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Within the field of cytogenetic biodosimetry, Poisson regression is the classical approach for modelling the
number of chromosome aberrations as a function of radiation dose. However, it is common to find data that
exhibit overdispersion. In practice, the assumption of equidispersion may be violated due to unobserved
heterogeneity in the cell population, which will render the variance of observed aberration counts larger
than their mean, and/or the frequency of zero counts greater than expected for the Poisson distribution. This
phenomenon is observable for both full and partial body exposure, but more pronounced for the latter. In this
work, different methodologies for analysing cytogenetic chromosomal aberrations datasets are compared,
with special focus on zero–inflated Poisson and zero–inflated negative binomial models. A score test for
testing for zero–inflation in Poisson regression models under the identity link is also developed.
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1 Introduction

Data from biological systems regarding the effects of environmental or manmade mutagens frequently con-
sist of count variables. This is the case in biological dosimetry, where the measurement of chromosome
aberration frequencies in human lymphocytes is used for assessing absorbed doses of ionising radiation to
individuals. For that purpose, dose–effect calibration curves are required which are produced by irradiating
peripheral blood lymphocytes to a range of doses and quantifying the amount of damage induced by radi-
ation at a cellular level, for instance by counting dicentrics or micronuclei (IAEA, 2011). That is, d blood
samples from a healthy donor are irradiated with several doses xi, i = 1 . . . , d. Then for each irradiated
sample, ni cells are examined and the number of observed chromosomal aberrations yij , j = 1, . . . , ni is
recorded. The aberrations most commonly analyzed are the dicentrics, centric rings, and micronuclei.

These chromosomal aberrations appear because when cells are exposed to radiation, breaks are induced
in the chromosomal DNA, and the broken fragments may rejoin incorrectly. Therefore, the frequency of
chromosome aberrations increases with the amount of radiation and is a reliable and very well established
biological indicator of radiation absorbed dose. Dicentrics are the interchange between the fragments
of two separate chromosomes resulting in unstable, aberrant chromosomes with two centromeres. A ring
chromosome, or centric ring, is an exchange between two breaks on separate arms of the same chromosome
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and is also accompanied by an acentric fragment (chromosome without centromere). Micronuclei are
lagging chromosomal fragments or whole chromosomes at anaphase that are not included in the nuclei of
daughter cells.

For such count data, the Poisson distribution is the most widely recognized and commonly used distri-
bution and constitutes the standard framework for explaining the relationship between the outcome variable
and the dose (Lloyd and Edwards, 1983; IAEA, 2011). However, in practice, the assumption of equidis-
persion implicit in the Poisson distribution is often violated, which is a well–known effect under high LET
(Linear Energy Transfer) radiation, also known as densely ionising radiation (IAEA, 2011). Moreover, the
distributions of micronuclei are in general overdispersed for both high and low LET radiation exposure.

The focus of the research presented in this manuscript is the identification of adequate response dis-
tributions for the modelling of cytogenetic dose–response curves. The cytogenetic dose estimation is a
subsequent inverse regression problem that depends on this previous curve fitting. If the initial response
distribution is incorrectly specified, this will impact on the accuracy of the model parameter estimates of the
fitted curve and, more strongly, of their standard errors. In addition, the inverse regression step is sensitive
to the initial model specification, and may behave unreliably if that specification is incorrect. Summariz-
ing, an incorrectly specified response distribution may or may not lead to reasonable dose estimates, but
it will certainly lead to an incorrect assessment of the uncertainty associated to these dose estimates. This
subsequent inverse regression step is not the subject of this manuscript, see Higueras et al. (2015a, 2015b)
for recent advances in this respect.

Due to the mentioned violations of the Poisson distribution, other distributions have been considered
in the literature for dealing with overdispersed data in biodosimetry. These alternatives include the neg-
ative binomial distribution, which has been shown to accurately characterize aberration data in cases of
overdispersion (Brame and Groer, 2002); the Neyman type A distribution, which has been shown to be
useful for characterization of aberration induced by high LET radiation (Gudowska–Nowak et al., 2007)
and the univariate rth-order Hermite distributions (Puig and Barquinero, 2011). These distributions have
recently been tested for suitability to a selection of chromosome aberration data collected in different ex-
posure scenarios (Ainsbury et al., 2013) and used for cytogenetic dose estimation through a Bayesian-like
inverse regression technique (Higueras et al., 2015a). Further, Poisson–inverse Gaussian and Pólya–Aeppli
distributions have been considered in Puig and Valero (2006).

Also, a commonly observed characteristic of count data is the number of zeros in the sample exceed-
ing the expected number of zeros generated by a Poisson distribution having the same mean. This phe-
nomenon, known as zero–inflation, is frequently related to overdispersion. Distributions which account
for overdispersion will also – to some extent – allow for zero-inflation. For instance, the families of Com-
pound Poisson and Mixed Poisson distributions (which include the distributions mentioned in the previous
paragraph as special cases) are overdispersed and zero-inflated.

However, the extra zeros (relative to the Poisson model) generated by these models may still be insuf-
ficient to account for the total observed number of zeros in the data. Count datasets with an excessive
number of zero outcomes are abundant in many disciplines such as manufacturing applications (Lambert,
1992), medicine (Böhning et al., 1999), econometrics (Gurmu et al., 1999) and agriculture (Hall, 2000).
In most of these works, a special kind of zero–inflated models are considered, using a mixture of a distri-
bution degenerate at zero and a count distribution such a Poisson or a negative binomial. These models
can be especially useful in partial body irradiation scenarios which feature a mixture of populations of
non-irradiated and irradiated cells.

In this manuscript we will introduce and advocate the use of zero–inflated models for cytogenetic count
data. We will compare zero–inflated models to other models previously proposed in the field of radiation
biodosimetry, and we will devote particular attention to the question of whether overdispersion needs to be
taken into account on top of the zero–inflation. The manuscript is organized as follows: In Section 2, zero–
inflated Poisson and zero–inflated negative binomial models are reviewed. A case study involving several
data sets with different radiation exposure patterns is provided in Section 3. In Section 4 we present a
small simulation study in a radiation induced chromosome aberration context to study the identifiability of
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zero–inflated and overdispersed regression models. The paper is concluded in Section 5. Appendix A.1
contains the derivations for a score test for zero–inflation under the identity link.

The code and data sets needed to reproduce the analyses carried out in this paper are available as
supporting information. In addition, supplementary material is provided which gives the mathematical
forms of count distributions used in Section 3, as well as further numerical results.

2 Zero–inflated regression models applied to biodosimetry

In this section, zero–inflated regression models are reviewed in a general framework in Section 2.1 and
details on how these models are applied for modelling the number of chromosome aberrations as a function
of radiation doses are given in Section 2.2.

2.1 Zero–inflated count regression overview

Zero–inflated count models provide one method to account for the excess zeros in data by modelling the
data as a mixture of two distributions: a distribution taking a single value at zero and a count distribution
such as Poisson or negative binomial distributions.

The zero–inflated Poisson (ZIP) regression model was first introduced by Lambert (1992) who applied
the model to the data collected from a quality control study. Since then, the ZIP regression model has been
applied in many and different fields, such as, dental epidemiology (Böhning et al., 1999), occupational
health (Lee et al., 2001), and children’s growth and development (Cheung 2002).

Let Yij , i = 1, . . . , d, j = 1, . . . ni be the response variable which in our context represents numbers of
chromosomal aberrations at dose level i for cell j. A ZIP regression model is defined as

P(Yij = yij) =

{
pi + (1− pi) exp(−λi), yi = 0,
(1− pi) exp(−λi)λ

yij
i /yij !, yij > 0,

where 0 ≤ pi ≤ 1 and λi > 0. For the ZIP, E(Yij) = (1−pi)λi = µi and Var(Yij) = (1−pi)λi(1+piλi).
Both the mean λi of the underlying Poisson distribution and the mixture parameter pi (also referred to as
‘zero–inflation parameter’) can depend on vectors of covariates.

