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Abstract. In this paper we introduce the hp-version discontinuous Galerkin composite finite
element method for the discretization of second-order elliptic partial differential equations. This class
of methods allows for the approximation of problems posed on computational domains which may
contain a huge number of local geometrical features, or microstructures. While standard numerical
methods can be devised for such problems, the computational effort may be extremely high, as
the minimal number of elements needed to represent the underlying domain can be very large. In
contrast, the minimal dimension of the underlying composite finite element space is independent of
the number of geometric features. The key idea in the construction of this latter class of methods is
that the computational domain Ω is no longer resolved by the mesh; instead, the finite element basis
(or shape) functions are adapted to the geometric details present in Ω. In this paper, we extend these
ideas to the discontinuous Galerkin setting, based on employing the hp-version of the finite element
method. Numerical experiments highlighting the practical application of the proposed numerical
scheme will be presented.
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1. Introduction. The numerical approximation of partial differential equations
(PDEs) posed on complicated domains which contain “small” geometrical features, or
so-called microstructures, is of vital importance in engineering applications. In such
situations, an extremely large number of elements may be required for a given mesh
generator to produce even a “coarse” mesh which adequately describes the underly-
ing geometry. With this in mind, the solution of the resulting system of equations
emanating, for example, from a finite element discretization of the underlying PDE
of engineering interest on the resulting “coarse” mesh, may be impractical due to the
large numbers of degrees of freedom involved. Moreover, since this initial “coarse”
mesh already contains such a large number of elements, the use of efficient multilevel
solvers, such as multigrid or domain decomposition, using, for example, Schwarz-type
preconditioners, may be difficult, as an adequate sequence of “coarser” grids which
represent the geometry is unavailable.

In recent years, a new class of finite elements, referred to as composite finite ele-
ments (CFEs), has been developed for the numerical solution of PDEs. These CFEs
are particularly suited to problems characterized by small details in the computational
domain or microstructures; see, for example, [15, 14] for details. This class of methods
is closely related to the Shortley–Weller discretizations developed in the context of
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finite difference approximations; cf. [22]. The key idea of CFEs is to exploit general
shaped element domains upon which elemental basis functions may be only locally
piecewise smooth. In particular, an element domain within a CFE may consist of a
collection of neighboring elements present within a standard finite element method,
with the basis function of the CFE being constructed as a linear combination of those
defined on the standard finite element subdomains; see section 3 for further details.
In this way, CFEs offer an ideal mathematical and practical framework within which
finite element solutions on (coarse) aggregated meshes may be defined; for a related
work on the application of discontinuous Galerkin methods on meshes consisting of
agglomerated elements, we refer the reader to the recent paper [6]. To date, CFEs
have been developed in the context of h-version conforming finite element methods.
In this paper, we consider the generalization of this class of schemes to the case when
hp-version discontinuous Galerkin composite finite element methods (DGCFEMs) are
employed. For simplicity of presentation, here we consider DGCFEMs as numeri-
cal solvers for a simple second-order elliptic PDE posed on a computational domain
which contains small details, or microstructures. The application of this approach
within multilevel solvers will be considered elsewhere. We point out that the gen-
eral philosophy of CFE methods is to construct the underlying finite element spaces
based on first generating a hierarchy of meshes such that the finest mesh does indeed
provide an accurate representation of the underlying computational domain, followed
by the introduction of appropriate prolongation operators which determine how the
finite element basis functions on the coarse mesh are defined in terms of those on the
fine grid. In this manner, CFEs naturally lend themselves to adaptive enrichment of
the finite element space; indeed, in this setting adaptive refinement may be simply
controlled by locally varying the hierarchical level to which an element belongs; cf.
[6, 12]. A method closely related to CFEs, based on employing a fictitious boundary
approach, is developed by Johansson and Larson in [17]; cf. also the work presented
in the series of papers [7, 8, 9].

The structure of this paper is as follows. In section 2, we introduce the model prob-
lem and state the necessary assumptions on the computational domain Ω. Section 3
introduces the CFE spaces considered in this paper, based on exploiting the ideas de-
veloped in the series of papers [15, 14, 19]. In section 4 we formulate the DGCFEM;
the stability and a priori analysis of the proposed method is then undertaken in sec-
tions 5, 6, and 7. In section 8 we briefly outline how the proposed DGCFEM may be
efficiently implemented. The practical performance of the DGCFEM for a range of
two- and three-dimensional problems is studied in section 9. Finally, in section 10 we
summarize the work presented in this paper and draw some conclusions.

2. Model problem. We consider the following model problem: given f ∈
L2(Ω), find u such that

−Δu = f in Ω,(2.1)

u = 0 on ∂Ω.(2.2)

Here, Ω is a bounded, connected Lipschitz domain in R
d, d > 1, with boundary ∂Ω;

in particular, it is assumed that Ω is a “complicated” domain in the sense that it
contains small details or microstructures. With this in mind, throughout this paper,
we assume that Ω is such that the following extension result holds.
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COMPOSITE DG METHODS A1419

Theorem 2.1. Let Ω be a domain with a Lipschitz boundary. Then there exists
a linear extension operator E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.
Proof. For the proof, see Stein [23, Theorem 5, p. 181].
Remark 2.2. We note that the conditions on the domain Ω may be weakened.

Indeed, [23] requires only that Ω be a domain with a minimally smooth boundary;
moreover, the extension of Theorem 2.1 to domains which are simply connected but
may contain microscales is considered in [21].

3. Construction of the composite finite element space. In order to con-
struct the CFE space, we proceed in the following steps (we point out that the dis-
cussion presented in this section is based on the papers by Sauter and coworkers; see,
for example, [15, 14, 19]). In section 3.1, we construct a hierarchy of finite element
meshes which can be used to describe a complicated domain Ω ⊂ R

d; for simplicity
of presentation, we assume that d = 2, though the general approach naturally gen-
eralizes to higher-dimensional domains. Having constructed a suitable sequence of
meshes, in section 3.2 we introduce the corresponding CFE space, which consists of
piecewise discontinuous polynomials, defined on “generalized” elemental domains.

3.1. Finite element meshes. In this section we outline a general strategy for
generating a hierarchy of finite element meshes; cf. [15]. We point out that any such
hierarchy of meshes may be employed within this framework.

To begin, we need to construct a sequence of reference meshes, which we shall
denote by T̂hi , i = 1, . . . , �. We assume that the reference meshes are nested, in the
sense that every (closed) element κ̂i ∈ T̂hi , i = 1, . . . , � − 1, is a parent of a subset

of elements which belong to the finer mesh T̂hj , where j = i + 1, . . . , �. To this end,

we proceed as follows: we define a coarse conforming shape-regular mesh T̂H = {κ̂},
consisting of (standard) elements κ̂, whose open intersection is empty. By standard
element domains, we mean quadrilaterals/triangles in two dimensions (d = 2), and
tetrahedra/hexahedra when d = 3. Here, we assume that T̂H is an overlapping mesh
is the sense that it does not resolve the boundary of the computational domain Ω.
More precisely, we assume that T̂H satisfies the following condition:

Ω ⊂ ΩH =

⎛
⎝ ⋃

κ̂∈T̂H

κ̂

⎞
⎠

◦

and κ̂◦ ∩ Ω �= ∅ ∀κ̂ ∈ T̂H ,

where, for a closed set D ⊂ R
d, D◦ denotes the interior of D; cf. [19], for example.

The finite element mesh T̂H should be viewed as having a granularity that is affordable
for solving our underlying problem, though is far too coarse to actually represent the
underlying geometry Ω.

Given T̂H , we may now construct a sequence of successively refined (nested) com-
putational meshes using the following algorithm.

