Triassic, as well as back-arc basins
related to seafloor subduction, in the
CAOB. It is worthy to note that although
the ophiolites are dispersed in a vast
area, they should belong to an individual
ocean system, and wemust not say that
each ophiolite would represent an ocean
or sea basin, the so-called “immature
ocean,” “Red Sea-type ocean,” and
“multiisland ocean,” as interpreted in
some literature. This wide ophiolite belt
also implies that the CAOB is a type of
accretionary orogen without intensive
collision andmountain building between
the convergent continents.

5.3. Spatiotemporal Distribution of
Magmatism: Two Cycles of
Accretionary Orogeny in the CAOB

Xu et al. [2014] examined the statistics
of all the available magmatic ages for

the Xing’an-Inner Mongolia belt of the CAOB [see Xu et al., 2014, Figures 3 and 4], excluding Mesozoic
(Jurassic to Cretaceous) magmatic overprinting. Plotting all the reliable zircon U-Pb ages on the histogram
(Figure 13), we distinguish two epochs of magmatism, which coincide well with the age distribution of the
ophiolites (Figure 11).

The first epoch of magmatism occurred in the Early Paleozoic (~500 to 405Ma). These igneous rocks crop out
roughly, but not well focused, on two sides of the ophiolite belt, termed “the North Orogenic belt” and
“the South Orogenic belt” by Xu et al. [2013]. Rock assemblages of this magmatic epoch include the
Bainaimiao arc volcanic-sedimentary sequence and granitoid plutons of varying size and composition (e.g.,
diorite, granodiorite, granite, and tonalite). The Bainaimiao volcanic-sedimentary sequence in the southern
margin of the belt is well studied for its famous Cu-Mo-Au deposit [e.g., Nie et al., 1994]. Volcanic rocks in
this sequence mainly consist of foliated massive basalt and basaltic andesite interlayered with felsic rocks,
indicating a bimodal compositional range. The basaltic rocks are calc-alkaline and exhibit typical CAB affinity
[Liu et al., 2014], and their formation ages have been determined to be ~465–440Ma [Miao et al., 2007;
Liu et al., 2014; Li et al., 2015].

This cycle of magmatism is coincident with the contemporaneous magmatic activity in the whole Tianshan
orogen, the western segment of the CAOB (510–420Ma) in China [e.g., Gao et al., 2009; Pu et al., 2011].
Consequently, magmatic ages of both volcanic and plutonic rocks on the whole scale of the CAOB
indicate that the first cycle of orogeny started at least at ~ 510Ma and ended at ~ 405Ma. This orogeny
is an accretionary event by seafloor subduction without intensive continental collision and crustal
shortening/thickening.

The secondmagmatic epoch lasted ~140Myr from the beginning of the Carboniferous (~360Ma) to the Early
Triassic (~220Ma). There is an approximately ~50Myr interval between the twomagmatic epochs. Rock types
in this magmatic event include calc-alkaline, high-K calc-alkaline, and alkaline plutons (gabbro, diorite,
granodiorite, and granite) [see Tong et al., 2015] and the widely distributed Dashizhai volcanic formation
(315–250Ma). The rock assemblages and geochemistry suggest that this epoch of magmatism reflect an
arc (mostly oceanic arc) environment in response to seafloor subduction (see below).

5.4. Carboniferous and Triassic Magmatism: Arc or Long-Lived Postcollisional Extension?

The second epoch of magmatism, including various plutonic and volcanic rocks, took place in a time span of
~140Myr from 360Ma to 220Ma (Figure 13). Such a long-lived magmatic activity cannot be interpreted as
postcollisional extension or intracontinental rifting but is consistent with long-lived subduction and
arc/back-arc magmatism. In the northern NCC, magmatic activity occurred contemporaneously in the same

Figure 13. Age distribution of plutonic and volcanic rocks in the XIMAB sec-
tor of the CAOB. Data are from Xu et al. [2014, 2015, and references therein],
with additions from Li et al. [2007], S.-H. Zhang et al. [2010], Cao et al. [2012,
2013], Hu et al. [2015], Li et al. [2014], Fan et al. [2014], and Li et al. [2015].

Tectonics 10.1002/2015TC003948

SONG ET AL. OPHIOLITES IN XIMAB OF CAOB 2242



time period from 360Ma to 210Ma [e.g., S.-H. Zhang et al., 2007a, 2007b, 2010]. The alkaline magmatic belt of
250–210Ma, together with adakitic rocks, suggests a back-arc extension caused by retreating of
trench/subduction zone [e.g., Niu, 2014] of the New Paleo-Asian Ocean [Wang et al., 2015]. Their compositions
vary with a trend of increasing K southward to the NCC continental margin with time [Jahn et al., 2009; Zhang
et al., 2012]. This trend suggests magmatic compositions varying from oceanic arc, to continental margin to
inner continent, similar to the present-day Japanese arc to continental China.