Since Var(Yij) = µi(1 + piλi) ≥ µi it is clear that zero-inflation can be considered as a special
form of overdispersion. When overdispersion is attributed to the large number of zeros with respect to
the Poisson model, a ZIP model may provide a good fit. A ZIP model assumes that the zero observations
have two different origins: some of them are zeros produced at random by the Poisson distribution, while
some others (with proportion pi) are “structural”. The structural zeros have to be justified by the nature
of data (in our case, by non–irradiated lymphocytes; for instance after partial body exposure). In addition,
there may exist another source of overdispersion that cannot be attributed to the excess zeros. That is, even
after accounting for zero–inflation, the non–zero part of the count distribution may be overdispersed (in our
context, this will be mainly observed for densely ionising radiation). For dealing with this situation, Greene
(1994) introduced an extended version of the negative binomial model for excess zero count data, the zero–
inflated negative binomial (ZINB). In that case, when the overdispersion is both due to the heterogeneity
of data and the excess of zeros, the ZINB regression model often is more appropriate than the ZIP.

For the ZINB regression model, the probability mass function of the response variable Yij (i = 1, . . . , d,
j = 1, . . . , ni) is given by

P(Yij = yij) =

{
pi + (1− pi)(1 + αλci )

−λ1−c
i /α, yij = 0,

(1− pi)
Γ(yij+λ1−c

i /α)

yij !Γ(λ1−c
i /α)

(1 + αλci )
−λ1−c

i /α(1 + λ−ci /α)−yij , yij > 0,

where α > 0 is an overdispersion parameter, and the index c ∈ {0, 1} identifies the form of the underlying
negative binomial distribution. These models will be denoted by ZINB1 and ZINB2, respectively. The
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mean and variance of the ZINB distribution are E(Yij) = (1− pi)λi = µi and Var(Yij) = (1− pi)λi(1+
piλi + αλci ), respectively. The ZINB model reduces to the ZIP model as α → 0, in analogy to the
relationship between the negative binomial and the Poisson distribution.

2.2 Application to biological dosimetry

Count regression models such as Poisson and negative binomial and their zero–inflated versions have been
widely applied in many and different fields. However their application to biological dosimetry deserves
special attention.

In biodosimetry, it is assumed that the mean of the number of aberrations is a linear or a quadratic
function of the dose (IAEA, 2011). For sparsely ionising radiation there is very strong evidence that the
mean yield of chromosome aberrations, µi, is related to dose xi by the quadratic equation:

µi = β0 + β1xi + β2x
2
i , i = 1, . . . , d, (1)

whereas for densely ionising radiation, the larger relative amount of energy deposited (and the increase in
the density of the ionisations which lead to the damage measured) results in an increase in the linear term
and the quadratic term becomes biologically less relevant and so, the dose response may be approximated
by a linear equation.

The linear quadratic model is used for low linear-energy-transfer (LET) radiations (i.e. gamma and
X-rays) based on the justification that dicentric chromosome aberrations and micronuclei result from inter-
actions between two independently damaged chromosomes (Hall and Giaccia, 2012) and that the number
of ‘tracks’ along which damage take place is linearly proportional to dose, so that the number of track
(and thus damage) pairs is approximately proportional to dose squared (Hlatky et al., 2002). For higher
LET radiations, induction of chromosome aberrations becomes a linear function of dose because the more
densely ionising nature of the radiation leads to a corresponding ‘one track’ distribution of damage. The
same is true of fractionated or protracted doses, where there is time for repair of damage along one or more
tracks between exposures.

Consequently, the link function used in (1) is simply the identity link function, as opposed to the log–
link which is used for count data modelling in many other fields. The identity link is the accepted standard
in biodosimetry since there is no evidence that the increase of aberration counts with dose is of exponential
shape, and it avoids the undesired effect that dose–response curves start decreasing from about the maxi-
mum dose considered (IAEA, 2011). While we do not have strong arguments to change this standard, we
point out that the log–link does have a few conceptual advantages, such as easier access to inferential tools
for model testing, and the avoidance of problems with negative values of the linear predictor. In addition,
using the log–link, that is,

log(µi) = β0 + β1xi + β2x
2
i , i = 1, . . . , d, (2)

a simple second order approximation of µi can be directly obtained applying Taylor’s formula at xi = 0,

µi = exp(β0 + β1xi + β2x
2
i ) ≈ a+ bxi + cx2

i i = 1, . . . , d,

with a = exp(β0), b = exp(β0)β1 and c = exp(β0)(β2 + β2
1/2). Therefore, for low doses the results

obtained using the identity–link or the log–link have to be very similar. Indeed, we will find in our detailed
study in the next section that the results obtained for the two link functions are largely interchangeable.

A consequence of using the identity–link is that the maximum likelihood estimate of the parameter β0

obtained by maximizing the log–likelihood function of the corresponding model may be negative, i.e.,
may lead to a fitted negative control level, which makes no sense biologically. Therefore, in order to avoid
negative values for the intercept, constraints in the domain of the parameters must be included when the
model is fitted. Note that, though in some papers (e.g, Puig and Barquinero, 2011) the intercept is ignored
in specific situations, it is well known that even when blood samples are not irradiated, the background
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level of aberrations could be positive (IAEA, 2011). In the absence of an intercept, the likelihood function
at dose 0 (and, hence, the full data likelihood) would take the value zero, for which reason we would
advocate the general use of an intercept in any model. Furthermore, since radiation protection practises are
generally very good these days, most ‘real life’ cytogenetic dose estimates are likely to be in the region of
zero.

A decision is required on which mean function is to be modelled: the mean of the zero-inflated distri-
bution, µi, or the mean of the underlying Poisson or negative binomial distribution, λi, which are related
via λi = µi/(1 − pi). For compliance with formulation (1) and with practice in this particular field, we
decided that it is adequate to model the mean of the corresponding zero–inflated distribution, µi, via the
linear predictor in (1). If no covariates are assumed for pi, then this is equivalent to modelling λi through
a quadratic form.

The mixture parameter pi will be modelled as usual with logistic regression, where three different
scenarios will be investigated: Firstly, it is assumed that the proportion of the mixture is constant:

logit(pi) = γ0, i = 1, . . . , d, (3)

secondly, pi is also modelled as a linear function of the dose:

logit(pi) = γ1xi, i = 1, . . . , d, (4)

and finally, pi is also modelled as a linear function of the dose but an intercept is included:

logit(pi) = γ0 + γ1xi, i = 1, . . . , d. (5)

These different approaches will be applied on several data sets in Section 3.3, and further discussed in
Section 3.5.

It should be noted that the zero–inflated Poisson distribution has been previously applied to estimate
the mean yield of aberrations of the irradiated fraction of cells and the dose received by this fraction by a
patient who has been exposed to an inhomogeneous irradiation. This methodology, proposed by Dolphin
(1969), is known in biodosimetry as Dolphin’s method or contaminated Poisson method (IAEA, 2011).
However, this methodology does not constitute ‘zero–inflated regression’ from the viewpoint of modern
statistical modelling, as outlined in this section. So, while the concept of zero–inflation is not completely
new in this context, at the best of our knowledge, zero–inflated regression models have not been employed
for the construction of dose–response curves, neither for partial nor whole body exposure scenarios.

3 Comparative study

In order to study the performance of zero–inflated models to describe the number of chromosome aber-
rations in biological dosimetry a case study has been carried out where these models are compared with
models already considered in the literature: Poisson, negative binomial, Neyman type A, Pólya–Aeppli
and Poisson–inverse Gaussian. The mathematical forms of these distributions are given as supplementary
material.

These models have been fitted following the “standards” given in Section 2.2 by using self–programmed
code, which has been developed in the free software environment R (R Development Core Team, 2014).
Function maxLik from package maxLik has been used in order to maximize the corresponding log–
likelihood function. With the goal of facilitating the use of these techniques by practitioners, the function
used for fitting the different models is available as supporting information jointly with a detailed description
of its usage and the datasets used in the study.
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3.1 Scenarios: description of the data

The models have been applied to several real datasets obtained under four different scenarios: whole and
partial body exposure with sparsely and densely ionising radiation. A brief description of them is given
below.

(A) Whole body exposure – sparsely ionising radiation:

(A1) These data consist of the frequency of dicentric chromosomes after acute whole body in vitro
exposure to eight uniform doses between 0 and 4.5 Gy of Cobalt–60 gamma rays (dose rate: 0.27
Gy/min). Blood was taken from fourteen healthy donors (six for the 0 Gy controls, and eight
for the irradiated samples). Data were collected within the MULTIBIODOSE project and can be
found in Table 6 of Romm et al. (2013).