Algorithm 3.1 (Refine Mesh).
1. Set T̂h1 = T̂H and the mesh counter � = 1.
2. Set T̂h�+1

= ∅.
3. For all κ̂ ∈ T̂h�

do the following:

(a) If κ̂ ⊂ Ω, then T̂h�+1
= T̂h�+1

⋃
{κ̂}.
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(b) Otherwise refine κ̂ =
⋃nκ̂

i=1 κ̂i; here, nκ̂ will depend on both the type of
element to be refined and the type of refinement (isotropic/anisotropic)
undertaken. For the standard red refinement of a triangular element
κ̂, we have that nκ̂ = 4. For i = 1, . . . , nκ̂, if κ̂i ∩ Ω �= ∅, then set
T̂h�+1

= T̂h�+1

⋃
{κ̂i}.

4. Perform additional refinement of elements in T̂h�+1
to undertake appropriate

mesh smoothing; cf. Remark 3.2.
5. If the reference mesh T̂h�

is sufficiently fine, in the sense that it provides a
good representation of the boundary of Ω, then STOP. Otherwise, set � = �+1,
and GOTO step 2.

Remark 3.2. Mesh smoothing is undertaken to ensure that the resulting mesh
T̂hi , i = 1, 2, . . . , �, is 1-irregular. We remark that additional refinement may also
be undertaken to ensure that so-called islands of unrefined elements are subsequently
refined, for example. In particular, near the boundary, we ensure that the elements
are conforming in order to allow for subsequent movement to the boundary.

Remark 3.3. The termination condition in Algorithm 3.1 should be sufficient to
guarantee that nodes close to the boundary of Ω may be moved onto ∂Ω without
destroying the logical connectivity of the finest reference mesh T̂h�

, while, at the same

time, not distorting the elements too much. For example, for each κ̂ ∈ T̂h�
satisfying

κ̂ ∩ ∂Ω �= ∅, we require that for each vertex x̂v of κ̂, we have that dist(x̂v, ∂Ω) � hκ̂,
where hκ̂ denotes the granularity of κ̂. It should be noted that, with a judicious choice
of the initial background mesh, and (potentially) nonstandard element refinement, a
wide range of complicated domains may be meshed, without the need to move nodes.
However, node movement may be necessary to avoid elements which have a very small
intersection with Ω; indeed, such elements may lead to poorly conditioned matrices;
cf. [17], for example.

Remark 3.4. Algorithm 3.1 simply provides a prototype of a typical refinement al-
gorithm that could be employed to generate the sequence of nested reference meshes
{T̂hi}�i=1; we stress that alternative sequences of grids may also be employed. In-
deed, discontinuous Galerkin (DG) methods constructed on general (agglomerated)
elements have been studied numerically in [6]. For the purposes of undertaking the
stability and a priori error analysis of the proposed DGCFEM, outlined in sections
5–7, we require that the elements present in the CFE mesh TCFE stem from a sequence
of reference meshes, whose coarsest elements consist of standard element domains.

As an example, we consider the situation when Ω is a circular domain in R
2,

with center at the origin and radius 3/4. The sequence of reference grids {T̂hi}�i=1,
generated by Algorithm 3.1, in the case when � = 3, is depicted in Figures 3.1(a)–(c).

We recall that the reference meshes {T̂hi}�i=1 are nested. Formally, we write this

as follows: given κ̂i ∈ T̂hi , for some i, where 2 ≤ i ≤ �, the father element κ̂i−1 ∈ T̂hi−1

such that κ̂i ⊂ κ̂i−1 is given by the mapping

Fi
i−1(κ̂i) = κ̂i−1.

Thereby, the mapping

F�
i = Fi+1

i ◦ Fi+2
i+1 ◦ · · · ◦ F�

�−1

provides the link between the father elements on the reference mesh T̂hi , i = 1, . . . , �−
1, with their children on the finest reference mesh T̂h�

. More precisely, given an

element κ̂� ∈ T̂h�
, the father element κ̂i ∈ T̂hi , i = 1, . . . , �− 1, which satisfies κ̂� ⊂ κ̂i
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COMPOSITE DG METHODS A1421

(a) T̂H = T̂h1 (b) T̂h2 (c) T̂h3

(d) T̃H = T̃h1 (e) T̃h2 (f) T̃h3

(g) TCFE = Th1 (h) Th2 (i) Th3

Fig. 3.1. Hierarchy of meshes: (a)–(c) Reference meshes. (d)–(f) Logical meshes. (g)–(i)
Corresponding physical meshes.

is given by

F�
i(κ̂�) = κ̂i.

We now proceed to define the sequence of logical and physical meshes T̃hi and
Thi , i = 1, . . . , �, respectively. To this end, we write N̂i to denote the set of nodal
(mesh) points which define the reference mesh T̂hi , i = 1, . . . , �. The finest physical
mesh Th�

is defined from the reference mesh T̂h�
by moving grid points x̂ ∈ N̂� of T̂h�

which are close to the boundary ∂Ω, i.e., points which satisfy dist(x̂, ∂Ω) � hκ̂, for
example. During this process some elements of the reference mesh T̂h�

may end up
lying completely outside the computational domain; in this case, they are removed
from the physical mesh Th�

. More precisely, the process of moving nodes x̂ ∈ N̂� onto
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the boundary naturally defines the bijective mapping

Φ : N̂� → N�,

where N� denotes the set of mapped vertex points.
With this construction, the mapping Φ can be employed to map an element

κ̂ ∈ T̂h�
to a so-called physical element κ. To simplify notation, we simply refer to

this mapping as Φ as well; thereby, we write

Φ(κ̂) = κ.

In this setting, Φ is bijective relative to the elements which are not removed from the
mesh under refinement. During the process of moving nodes onto the boundary ∂Ω,
we noted that some elements in the reference mesh T̂h�

may be removed. With this
in mind we define the finest logical mesh T̃h�

to be equal to the set of elements in

the reference mesh T̂h�
which are needed to construct the finest physical mesh Th�

.

Thereby, T̃h�
⊆ T̂h�

; indeed, in the case when Φ ≡ I (the identity operator), then

clearly T̃h�
= T̂h�

. Given that any element κ̃ ∈ T̃h�
also satisfies κ̃ ∈ T̂h�

, we note that

Φ(κ̃) = κ

for some κ ∈ Th�
.

With this notation the physical fine mesh Th�
may be defined as follows:

Th�
= {κ : κ = Φ(κ̃) for some κ̃ ∈ T̃h�

}.

The newly created finest physical mesh Th�
is a standard boundary conforming mesh

upon which standard finite element/finite volume methods may be applied. In the
current context, we assume that the geometry is complicated in the sense that Th�

is too fine to undertake computations. Instead, we wish to only use Th�
to create a

coarse composite finite element mesh TCFE upon which numerical simulations will be
performed.

With this construction, we may now naturally create a hierarchy of logical and
physical meshes {T̃hi}�i=1 and {Thi}�i=1 by simply coarsening T̃h�

and Th�
, respectively.

In order to ensure that these meshes are nested, the element domains within these
meshes may consist of general polygons; this is in contrast to the construction outlined
in [15], where sequences of nonnested meshes consisting of standard element types are
defined. To this end, we write

T̃hi = {κ̃ : κ̃ = ∪κ̃�, κ̃� ∈ T̃h�
, which share a common parent from mesh level i; i.e.,

F�
i(κ̃�) is the same for all members of this set},

Thi = {κ : κ = ∪κ�, κ� ∈ Th�
, which share a common parent from mesh level i; i.e.,

F�
i(Φ

−1(κ�)) is the same for all members of this set},

i = 1, . . . , �− 1. Returning to the above example, when Ω is a circular domain in R
2,

the sequences of logical and physical grids {T̃hi}�i=1 and {Thi}�i=1, in the case when
� = 3, are depicted in Figures 3.1(d)–(f) and Figures 3.1(g)–(i), respectively. We
refer to the coarsest level physical mesh Th1 as the composite finite element mesh; in
particular, we denote this by TCFE, i.e., TCFE = Th1 .