The Dashizai volcanic formation is widespread in the whole Eastern CAOB, from Mandulan, Solonker to the
west, via Xilinhot, Linxi, to the northeast border of China (out of Figure 1). This volcanic complex is predomi-
nantly calc-alkaline with minor shoshonite and tholeiitic series in composition, with lithologies ranging from
basalt, andesite, dacite, and rhyolite [e.g., Shao, 1991; Lu et al., 2002; Zhang et al., 2011; Cao et al., 2012; Cheng
et al., 2013; Li et al., 2014; Fan et al., 2014], and clear geochemical signatures of island arc/active continental
margins. A high percentage of magmatism is calc-alkaline, with rocks from basalt, andesite dacite to rhyolite,
and no obvious bimodality.

Geochronological studies reveal that the ages of the Dashizhai Formation range from 315Ma to 250Ma [Cao
et al., 2012; Chen et al., 2012; Cheng et al., 2013; Li et al., 2014; Xu et al., 2014; Fan et al., 2014], with the time
interval much longer than the mantle plume magmatism in Tarim (290–270Ma) [Tian et al., 2010] or the
Siberian Trap (~250Ma) [e.g., Sun et al., 2012].

5.5. Hard or Soft Continental Collision in the CAOB?

Continental collision follows seafloor subduction after an ocean plate is totally consumed, which can lead to
finite extent of continental subduction, intensive crustal shortening/thickening, as well as high-grade (UHP,
HP to MP, and HT) metamorphism and syncollisional and postcollisional magmatism [e.g., O’Brien, 2001;
Song et al., 2006, 2014, 2015; M. Wang et al., 2014]. This orogenic procedure may be called “hard collision”
in the Himalayan case [e.g., van Hinsbergen et al., 2012]. Hard collision and continental subduction between
two convergent continental plates require two basic conditions: (1) prior oceanic plate subduction and (2)
“passive margin” connected continental lithosphere [Song et al., 2014].

However, when an ocean lithosphere has bidirectional subduction zones along its two borders, the situation
is different. In this case, there is no passive continental margin and thus no continental lithosphere can be
dragged into subduction zones. Hence, soft collision between the two convergent continents would occur,
similar to the case of Appalachian orogen in North America [e.g., Draut and Clift, 2001, 2013] with no large-
scale continental shortening and thickening and no HP-UHP/HT metamorphic rocks can be exhumed. We
term such orogeny as “Appalachian-type” or “CAOB-type” collision.

Beside the ~400 km wide distribution of ophiolite blocks, arc magmatism and accretionary complex with two
epochs of 500–410 and 360–220Ma described above, the following lines of evidence indicate that the CAOB
is a type of the accretionary orogenic belt that had experienced soft collision between the convergent
continents without crustal shortening and mountain building [Windley et al., 1990, 2007; Xiao et al., 2003,
2009a; Kröner et al., 2007, 2014].

1. According to the distribution of igneous rocks in the eastern segment of the CAOB, most researchers
agree that the CAOB experienced bilateral subduction predominantly in its evolution history [e.g., Xiao
et al., 2003, 2009a, 2013; Windley et al., 1990, 2007; Miao et al., 2007, 2008; Chen et al., 2009; Xu et al.,
2013, 2014; S.-H. Zhang et al., 2014].

2. The thickness of the CAOB crust is ~40–45 km [S. Zhang et al., 2014], and no subsequent destruction of
the crust has happened in the Mesozoic and Cenozoic. Therefore, the crust in the whole region of the
Xing’an-Mongolia segment of the CAOB has not been greatly thickened during its orogenic history. No
evidence for large overthrusting on the scale of the Himalayan or Alpine thrust sheets has been reported.

3. Most rocks in the belt have suffered from low-grade metamorphism, including blueschist [Xu et al., 2013;
J. Zhang et al., 2015], greenschist, and lower amphibolite facies rocks. Although there are some high-grade
metamorphic rocks (T= 750–800°C, P=4.7–5.5 kbar) with anatexis veins in the Xinlinhot metamorphic belt
(C. J. Wei et al., unpublished data, 2015), they are most likely associated with low-pressure metamorphism
in an arc setting. No high-pressure (P> 8 kbar) granulite facies metamorphic rocks, which usually appear
in most collisional orogenic belts like Himalaya, have been reported. This means no strong collisions
between the two convergent continents.
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4. Ultrahigh-pressure (UHP) metamorphism of continental crust, which means one continent subducted to
mantle depths (>80 km) beneath another, has not been observed throughout the CAOB within the
boarder of China.