(A2) This dataset consists of scores of micronuclei obtained after irradiating eleven samples of pe-
ripheral blood with different doses (between 0 and 4 Gy) of gamma irradiation, where the dose
rate was 0.93 cGy/min. In this case, for each sample, approximately 5000 binucleated cells were
inspected and the numbers of micronuclei were counted. Data can be found in Table 6 of Puig
and Valero (2006).

(A3) Frequencies of dicentrics and centric rings aberrations are analysed in a total of 51600 metaphases
from two volunteers after whole body exposure with 200 kV X-rays. Data considered here were
obtained by scoring in metaphases reaching the first mitosis after a culture time of 56 h. Data can
be found in Table 2 of Heimers et al. (2006).

(B) Whole body exposure – densely ionising radiation:

(B1) This dataset corresponds to the number of dicentrics after exposure of peripheral blood samples
to 10 different doses (between 0 and 1.6 Gy) of 1480 MeV oxygen ions. Data can be found in
Table 2 of Di Giorgio et al. (2004) and was studied by Puig and Barquinero (2011).

(B2) The second dataset considered in this scenario was obtained after irradiating blood samples with
five different doses between 0.1 and 1 Gy of 2.1 MeV neutrons. In this case, frequencies of
dicentrics and centric rings are analysed. Data are from Table 3 from Heimers et al. (2006) and
correspond to a culture time of 72 h.

(C) Partial body exposure – sparsely ionising radiation:

(C1–C3) Three datasets were considered here. The scenario is the same as for dataset (A3) but, they cor-
respond to partial body exposure simulation, with unirradiated blood mixed with irradiated blood
from the same donors. The proportion of irradiated blood is 25%, 50% and 75%, respectively.

(D) Partial body exposure – densely ionising radiation:

(D1–D3) Finally, three datasets are considered in this scenario. Data were obtained by irradiating blood
samples with 2.1 MeV neutrons (as in B2) and the same culture time is considered. The propor-
tion of irradiated blood is 25%, 50% and 75%, respectively. The data for both scenarios (C) and
(D) are available from Heimers et al. (2006).

Quadratic dose models of type (1) and (2) will be used under sparsely ionising radiation, that is for data
sets (A1) to (A3) and (C1) to (C3), and, following Puig and Barquinero (2011), also for data set (B1).
Following the reasoning outlined in Section 2.2, the quadratic term term will be removed for data sets (B2)
and (D1) to (D3).

To illustrate the nature of the data, the full data set (B1) is displayed in Table 1 and visualized in Figure 1.
(Analogous tables and graphs for the remaining datasets are available as supporting information.) Recall
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Table 1 Doses, frequency distributions of the number of dicentrics, sample size and sum, and u-test
values, for data set (B1).

yij
xi 0 1 2 3 4 5 6 7 ni yi ui

0.000 1999 1 0 0 0 0 0 0 2000 1 0
0.092 737 16 0 0 0 0 0 0 753 16 -0.399
0.120 1438 55 5 2 0 0 0 0 1500 71 7.261
0.205 1300 104 14 2 0 0 0 0 1420 138 5.173
0.300 471 73 15 1 0 0 0 0 560 106 2.560
0.405 437 66 15 1 1 0 0 0 520 103 4.377
0.600 473 119 34 3 2 0 0 0 631 204 3.876
0.820 253 99 38 17 5 0 0 1 413 253 7.158
1.200 92 55 27 11 4 1 0 0 190 163 2.948
1.600 80 49 26 13 5 0 0 0 173 160 2.512

●
●
●

●

● ●

●

●

●

●

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xi

y i
n i

log−link
identity−link

Figure 1 Dataset (B1): Proportions yi/ni (symbolized by circles of radius ∝ ni) and dose-response
curves fitted with Poisson model and two link functions.

that we denote yi =
∑ni

j=1 yij the total number of counts observed for dose xi, that is, yi is the sufficient
statistics to estimate the mean of the Poisson distribution under dose xi. In the graphical representation,
the circles have location (xi, yi/ni) and size ni. The solid curve is the dose–response curve that would be
fitted according to the Poisson model with identity link. However, consider the ui figures shown in Table 1
which are the values of the u-test statistic of Rao and Chakravarti (1956) to measure the overdispersion,
suggested by IAEA (2011). Most of these u values are > 1.96 (except for the control and the 0.092
Gy samples), rejecting in general the equidispersion assumption, thus the classical Poisson model is not
appropriate for fitting this dataset.
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3.2 Score tests

Before we provide our detailed overview of fitted models, we will give some more evidence for the presence
of zero–inflation, and overdispersion on top of the zero–inflation, in the datasets introduced in Section 3.1.
Score (or Rao) tests are a convenient tool for this purpose. A score test for testing a Poisson against a ZIP
regression model was developed by van den Broek (1995). Similar score tests do exist for testing a Poisson
against a negative binomial (NB) regression model (Dean and Lawless, 1989), as well as as ZIP against
a ZINB regression model (Ridout et al, 2001). All these tests assume that constant probabilities (3) are
employed. Furthermore, all these tests require that the mean is modelled through a log–link function. For
the Poisson/ZIP case, we developed a variant of van den Broek’s score test which also works under the
identity link; see the appendix for details. As one can see from Table 2, the values of the test statistic are
quite similar for the two link functions, and in any case lead to the same conclusions.

Similar adaptions of the score test for the identity link could be developed for the Poisson/NB and the
ZIP/ZINB comparisons though this is beyond the scope of this paper. Hence, for these two latter situations,
we constrain ourselves to log–link models when applying the score–test (our considerations in Section 2.2,
as well as the results of the Poisson/ZIP test, suggest that this is not a serious restriction).

The values of the score test statistics for all considered datasets are given in Table 2. The values given
in this table are compared with quantiles of the chi–squared distribution with one degree of freedom; for
instance at the 5% levels of significance this quantile takes the value 3.84 (see the last paragraph of the
appendix for further discussion). The higher the provided value of the test statistics, the stronger the
evidence against the smaller model. This leads to the following conclusions:

• only for dataset (A3) — sparsely ionising whole body exposure — the assumption of a Poisson dis-
tribution cannot be rejected;

• for dataset (A1) — again, sparsely ionising whole body exposure — the Poisson assumption is re-
jected;

• for all datasets involving densely ionising radiation, that is (B) and (D), as well as for the micronuclei
(A2), the Poisson model is rejected in favour of the ZIP and NB models, and furthermore the ZIP
model is rejected in favour of the ZINB model.

• for all data sets involving partial body exposure, that is (C) — sparsely ionising — and (D) — densely
ionising —, the Poisson assumption is rejected in favour of the ZIP and NB models.

It is worth noting that the current IAEA recommendation is for the Poisson distribution to be applied to
all sparsely ionising data, testing for overdispersion then applying Dolphin’s (1969) contaminated Poisson
method or similar when Poisson assumptions are violated — which is expected in partial body exposure
scenarios (IAEA, 2011). This recommendation is not entirely at odds with the result of our initial score
tests, but is clearly too vague to be actually useful, so that cytogenists, in the absence of further guidance,
tend to use the — apparently incorrect — Poisson assumption in most of the cases.

From the score test results one can further observe that, while for some datasets it will be sufficient to
model either overdispersion or zero–inflation, for other datasets overdispersion appears to be separately
present on top of the zero–inflation. We continue with a comprehensive analysis, fitting these and a variety
of other related models, which will confirm these results.