With this notation the mapping Φ may be employed to transform an element
κ ∈ TCFE to the corresponding element κ̃ ∈ T̃h1 ; here, we denote the restriction of Φ to
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κ by Φκ such that Φκ(κ̃) = κ. Since only nodes close to the boundary are moved, we
assume that the element mapping Φκ defines the shape of κ, without any significant
rescaling. With this in mind, we assume that the element mapping Φκ is close to the
identity in the following sense: the Jacobi matrix JΦκ of Φκ satisfies

C−1
1 ≤ ‖ detJΦκ‖L∞(κ) ≤ C1, ‖J−�

Φκ
‖L∞(κ) ≤ C2, ‖J−�

Φκ
‖L∞(∂κ) ≤ C3(3.1)

for all κ in TCFE uniformly throughout the mesh for some positive constants C1, C2,
and C3. This will be important as our error estimates will be expressed in terms of
Sobolev norms over the element domains κ̃.

Remark 3.5. We point out that assumption (3.1) is simply related to how well the
finest reference mesh T̂h�

approximates the boundary of the computational domain

Ω. Indeed, the underlying construction assumes that the nodes present in T̂h�
, which

are close to the boundary ∂Ω, need to be moved only by a relatively small distance.

3.2. Finite element spaces. Corresponding to the meshes {Thi}�i=1, we define
the corresponding sequence of DG finite element spaces V (Thi , p), i = 1, . . . , �, consist-
ing of piecewise discontinuous polynomials of degree p. For simplicity of presentation,
we first assume that the polynomial degree is uniformly distributed over the mesh
Th�

; the extension to variable polynomial degrees follows in a natural fashion. With
this in mind, we write

V (Thi , p) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ) ∀κ ∈ Thi},

i = 1, . . . , �, where Pp(κ) denotes the set of polynomials of degree at most p ≥ 1
defined over the general polygon κ.

With this construction, noting that the meshes {Thi}�i=1 are nested, we deduce
that

V (Th1 , p) ⊂ V (Th2 , p) ⊂ · · · ⊂ V (Th�
, p).

The classical prolongation (injection) operator from V (Thi , p) to V (Thi+1 , p), 1 ≤ i ≤
�− 1, is denoted by

P i+1
i : V (Thi , p) → V (Thi+1 , p), i = 1, . . . , �− 1.

Thereby, we may define the prolongation operator from V (Thi , p) to V (Th�
, p), 1 ≤

i ≤ �− 1, by

Pi = P �
�−1P

�−1
�−2 . . . P i+1

i .

With this notation, we may write V (Thi , p), 1 ≤ i ≤ �− 1, in the following alternative
form:

V (Thi , p) = {u ∈ L2(Ω) : u = P�
i φ, φ ∈ V (Th�

, p)},(3.2)

where the restriction operator P�
i is defined as the transpose of Pi.

Remark 3.6. The use of the prolongation operator Pi within the definition of the
finite element spaces V (Thi , p), i = 1, . . . , �, given in (3.2) allows for the introduction
of different spaces, depending on the specific choice of Pi. Indeed, here the finite
element spaces are constructed in such a manner that on each (composite) element
κ ∈ Thi , i = 1, . . . , �, the restriction of a function v ∈ V (Thi , p) to κ is a polynomial
of degree p. This is in contrast to the construction considered in [15]; indeed, [15]
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employs basis functions which are piecewise polynomials on each composite element
domain. Note also that [15] employs finite element spaces consisting of continuous,
rather than discontinuous, piecewise polynomials.

We now refer to V (Th1 , p) as the CFE space V (TCFE, p); i.e., V (TCFE, p) = V (Th1 , p).
The use of a variable polynomial degree on each composite element κ ∈ TCFE may
now be admitted in a natural fashion. Indeed, writing p to denote the composite
polynomial degree vector such that p|κ = pκ, we define the corresponding CFE space
V (TCFE,p). In this setting, it is implicitly assumed that the children of the element
κ ∈ TCFE all have the same polynomial degree pκ. For simplicity of notation, in the case
when the polynomial degrees are variable, we write the corresponding finite element
space defined on the finest physical mesh Th�

as V (Th�
,p), and note that, with this

construction, V (TCFE,p) ⊂ V (Th�
,p).

4. Composite discontinuous Galerkin finite element method. In this sec-
tion, we introduce the hp-version of the (symmetric) interior penalty DGCFEM for the
numerical approximation of (2.1)–(2.2). To this end, we first introduce the following
notation.

We denote by FI
CFE the set of all interior faces of the partition TCFE of Ω, and by

FB
CFE the set of all boundary faces of TCFE. Furthermore, we define F = FI

CFE ∪ FB
CFE.

The boundary ∂κ of an element κ and the sets ∂κ \ ∂Ω and ∂κ∩ ∂Ω will be identified
in a natural way with the corresponding subsets of F . Let κ+ and κ− be two adjacent
elements of TCFE, and let x be an arbitrary point on the interior face F ∈ FI

CFE given
by F = ∂κ+ ∩ ∂κ−. Furthermore, let v and q be scalar- and vector-valued functions,
respectively, that are smooth inside each element κ±. By (v±,q±), we denote the
traces of (v,q) on F taken from within the interior of κ±, respectively. Then, the
averages of v and q at x ∈ F are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−).

Similarly, the jumps of v and q at x ∈ F are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

where we denote by nκ± the unit outward normal vector of ∂κ±. On a boundary face
F ∈ FB

CFE, we set {{v}} = v, {{q}} = q, and [[v]] = vn, with n denoting the unit outward
normal vector on the boundary ∂Ω.

With this notation, we make the following key assumptions:
(A1) For all elements κ ∈ TCFE, we define

Cκ = card
{
F ∈ FI

CFE ∪ FB
CFE : F ⊂ ∂κ

}
.

In the following we assume that there exists a positive constant CF such that

max
κ∈TCFE

Cκ ≤ CF ,

uniformly with respect to the mesh size.
(A2) Inverse inequality. Given a face F ∈ FI

CFE ∪ FB
CFE of an element κ ∈ TCFE, there

exists a positive constant Cinv, independent of the local mesh size and local
polynomial order, such that

‖∇v‖2L2(F ) ≤ Cinv
p2κ
hF

‖∇v‖2L2(κ)
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COMPOSITE DG METHODS A1425

for all v ∈ V (TCFE,p), where hF is a representative length scale associated to
the face F ⊂ ∂κ.

(A3) We assume that the polynomial degree vector p is of bounded local variation;
that is, there is a constant ρ ≥ 1 such that

ρ−1 ≤ pκ/pκ′ ≤ ρ,

whenever κ and κ′ share a common face ((d − 1)-dimensional facet).
Remark 4.1. We remark that in the case when κ is a “standard” (isotropic)

element in the sense that κ = κ̂ ∈ T̂H , for example, the inverse inequality stated in as-
sumption (A2) immediately follows from [11, 4], for example, with hF = hκ. Moreover,
[11] also considers the case when the underlying mesh consists of anisotropic elements;
loosely speaking, in this latter setting, hF must be chosen to be the dimension of the
element κ in the orthogonal direction to the face F under consideration. For general
composite elements, which intersect the boundary of the computational domain, the
above inverse inequality is expected to hold with hF ≈ h�, where h� ≈ hκ/2

�−1.
With this notation, we consider the (symmetric) interior penalty DGCFEM for

the numerical approximation of (2.1)–(2.2): find uh ∈ V (TCFE,p) such that

(4.1) BDG(uh, v) = Fh(v)

for all v ∈ V (TCFE,p), where

BDG(u, v) =
∑

κ∈TCFE

∫
κ

∇u · ∇v dx−
∑

F∈FI
CFE∪FB

CFE

∫
F

(
{{∇hv}} · [[u]] + {{∇hu}} · [[v]]

)
ds

+
∑

F∈FI
CFE∪FB

CFE

∫
F

σ [[u]] · [[v]] ds,

Fh(v) =

∫
Ω

fv dx.