5.6. Tectonic Evolution: Two Epochs of Seafloor Spreading and Two Cycles of Accretionary Events

The tectonic evolution of the CAOB has been hotly debated. Windley et al. [2007] and Xiao et al. [2009a]
suggested a long-lived accretionary history from the Neoproterozic to Triassic. Xu et al. [2013, 2014, 2015]
suggested that the Paleo-Asian Ocean closed and collision between the Mongolian block and the NCC
occurred in the Devonian. Based on geochemical data of granitoids, Jahn et al. [2009] and Han et al. [2011]
concluded that the Paleo-Asian Ocean has closed at ~310–300Ma and a significant geodynamic change in
CAOB occurred at ~ 300Ma, which may be caused by delamination of the thickened lithospheric root and
asthenospheric upwelling of postcollisional or rifting events.

According to formation ages of ophiolites and the nearly concurrent magmatic activity reported in this study,
two cycles/epochs of oceans could exist in the Xing’an-Mongolia segment of the CAOB, of which we name
them “the Old Paleo-Asian Ocean (OPAO)” and “the Young Paleo-Asian Ocean (YPAO),” respectively.

The OPAO might have developed from the Neoproterozoic [e.g., Xiao et al., 2003; Windley et al.,
2007]. Magmatism and blueschist ages suggested that the subduction of the OPAO started at about
510–500Ma [Xu et al., 2014, 2015] but stopped at ~410Ma, with no hard collision and no postcollisional
metamorphism/magmatism.

When the Young Paleo-Asian Ocean (YPAO) started is unknown. We do not know if it was a newly developed,
independent ocean or if it evolved from the former OPAO. The 50Myr gap without magmatic and meta-
morphic record suggests two separate cycles of oceanic events. The ophiolite (360–250Ma) and coeval
magmatic activity (360–220Ma) suggest a long-lived interaction between seafloor subduction, island
arc/continental arc, and back-arc basin and continuously accreted to both margins of the NCC in the south
and the Mongolia block in the north. Subduction toward the Mongolia block in the north could be an
Andean-type margin without back-arc extension, while southward subduction to the NCC would most likely
develop into a western Pacific-type trench-arc-back-arc basin system at about 280Ma, as supported by the
Mandula ophiolite and Xingshuwa ophiloite.

Figure 14. Schematic cartoons illustrating the tectonic evolution of the Xing’an-Inner Mongolia Accretionary Belt of the
CAOB. Positions of the South Mongolian active margin are after Badarch et al. [2002] and Xiao et al. [2003].
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On the basis of the foregoing discussion, the inferred tectonic evolution of the XIMAB of the CAOB from sea-
floor spreading, subduction, development of arc and back-arc system, and final closure of the Paleo-Asian
Ocean is illustrated in Figure 14 in four major stages.

Stage I (Cambrian to Devonian, the Early Paleozoic orogenic cycle of the OPAO). Southward seafloor subduction
initiated at ~ 500Ma and formed the Bainaimiao arc volcanic sequence on the northern margin of the NCC
and granitoids with ages of 500–410Ma. However, we do not know if the OPAO was totally closed as empha-
sized by Xu et al. [2013, 2015] or remained inactive for ~ 50Myr.

Stage II (Carboniferous to Early Permian, the Late Paleozoic orogenic cycle of the YPAO). Bilateral seafloor
subduction (double divergent subduction) of the YPAO occurred at ~ 360Ma, the beginning of the
Carboniferous era, with intensive magmatic activity that widely spreads in the whole 400 km wide XIMAB
of the CAOB and its both sides of the continental margin, including plutonic and volcanic rocks with ages
from 360Ma to 280Ma.

Stage III (Middle Permian to Early Triassic, the late stage of the YPAO). Back-arc extension on the active margin of
the NCC occurred at ~ 280Ma, lasted to ~ 245Ma, and formed the Solonker-Linxi SSZ-type ophiolite belt.

Stage IV (Early to Middle Triassic). The YPAO was finally closed, and soft collision between the NCC and the
Mongolia Microcontinent occurred, which gave rise to the crustal extension that formed an alkaline
magmatic belt along the northern margin of the NCC [e.g., W. Zhang et al., 2010] and the onset of the NCC
lithosphere destruction [e.g., Yang and Wu, 2009; Wang et al., 2015].
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