3.3 Results

In order to compare the performance of the different models, classical likelihood measures of goodness of
fit are used: The Akaike Information Criterion (AIC) and the Bayesian (Schwarz) Information Criterion
(BIC). The AIC (Akaike, 1974) penalizes a model with a larger number of parameters, and is defined as
AIC = −2 logL + 2k , where logL denotes the fitted log–likelihood and k the number of parameters.
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Table 2 Values of the score test statistic for data sets (A1)–(D3) and several test problems, with ‘P’
denoting ‘Poisson’. The form of the (zero–inflated) negative binomial model considered in each case is
the one that provided the best fit according to the log–likelihood value in Tables 3 to 6. For tests involving
zero–inflated models, the mixture parameter has been modelled according to (3).

link test (A1) (A2) (A3) (B1) (B2) (C1) (C2) (C3) (D1) (D2) (D3)
id P/ZIP 18.17 383.58 0.92 87.72 61.32 2007.39 1418.28 776.55 416.20 387.91 168.13

P/ZIP 16.89 378.69 1.00 87.16 47.20 1996.30 1417.96 745.84 421.48 398.38 168.74
log P/NB 20.79 1699.91 0.90 159.26 136.89 6009.35 3281.00 1210.34 770.62 693.80 285.61

ZIP/ZINB 1.54 1043.94 47.20 64.96 0.22 1.74 0.01 11.49 35.94 36.24

The BIC (Schwarz, 1978), defined as BIC = −2 logL + k log n, works similarly to AIC but increases
the penalty with increasing sample size n (with our notation n =

∑d
i=1 ni). According to these criteria,

models with smaller values of AIC and BIC are considered preferable. It is standard practise to include
both criteria in model fitting. Tables 3–6 show the results for each dataset considered, for both the identity
link and the log–link (first and second row, respectively, for each given model). The value k used for AIC
and BIC is given explicitly in each table, and is computed as the sum of regression and model parameters.
The best model in each column and for each link function is provided in bold face.

(A) Whole body exposure – sparsely ionising radiation
Firstly, we observe from Table 3 that, as expected from the result of the score test, for dataset (A3) the

Poisson model comes up as the preferred model under both the AIC and the BIC criterion. This corresponds
to accepted practice for dicentrics under whole body exposure and sparsely ionising radiation.

However, for dataset (A1), the values of the maximized log–likelihood as well as the information criteria
indicate that NB2 and zero–inflated models fit the data better than other models. A similar behavior has
been reported for other datasets in the literature (e.g., for data corresponding to lab 3 shown in Table 3
in Romm et al., 2013) obtained using an automatic scoring procedure. In this case, one could speculate
that the automatic scoring procedure used for (A1) may skew the data away from Poisson. However, more
datasets would be needed to demonstrate such an effect reliably.

For data (A2), the Poisson distribution does not provide a good fit (see Table 3). In this case, it should
be pointed out that micronuclei counts differ from dicentrics in that i) the quadratic component of the dose
dependence is frequently weaker (for sparsely irradiation), ii) baseline counts of unirradiated samples are
much higher than for dicentrics and iii) even after uniform total body irradiation micronucleus distributions
tend to be overdispersed.

Therefore, although for whole–body exposure and sparsely ionising radiation, it is usually assumed that
data follow a Poisson model, data under this scenario may depart from the Poisson model due to other
circumstances (e.g., the scoring procedure).

(B) Whole body exposure – densely ionising radiation
For the two datasets in this scenario values for the Poisson regression model are clearly worse than for

the other models, confirming the overdispersion reported for several authors concerning high LET radiation
exposures. According to the results shown in Table 4, there are several models which are very competitive.
In this case, it seems that overdispersion can be modelled through different models, including the Neyman
A and zero–inflated negative binomial models.

(C) Partial body exposure – sparsely ionising radiation
For datasets considered in this scenario (C1–C3), zero–inflated models are notably better than the other

models as shown in Table 5. This result is in line with the philosophy of Dolphin’s method (Dolphin, 1969).
The zero–inflated Poisson models perform consistently well for all three datasets, and the information
criteria give little support for (possibly zero–inflated) negative binomial models. Hence, for this type of
datasets, it seems clear that overdispersion is due to the excess of zeros.

(D) Partial body exposure – densely ionising radiation
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Table 3 Results of fitting various models to datasets (A1), (A2) and (A3), obtained under whole body
exposure with sparsely ionising radiation. For each model, results obtained with identity–link (first row)
and log–link (second row, italic) are shown.

(A1) (A2) (A3)
Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 3 -3748.59 7503.17 7526.14 -34679.48 69364.95 69391.70 -3806.89 7619.77 7638.94

3 -3749.36 7504.73 7527.70 -34721.03 69448.07 69474.81 -3808.27 7622.55 7641.72
NB1 4 -3742.82 7493.65 7524.28 -34199.14 68406.28 68441.94 -3806.89 7621.77 7647.33

4 -3743.69 7495.39 7526.02 -34231.24 68470.47 68506.13 -3808.28 7624.55 7650.11
NB2 4 -3739.23 7486.46 7517.09 -34398.42 68804.84 68840.50 -3806.98 7621.97 7647.53

4 -3740.55 7489.10 7519.73 -34440.88 68889.76 68925.42 -3808.28 7624.56 7650.12
Neyman A 4 -3742.96 7493.91 7524.54 -34214.13 68436.25 68471.91 -3806.93 7621.86 7647.42

4 -3743.78 7495.57 7526.20 -34246.64 68501.27 68536.93 -3808.30 7624.60 7650.16
Polya-Aeppli 4 -3742.90 7493.79 7524.42 -34204.54 68417.09 68452.75 -3806.93 7621.86 7647.42

4 -3743.74 7495.47 7526.10 -34236.76 68481.51 68517.17 -3808.31 7624.63 7650.18
PIG 4 -3742.75 7493.50 7524.13 -34196.84 68401.69 68437.35 -3806.91 7621.82 7647.38

4 -3743.62 7495.25 7525.88 -34228.97 68465.94 68501.60 -3808.28 7624.56 7650.12
ZIP (3) 4 -3739.79 7487.58 7518.21 -34490.47 68988.94 69024.60 -3806.44 7620.87 7646.43

4 -3741.18 7490.36 7520.99 -34534.06 69076.12 69111.78 -3807.78 7623.57 7649.12
ZIP (4) 4 -3741.26 7490.52 7521.15 -34352.76 68713.53 68749.19 -3806.89 7621.78 7647.34

4 -3742.85 7493.69 7524.32 -34395.01 68798.02 68833.68 -3808.28 7624.55 7650.11
ZIP (5) 5 -3739.18 7488.36 7526.65 -34266.33 68542.66 68587.23 -3806.21 7622.41 7654.36

5 -3740.19 7490.38 7528.67 -34299.43 68608.87 68653.44 -3807.55 7625.11 7657.06
ZINB1 (3) 5 -3739.69 7489.38 7527.67 -34199.16 68408.31 68452.89 -3806.45 7622.91 7654.85

5 -3740.72 7491.44 7529.73 -34231.63 68473.26 68517.84 -3808.19 7626.39 7658.33
ZINB1 (4) 5 -3741.27 7492.53 7530.82 -34195.50 68400.99 68445.57 -3807.24 7624.49 7656.43

5 -3742.81 7495.62 7533.90 -34226.81 68463.62 68508.19 -3808.38 7626.76 7658.71
ZINB1 (5) 6 -3742.82 7497.65 7543.59 -34195.73 68403.46 68456.96 -3807.03 7626.06 7664.40

6 -3739.38 7490.75 7536.70 -34224.79 68461.58 68515.07 -3808.31 7628.62 7666.95
ZINB2 (3) 5 -3739.14 7488.27 7526.56 -34398.60 68807.20 68851.78 -3806.44 7622.87 7654.82

5 -3740.49 7490.98 7529.26 -34440.92 68891.84 68936.41 -3807.78 7625.57 7657.51
ZINB2 (4) 5 -3739.08 7488.16 7526.45 -34281.79 68573.58 68618.16 -3806.89 7623.78 7655.73

5 -3740.37 7490.74 7529.03 -34322.27 68654.54 68699.12 -3815.15 7640.30 7672.25
ZINB2 (5) 6 -3738.15 7488.30 7534.25 -34210.50 68433.00 68486.49 -3806.21 7642.42 7662.75

6 -3739.25 7490.50 7536.45 -34242.98 68497.96 68551.45 -3807.55 7627.11 7665.44

For datasets in this scenario (D1–D3), the Poisson model is clearly rejected. From Table 6, it can be
observed that, in general, the ZINB models provide the best fits which indicates that overdispersion is due
to both the excess of zeroes (caused by the partial body exposure) and the heterogeneity (caused by the
densely ionising radiation). However, there is quite a wide range of models which provided competitive
results for some data sets under this scenario, among them NB2, Polya-Aeppli, and the Neyman type A
model. The latter has been shown to perform well for densely ionising radiation by Virsik and Harder
(1981).