Here, ∇h denotes the elementwise gradient operator. Furthermore, the function σ ∈
L∞(FI

CFE ∪ FB
CFE) is the discontinuity stabilization function that is chosen as follows:

we define the function p ∈ L∞(FI
CFE ∪ FB

CFE) by

p(x) :=

{
max(pκ, pκ′), x ∈ F ∈ FI

CFE, F = ∂κ ∩ ∂κ′,

pκ, x ∈ F ∈ FB
CFE, F = ∂κ ∩ ∂Ω,

and set

(4.2) σ|F = γp2h−1
F ,

with a parameter γ > 0 that is independent of hF and p.

5. Stability analysis. Before embarking on the error analysis of the hp-version
DGCFEM (4.1), we first derive some preliminary results. Let us first introduce the
DG-norm ||| · |||DG by

||| v |||2DG =
∑

κ∈TCFE

‖∇v‖2L2(κ)
+

∑
F∈FI

CFE∪FB
CFE

‖σ1/2[[v]]‖2L2(F ).(5.1)

For a given face F ∈ FI
CFE ∪ FB

CFE such that F ⊂ ∂κ for some κ ∈ TCFE, we write
F̃ to denote the respective face of the mapped element κ̃ based on employing the
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A1426 PAOLA F. ANTONIETTI, STEFANO GIANI, AND PAUL HOUSTON

element mapping Φκ. More precisely, we write F̃ = Φ−1
κ (F ). Further, we define mF

and mF̃ to denote the (d − 1)-dimensional measure (volume) of the faces F and F̃ ,
respectively. In view of (3.1), we note that there exists a positive constant C4 such
that

C−1
4 mF̃ ≤ mF ≤ C4mF̃(5.2)

for every face F ∈ FI
CFE ∪ FB

CFE. Moreover, the surface Jacobian SF,F̃ arising in the

transformation of the face F to F̃ may be uniformly bounded in the following manner:

‖SF,F̃‖L∞(F̃ ) ≤ C5(5.3)

for all faces F ∈ FI
CFE ∪ FB

CFE, where C5 is a positive constant.
Lemma 5.1. With σ defined as in (4.2), there exists a positive constant C which

depends only on the constants CF , Cinv, and ρ (cf. assumptions (A1), (A2), and (A3)
above, respectively) such that

BDG(v, v) ≥ C||| v |||2DG ∀v ∈ V (TCFE,p),(5.4)

provided that the (positive) constant γ arising in the definition of the discontinuity
penalization parameter σ is chosen sufficiently large.

Proof. For v ∈ V (TCFE,p), we note that

BDG(v, v) =
∑

κ∈TCFE

‖∇v‖2L2(κ)
− 2

∑
F∈FI

CFE∪FB
CFE

∫
F

{{∇v}} · [[v]] ds+
∑

F∈FI
CFE∪FB

CFE

‖σ1/2[[v]]‖2L2(F )

≡ I + II + III.(5.5)

In order to bound term II, we first note that for F ∈ FI
CFE, we have that∫

F

{{∇v}} · [[v]] ds ≤ ‖σ−1/2{{∇v}}‖L2(F )‖σ
1/2[[v]]‖L2(F )

≤ 1

2

(
‖σ−1/2∇v+‖L2(F ) + ‖σ−1/2∇v−‖L2(F )

)
‖σ1/2[[v]]‖L2(F )

≤ ε
(
‖σ−1/2∇v+‖2L2(F ) + ‖σ−1/2∇v−‖2L2(F )

)
+

1

8ε
‖σ1/2[[v]]‖2L2(F );

here, we have employed the Cauchy–Schwarz inequality, together with the arithmetic–
geometric mean inequality. Employing the inverse inequality stated in assumption (A2),
together with (A3), we deduce that∫

F

{{∇v}} · [[v]] ds ≤ Cinvε

(
p2κ+

hF
‖σ−1/2∇v‖2L2(κ+) +

p2κ−

hF
‖σ−1/2∇v‖2L2(κ−)

)

+
1

8ε
‖σ1/2[[v]]‖2L2(F )

≤ Cinvρ
2

γ
ε
(
‖∇v‖2L2(κ+) + ‖∇v‖2L2(κ−)

)
+

1

8ε
‖σ1/2[[v]]‖2L2(F ),(5.6)

where we have used the definition of the interior penalty parameter σ; cf. (4.2).
In an analogous fashion, for F ∈ FB

CFE, we have that∫
F

{{∇v}} · [[v]] ds ≤ Cinv

γ
ε‖∇v‖2L2(κ+) +

1

4ε
‖σ1/2[[v]]‖2L2(F ).(5.7)
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Thereby, exploiting assumption (A1) above, inserting (5.6) and (5.7) into (5.5) gives

BDG(v, v) =

(
1− 2CinvCF ρ

2

γ
ε

) ∑
κ∈TCFE

‖∇v‖2L2(κ)
+

(
1− 1

2ε

) ∑
F∈FI

CFE∪FB
CFE

‖σ1/2[[v]]‖2L2(F ).

Thereby, the bilinear form BDG(·, ·) is coercive over V (TCFE,p)× V (TCFE,p), assuming
that ε > 1/2 and γ > 2CinvCF ρ

2ε.

6. Approximation results. In this section we develop the approximation re-
sults needed for the forthcoming a priori error estimation developed in section 7. To
this end, given κ ∈ TCFE, we write κ̃ ∈ T̃h1 to denote the corresponding element from
the logical mesh T̃h1 which satisfies Φ(κ̃) = κ. Moreover, we write κ̂ ∈ T̂h1 to denote
the element in the reference mesh T̂h1 such that κ̃ ⊆ κ̂.

With this notation, we now recall the following approximation result.
Lemma 6.1. Suppose that κ̂ ∈ T̂h1 is a d-simplex or d-parallelepiped of diameter

hκ̂. Suppose further that v|κ̂ ∈ Hkκ̂(κ̂), kκ̂ ≥ 0, for κ̂ ∈ T̂h1 . Then, there exists Π̂pv
in Ppκ̂

(κ̂), pκ̂ = 1, 2, . . . , such that for 0 ≤ m ≤ kκ̂,

‖v − Π̂pv‖Hm(κ̂) ≤ C
hsκ̂−m
κ̂

pkκ̂−m
κ̂

‖v‖Hkκ̂ (κ̂),

where sκ̂ = min{pκ̂ + 1, kκ̂} and C is a positive constant, independent of v and the
discretization parameters.

Proof. For the proof, see Lemma 4.5 in [5] for d = 2; when d > 2 the argument is
completely analogous.

Given the operator Π̂p defined in Lemma 6.1, we define the projection operators

Π̃p and Πp on κ̃ and κ, respectively, by the relations

Π̃pṽ = Π̂p(Eṽ)|κ̃, Πpv = (Π̃p(v ◦ Φ)) ◦ Φ−1,

where E denotes the extension operator defined in Theorem 2.1. With this notation,
we state the following approximation result.