In our analysis, the Poisson model provides the (by far) worst fit for almost all datasets, including
the sparsely ionising scenarios. Thus, a Poisson model should be used only in cases where there is strong
evidence that it is the correct specification. In any case, it is clear that the Poisson model will be inadequate
under partial body exposure and/or for densely ionising radiation. In general, as compared to the Poisson
model, the proposed zero–inflated regression models perform well in terms of log–likelihood and the model
selection criteria employed, for both full and partial body exposure.
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Table 4 Results of fitting various models to datasets (B1) and (B2), obtained under whole body exposure
with densely ionising radiation. For each model, results obtained with identity–link (first row) and log–
link (second row, italic) are shown. Separate columns for k are provided for dataset (B1), which employs
a quadratic model, and dataset (B2), which uses a linear predictor without quadratic term.

(B1) (B2)
Models k loglik AIC BIC loglik AIC BIC k
Poisson 3 -2855.85 5717.70 5738.73 -3004.72 6013.45 6026.57 2

3 -2904.50 5815.00 5836.02 -3028.27 6060.54 6073.66 2
NB1 4 -2800.29 5608.58 5636.60 -2960.18 5926.36 5946.05 3

4 -2846.15 5700.30 5728.33 -2977.92 5961.83 5981.52 3
NB2 4 -2807.48 5622.96 5650.99 -2976.17 5958.34 5978.03 3

4 -2856.61 5721.22 5749.25 -2996.11 5998.22 6017.91 3
Neyman A 4 -2799.74 5607.47 5635.50 -2958.86 5923.72 5943.40 3

4 -2845.21 5698.41 5726.44 -2976.94 5959.88 5979.57 3
Polya-Aeppli 4 -2799.81 5607.61 5635.64 -2959.41 5924.81 5944.50 3

4 -2845.48 5698.97 5727.00 -2977.25 5960.50 5980.19 3
PIG 4 -2801.91 5611.81 5639.84 -2961.99 5929.97 5949.66 3

4 -2848.04 5704.08 5732.11 -2979.74 5965.48 5985.17 3
ZIP (3) 4 -2814.53 5637.07 5665.09 -2979.09 5964.19 5983.88 3

4 -2861.85 5731.69 5759.72 -3005.82 6017.64 6037.33 3
ZIP (4) 4 -2805.36 5618.71 5646.74 -2967.53 5941.05 5960.74 3

4 -2854.06 5716.12 5744.15 -2990.43 5986.87 6006.56 3
ZIP (5) 5 -2800.58 5611.17 5646.20 -2958.51 5925.01 5951.26 4

5 -2847.77 5705.53 5740.57 -2977.43 5962.86 5989.12 4
ZINB1 (3) 5 -2797.41 5604.82 5639.85 -2961.15 5930.31 5956.56 4

5 -2842.31 5694.63 5729.66 -2977.92 5963.84 5990.09 4
ZINB1 (4) 5 -2797.30 5604.61 5639.64 -2962.50 5933.00 5959.25 4

5 -2842.34 5694.68 5729.72 -2976.85 5961.70 5987.95 4
ZINB1 (5) 6 -2797.33 5606.67 5648.71 -2957.62 5925.25 5958.06 5

6 -2842.04 5696.07 5738.11 -2975.95 5961.90 5994.71 5
ZINB2 (3) 5 -2807.47 5624.93 5659.97 -2976.03 5960.06 5986.32 4

5 -2856.41 5722.82 5757.86 -2996.13 6000.26 6026.51 4
ZINB2 (4) 5 -2800.06 5610.13 5645.16 -2964.15 5936.29 5962.54 4

5 -2847.84 5705.68 5740.71 -2984.50 5976.99 6003.24 4
ZINB2 (5) 6 -2798.59 5609.17 5651.22 -2957.84 5925.68 5958.49 5

6 -2809.61 5631.21 5673.25 -2976.29 5962.58 5995.40 5

3.4 Alternative model classes

The wide range of model classes considered so far does not make the claim to be exhaustive, and there are
further modelling strategies which deserve consideration.

Firstly, from a conceptual viewpoint, Hermite regression models provide an attractive class of models in
biodosimetry. If the radioactive particles arriving to the cell follow a Poisson process and each particle can
produce simultaneously up to r dicentrics, then the resulting distribution is just a Hermite distribution of
order r (Puig and Barquinero, 2011). Note that the order r = 1 corresponds just to the Poisson distribution,
results for which can be read from Tables 3 to 6. We have provided results for Hermite models of order
r = 2, 3 and 4 in Table 1 of the supplementary material. One finds that, for whole body exposure, Hermite
models with r = 2 performed competitively to other models discussed earlier. For partial body exposure,
where one would consider orders r ≥ 3, Hermite models were more successful under scenario (D) (high
LET) than under (C). We do not consider Hermite models with r ≥ 5, as these would be hard to justify,
and would possess an excessively large amount of parameters.
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Table 5 Results of fitting various models to datasets (C1), (C2) and (C3), obtained under partial body
exposure with sparsely ionising radiation. For each model, results obtained with identity–link (first row)
and log–link (second row, italic) are shown.

(C1) (C2) (C3)
Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 3 -2674.93 5355.86 5376.50 -3526.90 7059.81 7079.70 -3472.24 6950.47 6969.64

3 -2676.09 5358.18 5378.83 -3528.70 7063.39 7083.28 -3468.15 6942.30 6961.46
NB1 4 -2090.11 4188.21 4215.74 -3011.85 6031.70 6058.23 -3229.20 6466.40 6491.95

4 -2091.83 4191.65 4219.18 -3011.69 6031.38 6057.90 -3224.49 6456.98 6482.54
NB2 4 -2088.53 4185.07 4212.59 -2939.48 5886.97 5913.49 -3155.36 6318.71 6344.27

4 -2052.98 4113.96 4141.48 -2940.52 5889.05 5915.57 -3153.54 6315.08 6340.64
Neyman A 4 -2103.10 4214.20 4241.73 -3021.07 6050.13 6076.66 -3232.00 6471.99 6497.55

4 -2104.75 4217.50 4245.03 -3022.38 6052.76 6079.28 -3229.16 6466.31 6491.87
Polya-Aeppli 4 -2087.21 4182.42 4209.94 -3007.02 6022.04 6048.56 -3227.37 6462.75 6488.31

4 -2088.91 4185.82 4213.35 -3007.94 6023.89 6050.41 -3223.57 6455.14 6480.69
PIG 4 -2109.59 4227.19 4254.72 -3035.89 6079.79 6106.31 -3241.24 6490.47 6516.03

4 -2111.35 4230.69 4258.22 -3035.98 6079.96 6106.48 -3235.40 6478.81 6504.37
ZIP (3) 4 -2010.84 4029.68 4057.21 -2852.63 5713.26 5739.79 -3092.40 6192.79 6218.35

4 -2010.76 4029.53 4057.05 -2852.29 5712.59 5739.11 -3092.73 6193.46 6219.02
ZIP (4) 4 -2034.75 4077.51 4105.03 -2844.89 5697.77 5724.29 -3087.70 6183.41 6208.97

4 -2026.52 4061.05 4088.58 -2845.72 5699.44 5725.96 -3086.79 6181.58 6207.14
ZIP (5) 5 -2007.01 4024.02 4058.43 -2842.39 5694.79 5727.94 -3085.56 6181.13 6213.08

5 -2006.57 4023.13 4057.54 -2843.70 5697.40 5730.55 -3081.33 6172.66 6204.61
ZINB1 (3) 5 -2010.85 4031.70 4066.10 -2852.65 5715.31 5748.46 -3092.45 6194.91 6226.85

5 -2010.78 4031.55 4065.96 -2852.31 5714.61 5747.77 -3092.75 6195.50 6227.44
ZINB1 (4) 5 -2017.66 4045.31 4079.72 -2844.21 5698.43 5731.58 -3087.84 6185.67 6217.62

5 -2015.63 4041.25 4075.66 -2845.06 5700.13 5733.28 -3086.80 6183.59 6215.54
ZINB1 (5) 6 -2006.97 4025.94 4067.23 -2842.41 5696.81 5736.60 -3085.55 6183.10 6221.44

6 -2006.50 4024.99 4066.28 -2843.71 5699.42 5739.20 -3080.99 6173.97 6212.31
ZINB2 (3) 5 -2010.70 4031.40 4065.81 -2852.63 5715.26 5748.42 -3092.37 6194.74 6226.68

5 -2010.66 4031.31 4065.72 -2852.29 5714.59 5747.74 -3092.73 6195.46 6227.40
ZINB2 (4) 5 -2022.00 4054.00 4088.41 -2844.88 5699.75 5732.90 -3087.68 6185.37 6217.32

5 -2021.05 4052.10 4086.50 -2845.72 5701.44 5734.59 -3086.79 6183.58 6215.53
ZINB2 (5) 6 -2006.47 4024.93 4066.22 -2842.42 5696.83 5736.62 -3084.93 6181.87 6220.20

6 -2006.20 4024.41 4065.70 -2843.70 5699.40 5739.18 -3080.94 6173.87 6212.21

Secondly, we investigated random effect models which add a random intercept term to the linear pre-
dictor (1) or (2). Considering the responses as repeated measures yij equipped with a two–level structure,
the random effect is added to the upper (aggregated) data level, i, effectively imposing correlation within
blood samples. While correlation between cells from the same blood sample is a reasonable assumption,
we note that each blood sample got exposed to a different dose, which is included as covariate into the
model. We certainly would expect the dose effect to be much larger than any possible within–sample cor-
relation. Hence, we do not consider this approach as a truly hierarchical (‘variance component’) model,
but rather as a simple overdispersion model. We fitted random effect models using a Gaussian random
effect with Poisson and negative binomial response distribution, and, for the former, also considered an
unspecified random effect distribution. Detailed results are provided in Table 2 of the supplementary ma-
terial. Encouragingly, for data sets (A1) and (D2), the negative binomial random effect model using the
log–link produced better results (in terms of BIC) than any of the previously discussed models. However,
the random effect models did not perform uniformly well, and at some occasions run into computational
difficulties. The identity–link version, for which we found a workable implementation only for the Poisson
model with Gaussian random effect, is more difficult to use than the log–link since the random effect can
render the linear predictor negative, which is incompatible with its interpretation as a Poisson mean. Of
course, random effect models will show their actual power only in truly hierarchical setups, where they can
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Table 6 Results of fitting various models to datasets (D1), (D2) and (D3), obtained under partial body
exposure with densely ionising radiation. For each model, results obtained with identity–link (first row)
and log–link (second row, italic) are shown.

(D1) (D2) (D3)
Models k loglik AIC BIC loglik AIC BIC loglik AIC BIC
Poisson 2 -1477.95 2959.89 2973.54 -2302.09 4608.18 4621.51 -2394.99 4793.98 4806.93

2 -1482.50 2969.00 2982.65 -2323.30 4650.60 4663.94 -2415.08 4834.17 4847.12
NB1 3 -1370.07 2746.13 2766.61 -2148.66 4303.31 4323.31 -2310.45 4626.89 4646.32

3 -1373.15 2752.30 2772.77 -2163.63 4333.26 4353.26 -2326.58 4659.17 4678.59
NB2 3 -1366.28 2738.57 2759.04 -2151.63 4309.26 4329.26 -2322.30 4650.59 4670.02

3 -1370.12 2746.25 2766.72 -2167.41 4340.81 4360.81 -2337.16 4680.31 4699.74
Neyman A 3 -1372.33 2750.65 2771.13 -2146.95 4299.91 4319.91 -2306.20 4618.39 4637.82

3 -1375.41 2756.81 2777.29 -2161.79 4329.58 4349.58 -2322.23 4650.47 4669.89
Polya-Aeppli 3 -1370.34 2746.67 2767.15 -2146.66 4299.32 4319.32 -2308.06 4622.11 4641.54

3 -1373.41 2752.83 2773.30 -2161.53 4329.06 4349.06 -2324.10 4654.20 4673.63
PIG 3 -1371.72 2749.43 2769.90 -2155.04 4316.09 4336.08 -2315.55 4637.11 4656.54

3 -1374.81 2755.63 2776.10 -2170.28 4346.57 4366.57 -2331.96 4669.93 4689.36
ZIP (3) 3 -1369.48 2744.96 2765.43 -2155.15 4316.30 4336.30 -2322.37 4650.73 4670.16

3 -1373.58 2753.17 2773.64 -2173.27 4352.53 4372.53 -2341.29 4688.58 4708.01
ZIP (4) 3 -1386.57 2779.15 2799.62 -2172.81 4351.62 4371.61 -2323.33 4652.66 4672.09

3 -1391.84 2789.68 2810.16 -2193.54 4393.07 4413.07 -2341.86 4689.72 4709.15
ZIP (5) 4 -1368.96 2745.91 2773.21 -2147.03 4302.07 4328.73 -2308.05 4624.11 4650.01

4 -1372.62 2753.25 2780.55 -2160.67 4329.34 4356.00 -2321.58 4651.15 4677.06
ZINB1 (3) 4 -1366.48 2740.96 2768.26 -2143.46 4294.93 4321.59 -2308.53 4625.06 4650.97

4 -1369.76 2747.53 2774.83 -2158.76 4325.53 4352.19 -2324.87 4657.73 4683.64
ZINB1 (4) 4 -1366.16 2740.32 2767.62 -2143.59 4295.19 4321.85 -2307.72 4623.44 4649.35

4 -1373.16 2754.32 2781.61 -2158.79 4325.59 4352.25 -2323.98 4655.97 4681.87
ZINB1 (5) 5 -1366.13 2742.27 2776.39 -2143.40 4296.80 4330.13 -2306.96 4623.93 4656.31

5 -1369.22 2748.45 2782.57 -2158.67 4327.34 4360.66 -2321.48 4652.96 4685.35
ZINB2 (3) 4 -1366.05 2740.09 2767.39 -2150.67 4309.35 4336.01 -2320.61 4649.22 4675.13

4 -1369.93 2747.85 2775.15 -2166.94 4341.88 4368.54 -2336.76 4681.52 4707.42
ZINB2 (4) 4 -1366.44 2740.87 2768.17 -2147.31 4302.62 4329.28 -2313.89 4635.79 4661.69

4 -1369.97 2747.94 2775.23 -2162.26 4332.53 4359.19 -2328.61 4665.22 4691.12
ZINB2 (5) 5 -1365.88 2741.77 2775.89 -2144.92 4299.85 4333.18 -2307.69 4625.38 4657.76

5 -1369.66 2749.32 2783.45 -2158.93 4327.85 4361.18 -2321.34 4652.68 4685.07

be used to model inter–individual correlation rather than just overdispersion. To our knowledge, the first
work in this direction has been produced by Mano and Suto (2014), using a Bayesian framework. None of
the datasets that we have investigated does provide such hierarchical information, so we did not investigate
this avenue further.

A third model class which should be mentioned here are two–part models, which, rather than allowing
zeros to be generated via two different routes as in the ZIP model, define a separate model for zero–
and non–zero response, where the latter part could be described by e.g. a truncated Poisson distribution
(Alfò and Maruotti, 2010). Such ‘Hurdle’ models have the appealing property of being based on a clear
hierarchical structure: first, a decision is made on whether a zero is chosen or not, and secondly, the non–
zero part of the model is invoked if chosen. These models, which are beyond the scope of the present
manuscript, appear promising in the context of radiation biodosimetry and so deserve further investigation.

3.5 Discussion on how to model the zero–inflation parameter

Based on the results shown in Tables 3–6, the three considered forms of modelling the zero–inflation
parameter pi provide similar results in terms of the log–likelihood. However, looking at the fitted values
of this parameter, it can be observed that they can be very different depending on the specified model.
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Figure 2 shows the fitted values of the parameter pi after fitting a ZIP regression model to data (C1–C3)
and (A3) (left panel) and a ZINB1 regression model to data (D1–D3) and (B2) (right panel). The solid dots
represent the fitted pi when these do not depend on covariates, and the dashed and solid lines give the fitted
values when pi is modelled through a logit link as a linear function of the dose with and without intercept,
respectively.
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Figure 2 Fitted zero–inflation (mixture) parameters pi as a function of dose, xi. Solid lines correspond
to modelling the mixture parameter as logit(pi) = γ1xi and dashed lines correspond to modelling it
as logit(pi) = γ0 + γ1xi. Solid dots indicate the fitted probabilities when pi is modelled as a constant,
logit(pi) = γ0. Left panel: Results obtained from fitting a ZIP regression model to data (A3) and (C1–C3).
Right panel: Results obtained from fitting a ZINB1 regression model to data (B2) and (D1–D3).