Lemma 6.2. Given κ ∈ TCFE, let F ⊂ ∂κ denote one of its faces. For a function
v ∈ Hkκ(κ), kκ ≥ 1, the following bounds hold for m = 0, 1:

|v −Πpv|Hm(κ) ≤ C
hsκ−m
κ

pkκ−m
κ

‖Eṽ‖Hkκ (κ̂),(6.1)

|v −Πpv|Hm(F ) ≤ C
1

h
1/2
F

hsκ−m
κ

p
kκ−m−1/2
κ

‖Eṽ‖Hkκ (κ̂),(6.2)

where sκ = min{pκ + 1, kκ}, pκ ≥ 1, and C is a positive constant, independent of v
and the discretization parameters.

Proof. The proof is based on exploiting a scaling argument together with (3.1)
and Lemma 6.1. To this end, we have

|v −Πpv|2Hm(κ) ≤ ‖ detJΦκ‖L∞(κ) ‖J−�
Φκ

‖2mL∞(κ) |ṽ − Π̃pṽ|2Hm(κ̃)

≤ C1(C2)
2m|Eṽ − Π̂p(Eṽ)|2Hm(κ̂)

≤ C
h
2(sκ−m)
κ

p
2(kκ−m)
κ

‖Eṽ‖2Hkκ (κ̂),(6.3)
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which gives (6.1). To prove (6.2), we first recall the multiplicative trace inequality

‖v‖2L2(F ) ≤ C(‖∇v‖L2(κ)‖v‖L2(κ) + h−1
F ‖v‖2L2(κ)

),(6.4)

where C is a positive independent of the meshsize; see [10, Lemma 3.1]. We remark
(cf. Remark 4.1) that hF appears in (6.4) rather than hκ due to the general shape
of the element κ. Employing (6.4), together with (3.1), (5.3), (5.2), and (6.1), we
immediately deduce (6.2).

7. A priori error analysis. In this section we derive an a priori error bound
for the interior penalty DGCFEM introduced in section 4. To this end, we decompose
the global error u− uh as

u− uh = (u−Πpu) + (Πpu− uh) ≡ η + ξ ,(7.1)

where Πp denotes the projection operator introduced in section 6. With these defini-
tions we have the following result.

Lemma 7.1. For u ∈ H3/2+ε(Ω), ε > 0, the functions ξ and η defined by (7.1)
satisfy the inequality

||| ξ |||DG ≤ C||| η |||∗DG,

where

||| η |||∗DG =

⎛
⎝ ∑

κ∈TCFE

‖∇η‖2L2(κ)
+

∑
F∈FI

CFE∪FB
CFE

(
‖σ−1/2{{∇η}}‖2L2(F ) + ‖σ1/2[[η]]‖2L2(F )

)⎞⎠
1/2

and C is a positive constant that depends only on the dimension d.
Proof. This result follows from application of the Galerkin orthogonality of the

DGCFEM, together with the inverse inequality in assumption (A2); for details, see
[16, 24].

With this result, we now proceed to prove the main result of this section.
Theorem 7.2. Let Ω ⊂ R

d be a bounded polyhedral domain, and let TCFE =
{κ} be a subdivision of Ω as outlined in section 3.1, where κ has diameter hκ. Let
uh ∈ V (TCFE, p) be the composite discontinuous Galerkin approximation to u defined
by (4.1), and suppose that u|κ ∈ Hkκ(κ) for each κ ∈ TCFE for integers kκ ≥ 2. Then,
the following error bound holds:

|||u− uh |||2DG ≤ C
∑

κ∈TCFE

h2sκ
κ

h2
F

1

p2kκ−3
κ

‖Eũ‖2Hkκ (κ̂)

for any integers sκ, 1 ≤ sκ ≤ min(pκ + 1, kκ), and pκ ≥ 1. Here, C is a positive
constant that depends only on the dimension d and the shape regularity of T̂H .

Proof. Decomposing the error u − uh as in (7.1) and exploiting Lemma 7.1, we
deduce that

|||u− uh |||DG ≤ ||| η |||DG + C||| η |||∗DG ≤ (1 + C)||| η |||∗DG.(7.2)

Employing Lemma 6.2, together with the definition of the interior penalty parameter
(4.2), we deduce that

||| η |||∗DG ≤ C

[ ∑
κ∈TCFE

(
h
2(sκ−1)
κ

p
2(kκ−1)
κ

+
h
2(sκ−1)
κ

p2kκ−1
κ

+
h2sκ
κ

h2
F

1

p2kκ−3
κ

)
‖Eũ‖2Hkκ (κ̂)

]1/2
,(7.3)
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where C is a positive constant which is independent of the mesh parameters. Inserting
(7.3) into (7.2) gives the statement of the theorem.

Remark 7.3. We note that since the fine mesh Th�
is fixed, we have that

hF ≥ hκ

2�−1
,

where κ ∈ TCFE and hF is the representative length scale associated to the face F ⊂ ∂κ.
Thereby, the a priori error bound derived in Theorem 7.2 may be rewritten in the
following form:

|||u− uh |||2DG ≤ C′
∑

κ∈TCFE

h
2(sκ−1)
κ

p2kκ−3
κ

‖Eũ‖2Hkκ (κ̂),

where C′ = C 2�−1. Moreover, for uniform orders pκ = p ≥ 1, sκ = s, 2 ≤ s ≤
min(p+ 1, k), k ≥ 1, and h = maxκ∈TCFE

hκ, we get the bound

|||u− uh |||DG ≤ C
hs−1

pk−3/2
‖ũ‖Hk(Ω);

here, we have employed Theorem 2.1. This bound is optimal in h and suboptimal in
p by p1/2 and coincides with estimates derived in [16] and [20] for so-called standard
DG methods.

Remark 7.4. We point out that the regularity assumptions stated in Theorem
7.2 may be unrealistic in applications; cf. also [16, 18], for example. An alternative
proof of convergence for a range of (standard) DG methods, under minimal regularity
assumptions, is presented by Gudi [13]; this is based on exploiting ideas from the a
posteriori error analysis of DG methods. The analysis of the proposed DGCFEM in
this setting will be investigated in the forthcoming article [12].

8. Implementation. In this section we discuss several aspects concerning the
implementation of the DGCFEM. To this end, we first write

ACFExCFE = fCFE

to denote the linear system of equations stemming from the discretization of (2.1)–
(2.2), based on employing the DGCFEM (4.1), which utilizes the CFE space V (TCFE,p).
Similarly, we write

Ah�
xh�

= fh�

to denote the linear system of equations which arise from the standard DGFEM dis-
cretization of problem (2.1)–(2.2) based on employing the (standard) finite element
space V (Th�

,p) consisting of discontinuous piecewise polynomials of composite degree
p. The entries of the matrix ACFE and those of the vector fCFE for the CFE method are
computed in a manner different from the standard DG method. Indeed, the sparsity
of the matrix ACFE reflects the topology of the mesh TCFE; thereby, the actual values of
the entries in both the matrix ACFE and vector fCFE are computed based on aggregat-
ing the appropriate entries of Ah�

and fh�
, respectively. The construction of the CFE

space, as described in section 3, implies that even when the mesh TCFE contains just a
small number of elements, the supports of the corresponding CFE basis functions φCFE

which belong to the space V (TCFE,p) accurately reflect the complexity of the geometry
of the underlying computational domain Ω.
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There are two key aspects related to the construction of the matrix ACFE and
right-hand side vector fCFE. First, any basis function φCFE which belongs to the space
V (TCFE,p) also belongs to the polynomial space Pp(κCFE), where κCFE is the CFE
domain over which φCFE is defined. Thereby, in the case when p = 1 and d = 2, there
are three basis functions φCFE,i, i = 1, . . . , 3, associated to the element κCFE; here,
the index i denotes a local ordering of the basis functions related to κCFE. Second,
any basis function φCFE,i, i = 1, . . . , dim(V (TCFE,p)), where i now denotes the global
ordering of the basis functions, can be constructed as a linear combination of the basis
functions φh�,j of V (Th�

,p), i.e.,

(8.1) φCFE,i :=
∑

j=1,...,dim(V (Th�
,p))

αi,jφh�,j ,

where αi,j are real coefficients which determine how the CFE space V (TCFE,p) is
constructed from the standard finite element space V (Th�

,p). This representation
follows immediately since it is assumed the meshes are nested and that all the children
elements of a CFE element κCFE have the same polynomial degree as κCFE; indeed, we
have that V (TCFE,p) ⊂ V (Th�

,p). Writing Λ to denote the set of all coefficients αi,j ,
we deduce from (8.1) that Λ = dim(V (Th�

,p))× dim(V (TCFE,p)). A straightforward
consequence of (8.1) is that any entry ACFE[i, r] of the matrix ACFE is simply a linear
combination of the entries of Ah�

; indeed, we note that

ACFE[i, j] = BDG(φCFE,i, φCFE,j) :=
∑

m,n=1,...,dim(V (Th�
,p))

αi,mαj,nBDG(φh�,m, φh�,n)

=
∑

m,n=1,...,dim(V (Th�
,p))

αi,mαj,nAh�
[m,n].(8.2)

Similarly, the entries present in the vector fCFE may be defined in an analogous fashion:

fCFE[i] = Fh(φCFE,i) :=
∑

j=1,...,dim(V (Th�
,p))

αi,jFh(φh�,j)

=
∑

j=1,...,dim(V (Th�
,p))

αi,jfh�
[j].(8.3)

Remark 8.1. From (8.2) and (8.3) it is clear that in order to construct ACFE

and fCFE, it is not necessary to store Ah�
and fh�

, which would potentially require a
large amount of memory; indeed, it is possible to directly construct both ACFE and
fCFE from the entries of Ah�

and fh�
, respectively, using the above linear combinations

determined by the coefficients αi,j . In this way, the amount of memory required to
construct the linear system of equations stemming from the CFE method is essentially
just the memory needed to store ACFE and fCFE (which are generally small, compared
to Ah�

and fh�
) and the coefficients αi,j . However, the CPU time needed to construct

the CFE linear system is clearly dependent on the dimension of the underlying finite
element space V (Th�

,p).
As already stated above, the role of the coefficients αi,j is to provide information

concerning how the basis functions φCFE,i present in the coarse space V (TCFE,p) are
defined in terms of the basis functions defined on the finer space V (Th�

,p). We remark
that this construction is elementwise in the sense that for each element κ ∈ V (Th�

,p),
there is a subset of coefficients Λκ ⊂ Λ such that the corresponding linear combination
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of the basis functions defined on κ reconstruct the restriction of the basis functions
defined on the father element κCFE to κ. Repeating this process for all children κ
of κCFE, we are able to entirely reconstruct the basis functions of the coarse space
defined on κCFE. Since it is assumed that the same order of polynomials p is used on
both κ and its father, we have that Λκ = n2

κ, where nκ denotes the dimension of
the local polynomial space on element κ; i.e., nκ = pκ(pκ + 1)/2 in the case when
triangular elements are used in two dimensions, for example. An interesting property
of these coefficients αi,j is that they are completely independent of the underlying
PDE problem at hand but depend only on the two finite element spaces V (TCFE,p)
and V (Th�

,p). We write φCFE,κCFE,i, i = 1, . . . , dim(Pp(κCFE)), to denote the basis
functions defined over element κCFE ∈ TCFE; similarly, φh�,κ,j, j = 1, . . . , dim(Pp(κ)),
denotes the corresponding set of basis functions associated with element κ ∈ Th�

.
Given that κCFE ∈ TCFE is defined as the union of their child elements present in Th�

,
the intersection between the support of a basis function φCFE,κCFE,i defined over κCFE
and a basis function φh�,κ,j defined on κ ∈ Th�

is zero unless the element κ is a child of
κCFE; if this latter condition is not satisfied, then, clearly, the corresponding coefficients
present in αi,j must be identically equal to zero. This observation dramatically reduces
the number of coefficients that need to be computed; indeed, we may characterize the
coefficients that may be nonzero as follows:

Λ0 :=
⋃

κ∈Thl

Λκ, Λ0 ⊂ Λ,

which implies that Λ0 =
∑

κ∈Thl
n2
κ < Λ.

The most general way to compute the coefficients Λ0 is by solving a family of
square linear systems R. The family R can be split into subfamilies Rκ, one for each
element κ ∈ Th�

. All the linear systems in the same subfamily Rκ are characterized
as having the same matrix but a different right-hand side. This can be exploited,
for example, when an LU decomposition is used to solve all the linear systems in
the family, since even if there are as many linear systems to solve as the number
of elements in Th�

times the dimension of the space V (TCFE,p), only as many LU
decompositions as the number of elements in Th�

are needed. Denoting by κCFE the
father of an element κ, and by {αi,j} the set of coefficients corresponding to the basis
functions of the two elements, we have that the linear systems in the subfamily of κ
have the form

Cκακ,i = φκ,i,

where ακ,i is the vector containing the unknown coefficients Λκ to reconstruct the
basis function φCFE,κCFE,i on the support of κ, the matrix Cκ is the same for any
φCFE,κCFE,i, and φκ,i depends on the restriction of φCFE,κCFE,i to κ. The dimension of
the linear systems in the subfamily is equal to the number of basis functions of the
element κ, which is the same as the number of basis functions of its father element
κCFE, due to the constraint on the choice of polynomial orders we imposed between
the two meshes.

In order to define the matrices Cκ and vectors φκ,i, we need to define a set
of points Qκ,p for each element κ, whose cardinality depends on the order of the
approximating polynomial p on the element. As an example, let κref be the reference
triangle with vertices (0, 0), (1, 0), and (0, 1); moreover, let Qs, with s ∈ R+, be the
set of all points q in the real plane such that q := (nse1,mse2), where n,m ∈ N and
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e1, e2 represent the canonical basis of R2. Then the set Qκ,p is defined as

Qκ,p := Aκ(Q1/p ∩ κref),

where Aκ is the affine transformation which maps κref into κ. The points present
in Qκ,p define where the basis functions φCFE,κCFE,i, φh�,κ,j are evaluated in order to
assemble the matrices Cκ and the vectors φκ. Indeed, for any κ and any φCFE,κCFE,i

the vector φκ is given by

φκ,i[j] := φCFE,κCFE,i(qj) ∀qj ∈ Qκ,p.

Similarly, for any κ, the matrix Cκ is defined as

Cκ[r, j]; = φh�,κ,r(qj) ∀qj ∈ Qκ,p, ∀φh�,κ,r.

The computation of the solutions of all these linear systems can be quite expen-
sive; however, this process may be undertaken in a more efficient manner. To this
end, suppose for the moment that both finite element spaces V (TCFE,p) and V (Th�

,p)
employ a set of nodal Lagrange basis functions on each element. Then, it follows
straightforwardly, from the properties of the nodal basis functions and the definitions
of the sets Qκ,p, that all matrices Cκ reduce to the identity matrix. Thereby, in this
case, we conclude that

ακ,i ≡ φκ,i;

in this case the computation of the coefficients in Λ0 simply requires the evaluation of
the basis functions φCFE,i at the nodes determined by the sets Qκ,p. With this obser-
vation, more general modal bases may be considered, with only a small computational
overhead. Indeed, suppose that, for any p, Bp is the matrix that transforms the nodal
polynomial basis for Pp into an alternative basis which spans the same polynomial
space, such as a modal basis, for example. Since these matrices Bp are invariant
under affine transformations, they can be computed just for the reference element in
advance and stored. Now if, for example, modal basis functions are employed within
both finite element spaces V (TCFE,p) and V (Th�

,p), then the components of the sys-
tems C̃κα̃κ,i = φ̃κ,i for the modal basis functions are equivalent to the components
of the systems for the nodal basis functions in the following manner:

Cκ ≡ B−1
p C̃κBp, φκ,i ≡ B−1

p φ̃κ,i;

i.e., α̃κ,i := Bpακ,i. This approach is extremely cheap, since it does not require
the inversion of a linear system of equations; indeed, the matrices Bp can all be
precomputed and stored, since they are independent of the underlying PDE problem.

9. Numerical experiments. In this section we present a series of computa-
tional examples to numerically investigate the asymptotic convergence behavior of
the proposed DGCFEM for problems where the underlying computational domain
contains microstructures. Throughout this section the DGCFEM solution uh defined
by (4.1) is computed with the constant γ appearing in the interior penalty param-
eter σ defined by (4.2) equal to 10. All the numerical examples presented in this
section have been computed using the AptoFEM package (www.aptofem.com); here,
the resulting system of linear equations is solved based on employing the Multifrontal
Massively Parallel Solver (MUMPS); see [1, 2, 3].
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(a) (b)

Fig. 9.1. Example 1: (a) Initial CFE mesh. The color blue (right-hand edge) denotes elements
present in the fine level mesh (which consists of 20160 triangular elements); elements plotted in
black form the coarse level mesh (containing eight elements); finally, the domain Ω is shown in
yellow (gray). (b) Zoom of (a).

9.1. Two-dimensional domain with a complicated boundary. In this first
example, we consider a computational domain with a complicated boundary; to this
end, we let Ω be the unit square in two dimensions, where a series of tiny “finger-like”
cuts have been removed from the right-hand boundary, i.e., where x = 1, 0 ≤ y ≤ 1.
More precisely, the right-hand boundary of the domain possesses 64 equidistributed
tiny “gaps”; cf. Figure 9.1. In this example, we select the right-hand side forcing
function f and appropriate inhomogeneous boundary condition u = g on ∂Ω, so that
the analytical solution to (2.1)–(2.2) is given by u = tanh(2x).

To compute the numerical approximation to (2.1)–(2.2) using the DGCFEM de-
fined in (4.1), we first construct a sequence of meshes based on employing Algo-
rithm 3.1. To this end, the coarsest mesh reference mesh T̂H is selected to be a
uniform triangular mesh; in particular, the coarsest mesh is constructed from a uni-
form 2× 2 square mesh by connecting the northeast vertex with the southwest vertex
within each mesh square; cf. Figure 9.1(a). This mesh is then subsequently adap-
tively refined in order to generate a fine reference mesh consisting of 20160 triangular
elements, which precisely describes the computational domain Ω. Here, we point out
that the choice of the initial triangulation and the definition of Ω have been selected
so that Ω may be exactly triangulated using Algorithm 3.1, without the need to move
any nodal points in the finest reference mesh. Thereby, in this setting, the respective
hierarchies of logical and physical meshes are both identical.

We now investigate the asymptotic convergence of the proposed DGCFEM on a
sequence of successively finer uniform triangular meshes, starting with TCFE consisting
of eight composite elemental domains for p = 1, 2; see Tables 9.1 and 9.2, respectively.
In each case we show the number of elements (Eles) and number of degrees of freedom
(Dofs) in the CFE space V (TCFE,p), the L2(Ω), the broken H1(Ω)-seminorm (denoted
by | · |1,h), and the DG-norm of the error u−uh, together with their respective rates of
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Table 9.1

Example 1: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 1.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 24 2.498E-02 - 3.122E-01 - 4.334E-01 -
32 96 6.336E-03 1.98 1.461E-01 1.10 1.693E-01 1.36
128 384 1.615E-03 1.97 7.207E-02 1.02 7.825E-02 1.11
512 1536 3.914E-04 2.04 3.582E-02 1.01 3.801E-02 1.04
2048 6144 1.038E-04 1.91 1.788E-02 1.00 1.885E-02 1.01
8192 24576 2.592E-05 2.00 8.944E-03 1.00 9.313E-03 1.02

Table 9.2

Example 1: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 2.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 48 4.744E-03 - 4.998E-02 - 7.600E-02 -
32 192 5.870E-04 3.01 1.553E-02 1.69 2.038E-02 1.90
128 768 7.512E-05 2.97 3.924E-03 1.98 4.754E-03 2.10
512 3072 1.228E-05 2.61 9.881E-04 1.99 1.119E-03 2.09
2048 12288 1.108E-06 3.47 2.446E-04 2.01 2.717E-04 2.04
8192 49152 1.398E-07 2.99 6.124E-05 2.00 6.598E-05 2.04

convergence, denoted by k in each case. We remark that none of the (composite) finite
element meshes employed here are fine enough to exactly represent the computational
domain Ω.

From Tables 9.1 and 9.2, we observe that both the L2(Ω)-norm and the broken
H1(Ω) seminorm of the error converge at the expected optimal rate, even in the
presence of such microstructures present in the boundary of the computational domain
Ω. More precisely, we observe that ‖u − uh‖L2(Ω) and |u − uh|1,h converge to zero
like O(hp+1) and O(hp), respectively, for each fixed p, as h tends to zero. In terms
of the convergence of the DGCFEM with respect to the DG-norm, we observe the
convergence rate O(hp), as h tends to zero, for each fixed p; this corresponds to
the expected rate of convergence of the so-called standard DGFEM in the absence
of microstructures; cf. [4], for example. The observed rate of convergence of the
DGCFEM with respect to the DG-norm is in accordance with Theorem 7.2, since
most elements κ in the CFE mesh TCFE are “standard” element domains (triangles in
this case), except for a relatively small number which lie in the vicinity of the right-
hand side boundary of the domain Ω; thereby, for such elements, we have hF = hκ.

9.2. Two-dimensional domain with microstructures. In this second exam-
ple, we consider the case when the computational domain Ω contains a large number
of small geometric features. To this end, we set Ω to be the unit square (0, 1)2 in
two dimensions, which has had a series of uniformly spaced circular holes removed;
here, we consider the case where 256 small circular holes are removed from (0, 1)2; see
Figure 9.2(a). In this example, we select the right-hand side forcing function f and
appropriate inhomogeneous boundary condition u = g on ∂Ω, so that the analytical
solution to (2.1)–(2.2) is given by u = sin(πx) cos(πy); cf. Figure 9.2(b).

As in the previous example, we first define the coarsest reference mesh T̂H to be
a uniform triangular mesh consisting of eight elements. This mesh is then refined
to generate a sequence of reference meshes according to Algorithm 3.1. Given that
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(a) (b)

Fig. 9.2. Example 2: (a) Initial CFE mesh. Fine level mesh consisting of 85500 triangular
elements and coarse level mesh (solid black line) containing eight elements. (b) Analytical solution.

Table 9.3

Example 2: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 1.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 24 7.320E-02 - 1.186 - 31.500 -
32 96 2.120E-02 1.78 7.051E-01 0.75 8.314 1.92
128 384 6.214E-03 1.77 3.903E-01 0.85 1.639 2.34
512 1536 2.834E-03 1.13 2.144E-01 0.86 3.342E-01 2.29
2048 6144 4.427E-04 2.68 1.020E-01 1.07 1.201E-01 1.48

Table 9.4

Example 2: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 2.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

8 48 1.699E-02 - 4.089E-01 - 13.447 -
32 192 2.477E-03 2.78 1.078E-01 1.92 1.941 2.79
128 768 5.734E-04 2.11 3.739E-02 1.53 3.159E-01 2.62
512 3072 1.531E-04 1.91 1.288E-02 1.54 3.208E-02 3.30
2048 12288 1.088E-05 3.81 2.212E-03 2.54 2.515E-03 3.67

the underlying geometry cannot be exactly represented by such a sequence of refined
meshes, nodes close to the boundary are moved in order to provide an accurate de-
scription of the computational domain. Thereby, in this setting the corresponding
sequences of physical meshes differ from their respective logical and reference meshes.
Here, the fine mesh consists of 85500 triangular elements; in particular, edges of el-
ements present in the fine mesh which have nodes on one of the circular holes are
curved using a local quadratic representation of the edge. We remark that, to avoid
“cracks” appearing in the finest mesh in the vicinity of the holes present in Ω when
nodes are locally moved, additional refinement has been undertaken near the circular
boundaries.