Both plots show that the mixture parameter takes similar values at the highest doses observed in each
case, independently of how it is modelled. Moreover, the value of pi is influenced by the percentage of
unirradiated blood, as expected (IAEA, 2011). However, for the lowest doses, it takes very different values.
If pi is modelled as logit(pi) = γ1xi (i = 1, . . . , d), then the mixture parameter is equal to 0.5 at zero
dose. That is, the model (4) imposes the probability 0.5 of extra zeros for non–irradiation. However, this
may be a very restrictive assumption. In order to allow for more flexibility, an intercept is included in
model (5). If logit(pi) = γ0 + γ1xi, different situations can occur. For example, the dashed lines in the
right panel in Figure 2 show that for non–irradiated blood samples, the probability of extra zeros is quite
similar for the four datasets (as it would be expected). But, the dashed lines in the left panel show that the
probability takes very different values at dose 0. This different behavior may be explained by the first dose
observed in each case. For data in the right panel, the smallest dose used was 0.1 Gy so, it is expected that
the four datasets perform similarly (at dose 0, the four datasets should be practically equal). In the other
hand, for data in the left panel, the smallest dose was 1 Gy and so, the value of pi is already influenced by
the percentage of irradiated blood.

Model (5) is especially meaningful for fitting (C1–C3) and (D1–D3). In a partial body exposure simu-
lation experiment, where a fixed proportion of blood f is irradiated (for instance, 25%, 50% and 75%) to
a dose x, this proportion f is not the same as the proportion (1− p) of irradiated cells in the zero–inflated
model. Moreover, the magnitude of the difference also depends on the dose. The reason is that not all
the irradiated cells transform and survive to metaphase, and those which do not survive can not be scored.
According to Lloyd and Edwards (1983), the survival rate of the irradiated cells s(x) follows a decreasing
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exponential function of the dose x of the form, s(x) = exp(−γ1x). Note that for a dose of x = 0 the
survival rate is 100%.

Suppose that in a partial body exposure we have N irradiated cells and N0 non irradiated cells. It is
clear that the proportion of irradiated blood is,

f =
N

N0 +N
, (6)

but the proportion of scored irradiated cells (those which survive) is,

(1− p) = Ns(x)

N0 +Ns(x)
. (7)

Replacing N0 in (7) by that isolated from (6), we obtain,

(1− p) = Ns(x)

N(1− f)/f +Ns(x)
=

exp(−γ1x)

(1− f)/f + exp(−γ1x)
=

1

1 + exp(γ0 + γ1x)
, (8)

where logit(f) = −γ0. This implies the relationship logit(p) = γ0 + γ1x, justifying model (5).
The value of γ1 depends on the kind or radiation and its capacity to damage the cells, and γ0 is related

to the fraction of irradiated blood.
Our application studies have demonstrated little difference in terms of log–likelihood between the three

methods of modelling the mixture parameter. However, for partial body irradiation scenarios, we have
shown that model (5) is conceptually preferable. Dataset (C2) constitutes an example where this conceptual
advantage led to a superior practical performance.

4 Simulation study

In this section, we will give some more objective evidence for our claim that overdispersion and zero–
inflation are in general separately identifiable. If that is true, we would expect

• the ZINB model to be favorable if both of these features are present;

• the NB model to be favorable if only overdispersion is present;

• the ZIP model to be favorable if only zero–inflation is present;

• the Poisson model to be favorable if none of these features are present.

Therefore, we generated 100 data sets from each of Poisson, ZIP, NB2 and ZINB2 models, then we fitted
the data using all four models, and counted the proportion of times that each model gives the ‘winning
result’ in terms of AIC and BIC. We also computed the score tests introduced earlier (where applicable)
and give the proportions of rejection of the respective null hypothesis. For the data generation, we used
the Poisson model fitted to (A3) as base model (we know from our previous analysis that this is a ‘correct’
model), with five doses x1 = 1, . . . , x5 = 5. Then we instilled successively zero–inflation and overdisper-
sion into this data–generating process, and observed the outcome. For the zero–inflation parameter pi, we
assumed scenario (3); that is, we did not assume dependence of this parameter on dose.

For the simulation of the ZIP models, we distinguished between (a) mild zero–inflation [p = 0.1], (b)
moderate zero–inflation [p = 0.2] and (c) strong zero–inflation [p = 0.5]. For the NB models, we tried to
match the degree of ‘non–Poissonness” according to the following reasoning. Note that, for ZIP models,
one has

Var(Yij) = µi(1 + pλi) = µi

(
1 +

p

1− p
µi

)
.
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Table 7 Proportion of correctly identified models using AIC, for models using the identity–link (top) and
log–link (bottom). The ‘correct’ model choice is provided in bold letters. Columns add up to 100%.

True model P ZIP NB ZINB
link Fitted model mild mod. strong mild mod. strong mild mod. strong

P 91 0 0 0 0 0 0 0 0 0
id ZIP 6 88 96 96 5 0 0 8 0 0

NB 3 0 0 0 92 91 90 3 0 2
ZINB 0 12 4 4 3 9 10 89 100 98

P 95 0 0 0 2 0 0 0 0 0
log ZIP 3 50 67 96 42 41 7 9 0 0

NB 2 0 0 0 51 54 85 7 1 1
ZINB 0 50 33 4 5 5 8 84 99 99

Table 8 Proportion of correctly identified models using BIC, for models using the identity–link. The
‘correct’ model choice is provided in bold letters. Columns add up to 100%.

True model P ZIP NB ZINB
link Fitted model mild mod. strong mild mod. strong mild mod. strong

P 100 0 0 0 13 0 0 0 0 0
id ZIP 0 95 100 100 6 0 0 45 1 0

NB 0 2 0 0 81 100 100 48 25 17
ZINB 0 3 0 0 0 0 0 7 74 83

P 100 1 0 0 23 0 0 0 0 0
log ZIP 0 52 68 100 22 41 7 51 1 0

NB 0 11 0 0 55 59 93 39 14 15
ZINB 0 36 32 0 0 0 0 10 85 85

For the negative binomial model (NB2), we know that

Var(Yij) = µi(1 + αµi);

hence, for an equal degree of non-Poissonness we can equate α = p/(1−p). Following this reasoning, we
considered in our simulation study data generated from a NB2 distribution with parameters (a) α = 1/9
(mild overdispersion), (b) α = 1/4 (moderate overdispersion) and (c) α = 1 (strong overdispersion). For
the ZINB models, we considered the pairings (a) mild/mild, (b) moderate/moderate and (c) strong/strong.

Tables 7 and 8 indicate clearly that, in the vast majority of cases, the underlying models were correctly
identified. For the log–link, we observed a tendency of mildly zero–inflated Poisson models to be classi-
fied as ZINB models, and mildly overdispersed (NB) models to be classified as ZIP models. The stronger
the overdispersion or zero–inflation, the better are the associated models separately identifiable. The pro-
portion of correctly identified models was generally larger for the identity– than for the log–link, and was
generally larger when using BIC rather than AIC. The only exception to this are ‘mild/mild’ zero–inflated
negative binomial models, which tend to be classified as ZIP or NB models under BIC. The score tests in
Table 9 speak a very clear language: The proportion of rejection of the Poisson and ZIP model is close
to 0, when these models are true, and close or equal to 1, when these are false. Overall these simulations
confirm impressively the separate identifiability of zero–inflated and overdispersed models, as well as the
need for models which are both overdispersed and zero–inflated.
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Table 9 Proportion of rejection of the smaller model using score tests (at the 5% level of significance),
for models using the identity link (top row) and the log–link (bottom three rows). Only values in bold are
fully meaningful as in this case the true model corresponds to one of the two models tested against.

True model P ZIP NB ZINB
link Fitted model mild mod. strong mild mod. strong mild mod. strong
id P/ZIP 0.05 1 1 1 0.86 1 1 1 1 1

P/ZIP 0.02 1 1 1 0.90 1 1 1 1 1
log P/NB 0.03 0.99 1 1 0.98 1 1 1 1 1

ZIP/ZINB 0.00 0.03 0.01 0.05 0.84 1 1 0.77 1 1

Table 10 Summary of recommended settings under different exposure scenarios, when counting di-
centrics and centric rings (low LET and high LET correspond to sparsely and densely ionising radiation,
respectively). When analysing micronuclei, we would advocate the use of ZINB models irrespective of the
exposure pattern.

exposure whole body partial
LET low Poisson/NB ZIP

high NB/Neyman A ZINB

5 Concluding remarks

Zero–inflated models have been proposed for modelling the number of aberrations per cell as a function of
the dose. They have been compared with other models showing that they behave well in several scenarios,
especially for partial body exposure. Moreover, results obtained by modelling the mean yield of aberrations
through a log–link were compared with those ones obtained by using the identity link showing that both
link functions give very similar results. Score tests justified the use of zero–inflated models for fitting
several datasets. For the problem of testing a Poisson versus a ZIP model, we have presented in this
manuscript a variant of van den Broek’s score test which allows for the use of the identity link.

A relevant finding of this paper is that overdispersion needs to be taken into account irrespective of
whether the data stem from full or partial body exposure. In the case of full body exposure, for densely
ionising radiation or when micronuclei are analysed, the overdispersion will be relatively high and can
often be addressed through a (possibly zero–inflated) negative binomial model or the Neyman A model,
whereas for sparsely ionising radiation overdispersion will be relatively mild (but not always ignorable) and
can often be addressed exchangeably through a negative binomial or a zero–inflated Poisson model (or even
other models). Partial body exposure will in general require explicit modelling of the zero-inflation. While
for sparsely ionising radiation zero–inflated Poisson models turned out to be sufficient in our analysis,
for densely ionising radiation it was generally necessary to model the overdispersion on top of the zero–
inflation, through a zero–inflated negative binomial model. A small simulation study has confirmed that
the concept of considering overdispersion and zero–inflation as separately identifiable model properties is
sensible.

Table 10 summarizes our recommended settings for different exposure scenarios. The important mes-
sage from this table is that models which allow for overdispersion will be needed in the bottom row (due
to the densely ionising radiation), and that zero-inflated models will need to be used in the right column
(where the body exposure is only partial). The table should not be considered in an ‘exclusive’ sense –
there will often be many other models which will fit well too. We have chosen the named models based on
conceptual plausibility, and practical performance in our analysis in Tables 3 to 6. If one is in doubt about
the exposure scenario, ZIP models (especially those which model the zero–inflation parameter linearly)
will generally lead to good results.
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Zero–inflated models are also directly biologically relevant, as partial body exposures always lead to
a mixture of non–irradiated and irradiated blood lymphocytes within the body at the time of irradiation,
and blood sampling for biological dosimetry takes place >24 hours after exposure, the timescale for full
circulation of lymphocytes within the human body, so the exposed and un–exposed fractions can reasonably
be expected to be fully mixed within the sample taken.

One issue that we have not discussed in this paper is how, given a fitted model, the dose can be estimated
from the fitted model for a given aberration count. This is an inverse regression problem; two Bayesian–
like solutions to which have been recently provided by Higueras et al. (2015a, 2015b) in whole and
partial body exposure scenarios, respectively. Higueras et al. (2015a) can effectively be used for Poisson,
NB1, Neyman A and Hermite (r = 2), and can be extended for all two parameter compound Poisson
count distributions, this includes Poisson–inverse Gaussian and Pólya–Aeppli models. The approach by
Higueras et al. (2015b) can be used for the ZIP(3) distribution. A well–fitting model is, however, absolutely
crucial for the success of these techniques. We hope that our manuscript could contribute to addressing
this question.

The models used with the cytogenetic example data presented in his work would certainly be applicable
to other fields, specifically including nuclear radiation and technology research where the Poisson distri-
bution is frequently applied but also potentially for chemical and other mutagens. Indeed the results of
this work have shown that it is useful to formally assess the most appropriate models in a dynamic way
wherever count data appear, or models are used to formally assess effects on biological systems.

Acknowledgements
This report is independent research supported by the National Institute for Health Research, Research
Methods Opportunity Funding Scheme entitled “Random effects modelling for radiation biodosimetry”
(NIHR-RMOFS-2013-03-4). The views expressed in this publication are those of the authors and not nec-
essarily those of the NHS, the National Institute for Health Research or the Department of Health. This
work has also been partially supported by the grant MTM2013-41383P from the Spanish Ministry of Econ-
omy and Competitiveness co-funded by the European Regional Development Fund (EDRF). The authors
wish to thank the Editors and three anonymous referees for their thoughtful and constructive comments.

Conflict of Interest
The authors have declared no conflict of interest.

Appendix

A.1. Poisson against zero–inflated Poisson: Score statistic under identity link

We adapt van den Broek’s (1995) score test, which uses the log–link, for the use of the identity link.
Assume that pi ≡ p is constant across observations. We denote θ = p/(1 − p), then testing the null
hypothesis H0 : p = 0 against H1 : p 6= 0 is equivalent to testing H0 : θ = 0 against H1 : θ 6= 0. The
likelihood of the ZIP model is given by

LZIP (θ,β) =
1

(1 + θ)n

n∏
i=1

{
1{yi=0}(θ + e−λi) + 1{yi 6=0}

e−λiλyii
yi!

}
,

where 1{·} is the indicator function. Taking first derivatives of lZIP (θ,β) = logLZIP (θ,β) under the
identity link λi = xTi β, one obtains

∂lZIP
∂θ

=
n∑
i=1

{
−1
1 + θ

+ 1{yi=0}

(
1

θ + exp(−λi)

)}
(9)

∂lZIP
∂β

=

n∑
i=1

xi

{
1{yi=0}

(
−e−λi

θ + e−λi

)
+ 1{yi>0}

(
yi
λi
− 1

)}
(10)
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which under H0 : θ = 0 gives the score vector

S(0,β) =

n∑
i=1

(
1{yi=0}e

λi − 1,xi

(
yi
λi
− 1

))
. (11)

Note that the right hand side of this is just the score-statistic of a Poisson-GLM under the identity link.
Hence, at the ML estimate under H0 this term would be 0. However, due to the constraints that need to be
employed to keep the Poisson mean positive, this expression will usually not be exactly 0. Hence, the full
expression (11) will be used for the test statistic. Taking once more partial derivatives of (9) and (10), one
obtains the (expected) Fisher information J(0,β) under H0 : θ = 0 as

J(0,β) = −E

 ∂2

∂θ2
∂2

∂θ∂βT

∂2

∂β∂θ
∂2

∂β∂βT

∣∣∣∣∣∣
θ=0

=

n∑
i=1

(
eλi − 1 −xTi
−xi 1

λi
xix

T
i

)

The test statistic is given by

T = S(0, β̂)TJ(0, β̂)−1S(0, β̂)

with λ̂i = xTi β̂ estimated under the Poisson model. In all experiments which we have carried out we
found excellent adherence of the distribution of T to the χ2(1) distribution under H0. For instance, for
1000 data sets generated from the fitted Poisson model (A3), Figure 3 (left) gives the distribution of T with
the χ2(1) distribution overlaid, and Figure 3 (right) gives the power in comparison to the log-link version
of the test. We see that both tests behave well and similarly, with strong test powers and good attainment
of the nominal significance level.

Form a theoretical point of view, the χ2(1) property may appear surprising since the logit link (3)
employed for the mixture parameter p induces the constraint p ≥ 0. However, since the score test does not
use the model fit under the alternative (so, here, under the ZIP model), it is not affected by this constraint,
so that the χ2(1) distribution remains intact, in accordance with van den Broek (1995) and usual likelihood
theory. In order to obtain a genuinely one–sided test (that is, a test which alerts at zero–inflation but not
at deflation), one needs to construct an adjusted version of the score–test as outlined in a more general
setting in Molenberghs and Verbeke (2007), noting computational challenges. This one–sided version
would then follow a 0.5[χ2(0) + χ2(1)] distribution. For comparability and simplicity, we have used all
tests employed in this manuscript in their (implicitly) two–sided version, with critical values taken from
the χ2(1) distribution.
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