In Tables 9.3 and 9.4 we investigate the asymptotic convergence of the proposed
DGCFEM on a sequence of successively finer uniform triangular meshes, starting with
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Fig. 9.3. Example 2. Comparison between the DGCFEM and the standard DGFEM (computed
without any holes): (a) ‖u− uh‖L2(Ω); (b) |u− uh|1,h.

TCFE consisting of eight composite elemental domains for p = 1, 2, respectively. As in
the previous example, we compute the L2(Ω), the broken H1(Ω)-seminorm, and the
DG-norm of the error u − uh, together with their respective rates of convergence.
For this example, the rates of convergence are less consistent than those reported in
the previous example. For both p = 1 and p = 2, the quantities ‖u − uh‖L2(Ω) and
|u− uh|1,h appear to converge slightly suboptimally, except on the last mesh, relative
to what we would expect. In order to assess the quality of the computed DGCFEM so-
lution, in Figure 9.3 we compare the proposed DGCFEM with the standard DGFEM;
in the latter case, we simply compute the numerical solution on the unit square (0, 1)2

without any holes. Here, we now observe that the accuracy and rate of convergence
of the DGCFEM, which takes into account the holes present in the computational
domain, are very similar to those of the standard DGFEM, which cannot treat the
microstructures present in Ω on such coarse meshes. Indeed, this clearly illustrates
that the presence of holes/microstructures in the computational domain does not lead
to a degradation in the quality of the computed solution when the DGCFEM is ex-
ploited. Finally, Tables 9.3 and 9.4 indicate that the DG-norm of the error in the
DGCFEM solution converges to zero at a faster rate than we would expect for the
standard DGFEM. This is in accordance with Theorem 7.2, due to the definition of
hF ; indeed, as noted in Remark 4.1, hF may be selected to be equal to the element
dimension only on “standard” element domains, while on composite element domains,
we must select hF to be equal to the size of the elements present in the fine mesh.
For this latter choice, hF is effectively fixed as the CFE mesh is refined; thereby, the
order of convergence of the DGCFEM with respect to the DG-norm may exceed the
standard predicted order of O(hp); cf. Theorem 7.2.

9.3. Three-dimensional domain with microstructures. In this final exam-
ple, we consider a three-dimensional problem which contains a number of holes. More
precisely, we let Ω be the unit cube (0, 1)3, which has had 16 rectangular sections
removed; cf. Figure 9.4. We point out that the holes go only to a depth of half of
the domain width. We select the right-hand side forcing function f and appropriate
inhomogeneous boundary condition u = g on ∂Ω, so that the analytical solution to
(2.1)–(2.2) is given by u = sin(πx) cos(πy) sin(πz).

Here, the coarsest mesh reference mesh T̂H is selected to be a uniform tetrahedral
mesh; in particular, the coarsest mesh is constructed from a uniform 2×2×2 hexahe-
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Fig. 9.4. Computational domain Ω.

Table 9.5

Example 3: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 1.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

48 192 8.826E-02 - 1.315 - 5.875 -
384 1536 2.905E-02 1.60 8.624E-01 0.61 1.927 1.61
3072 12288 8.664E-03 1.75 4.270E-01 1.01 6.194E-01 1.64
21504 86016 2.582E-03 1.75 2.168E-01 0.98 2.540E-01 1.29

Table 9.6

Example 3: Convergence of the DGCFEM on a sequence of uniform triangular composite ele-
ments with p = 2.

Eles Dofs ‖u− uh‖L2(Ω) k |u− uh|1,h k |||u− uh |||DG k

48 480 2.707E-02 - 5.577E-01 - 2.931 -
384 3840 5.075E-03 2.42 1.770E-01 1.66 4.557E-01 2.69
3072 30720 5.983E-04 3.08 4.288E-02 2.05 6.015E-02 2.92
21504 215040 7.401E-05 3.01 1.076E-02 1.99 1.250E-02 2.27

dral mesh by subdividing each hexahedral element into six tetrahedra. This mesh is
then subsequently adaptively refined in order to generate a fine reference tetrahedral
mesh consisting of 21504 elements, which precisely describes the computational do-
main Ω. Here, we point out that the choice of the initial mesh and the definition of Ω
have been selected so that Ω may be exactly triangulated using Algorithm 3.1, with-
out the need to move any nodal points in the finest reference mesh. The asymptotic
convergence of the proposed DGCFEM on a sequence of successively finer uniform
tetrahedral meshes, starting with TCFE consisting of 48 composite elemental domains
for p = 1, 2, is investigated in Tables 9.5 and 9.6, respectively. Here, we observe that
the L2(Ω)-norm of the error converges at a slightly suboptimal rate for p = 1, though
|u − uh|1,h tends to zero at roughly the optimal rate of O(hp), for each fixed p, as
the mesh is uniformly refined. As in the previous example, the DG-norm of the error
again converges to zero as the mesh is refined, at a slightly faster rate compared to
the expected rate when the standard DGFEM is employed; cf. Theorem 7.2.
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10. Concluding remarks. In this paper we have considered the extension of
the CFE technique, originally developed for the standard Galerkin finite element
method, to the case when discontinuous finite element spaces are employed. This new
class of methods is very attractive as the methods allow for the numerical approxima-
tion of PDE problems posed on complicated domains which contain local geometrical
features in an efficient manner. In this paper we have undertaken the a priori error
analysis of the proposed DGCFEM, based on generating a hierarchy of meshes such
that the finest mesh does indeed provide an accurate representation of the underly-
ing computational domain. The finite element spaces can then be defined in a very
natural manner, based on employing appropriate prolongation operators. The ap-
proach here is to recover finite element spaces such that on each composite element
the numerical solution is a polynomial; by selecting alternative prolongation operators
(cf. [15], for example), finite element basis functions which are piecewise polynomial
on each composite element may also be defined. Numerical experiments highlighting
the application of the proposed DGCFEM for a range of two- and three-dimensional
problems have been presented. Future work will be concerned with the a posteriori
error analysis of DGCFEMs, as well as the application of DGCFEMs within two-level
Schwarz-type preconditioners.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multi-
frontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 15–41.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmet-
ric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 501–
520.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for
the parallel solution of linear systems, Parallel Comput., 32 (2006), pp. 136–156.

[4] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.

[5] I. Babuška and M. Suri, The hp-version of the finite element method with quasi-uniform
meshes, RAIRO Modél. Math. Anal. Numér., 21 (1987), pp. 199–238.

[6] F. Bassi, L. Botti, A. Colombo, D. Di Pietro, and P. Tesini, On the flexibility of agglom-
eration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231
(2012), pp. 45–65.

[7] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: I. A
stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199 (2010),
pp. 2680–2686.

[8] E. Burman and P. Hansbo, An interior-penalty-stabilized Lagrange multiplier method for
the finite-element solution of elliptic interface problems, IMA J. Numer. Anal., 30 (2010),
pp. 870–885.

[9] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II.
A stabilized Nitsche method, Appl. Numer. Math., 62 (2012), pp. 328–341.
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