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Fractional photon-assisted tunnelling is investigated both numerically and analytically in a double-
well lattice. While integer photon-assisted tunnelling is a single-particle effect, fractional photon-
assisted tunnelling is an interaction-induced many-body effect. Double-well lattices with few parti-
cles in each double well are ideal to study this effect far from the mean-field effects. It is predicted
that the 1/4-resonance is observable in such systems. Fractional photon-assisted tunnelling provides
a physically relevant model for which N -th order time-dependent perturbation theory can be large
although all previous orders are small.
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FIG. 1. (Colour online) Sketch of 1/4-‘photon’ resonance:
One photon has enough energy to make four particles tun-
nel (~ω = 4∆E). The “photons” are time-periodic potential
modulations in the kilo-Hertz regime.

I. INTRODUCTION

Optical lattices are an important system for research
with ultra-cold atoms [1–3]. Experimental developments
enable the creation of lattices of controllable double-well
potentials [4, 5] that can be engineered such that the
tunnelling between neighbouring double wells can be dis-
carded [6], allowing treatment of the system as a single
double well. Loading the lattice from a Mott-insulator
state allows deterministic population of fewer than six
atoms in each well [7, 8]. Combined with the ability to
count the atoms in each well, this makes the double well
system ideal for investigating fractional photon-assisted
tunnelling via periodic shaking of the lattice that is typ-
ically a small effect in other systems [9–11]. The “pho-
tons” are time-dependent potential modulations in the
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kilo-Hertz regime; a sketch of the 1/4-photon resonance
can be seen in Fig. 1.

Research on periodic shaking has focused on ef-
fects ranging from destruction of tunnelling [12–14] over
tunnelling-control [15–17], field-induced barrier trans-
parency [18], two-dimensional solitons [19], super Bloch
oscillations [20–22], phase-jumps [23, 24] and dynamics
of bound pairs in optical lattices [25, 26] or NOON-
states [27]. Complementary studies of transport of
ultra-cold atoms in lattices include controlled trans-
port of Bose-Einstein condensates (BECs) between two
wells [28]. Experiments include control of superexchange
interactions [29, 30] and directed transport via a Hamil-
tonian quantum ratchet [31].

While integer photon-assisted tunnelling [32, 33] is
essentially a single particle effect that survives inter-
actions, fractional photon-assisted tunnelling is a true
many-particle effect which only occurs for interacting
particles. Rather than being the small effect predicted in
Refs. [9–11], fractional photon-assisted tunnelling like the
1/2-photon resonance can be a large effect for two par-
ticles per double well [30, 34]. A related experiment on
photon-assisted tunnelling of strongly correlated atoms
can be found in Ref. [35].

In this Letter we investigate fractional-photon assisted
tunnelling of ultra-cold atoms in a double well poten-
tial. The paper is organised as follows: Section II in-
troduces the model describing atoms in the periodically
shaken lattice, whilst Sec. III explores the effect for both
few and hundreds of atoms per well. In Sec. IV we
demonstrate that for four particles, both the 1/4- and the
1/2-resonance will provide clear experimental signatures.
Section V explains a feature in the photon-assisted tun-
nelling plot reminiscent of avoided crossings. In Sec. VI
we show that for some parameters, even though the first
few orders of time-dependent perturbation theory might
be small, higher order perturbation theory can still cor-
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rectly predict the fact that fractional photon-assisted
tunnelling is a large effect.

II. MODEL

A. Hamiltonian

For both the case of a few ultra-cold atoms, or a small
BEC loaded into the double-well potential modulated at
frequency ω, the system can be described using a many-
body Hamiltonian with a two-mode approximation as fol-
lows [8, 36, 37]

Ĥ = −~Ω

2

(
ĉ†1ĉ2 + ĉ†2ĉ1

)
+ ~κ

(
ĉ†1ĉ
†
1ĉ1ĉ1 + ĉ†2ĉ

†
2ĉ2ĉ2

)
+ ~

(
µ0 + µ1 sin(ωt)

) (
ĉ†2ĉ2 − ĉ

†
1ĉ1

)
. (1)

The operators ĉj/ĉ
†
j annihilate/create a boson in well j;

~Ω is the tunnelling splitting, ~µ0 denotes the tilt be-
tween well 1 and well 2 and ~µ1 is the driving ampli-
tude (cf. Fig. 1). The on-site pair interaction is denoted
by 2~κ. For calculations beyond this model see, e.g.,
Refs. [38–41]. Here, we use the two-mode approximation
as the experiment [30] demonstrates that this approxima-
tion describes the physics of the 1/2-photon resonance.
Our focus lies in identifying and understanding interest-
ing signatures of photon-assisted tunnelling rather than
quantitative predictions;calculations including effects of
higher energy levels (cf. Ref. [30]) will subsequently de-
pend on precise experimental details like the depth of the
lattice.

In order to characterise the photon-assisted tunnelling,
we use the experimentally measurable time-averaged par-
ticle transfer probability,

〈Ptrans〉T =
1

NT

∫ T

0

〈
Ψ (t)

∣∣∣ĉ†2ĉ2∣∣∣Ψ (t)
〉
dt . (2)

Rather than trying to understand the physics by di-
rectly solving the Schrödinger equation corresponding
to the Hamiltonian (1), we derive an equivalent set of
differential equations [34]. We choose the Fock basis
|ν〉 ≡ |N − ν, ν〉 for which the label ν = 0 . . . N refers
to a state with N − ν particles in well 1, and ν parti-
cles in well 2. In this basis, the Hamiltonian (1) can be
written as the sum of two (N + 1)× (N + 1)-matrices,

H = H0(t) +H1 , (3)

where the diagonal matrix H0(t) includes both the in-
teraction between the particles and the applied potential
difference while the non-diagonal matrix H1 contains the
tunnelling-terms of Eq. (1).

The ansatz

〈ν|ψ(t)〉 = aν(t) exp

[
− i
~

∫
〈ν|H0(t)|ν〉dt

]
, (4)

which is based on the interaction picture, turned out to
be useful to solve the Schrödinger equation [10]. The
Schrödinger equation then is equivalent to the set of N+1
differential equations:

i~ȧν(t) = 〈ν|H1|ν+1〉hν(t)aν+1(t) (5)

+ 〈ν|H1|ν−1〉hν−1(t)∗aν−1(t), ν = 0, 1, . . . N

which uses the notation a−1(t) ≡ aN+1(t) ≡ 0; the phase
factors read:

hν(t) = (6)

exp (i [2(N − 1− 2ν)κt− 2µ0t+ 2µ1 cos(ωt)/ω]) .

B. Time-dependent perturbation theory

In the following, we always use the experimentally re-
alistic initial condition that all the atoms are in the lower
well at t = 0, i.e. a0(0) = 1 [7, 8]. Then at a later time
t, zeroth-order time-dependent perturbation theory gives
the Fock-state amplitudes as:

a
(0)
0 (t) ≡ 1 (7)

a
(0)
j (t) ≡ 0, j > 0 . (8)

The first non-zero order of a
(k)
j is obtained for k = j:

a
(j)
j (t) ≡i

√
(N − j + 1)j

2
Ω

×
∫ t

0

dτ hj−1(τ)∗a
(j−1)
j−1 (τ), j ≥ 1, (9)

where ∗ denotes the complex conjugate.

C. Tunnelling dynamics

To understand the tunnelling dynamics, we expand the
oscillatory term at frequency ω in the phase factors of
Eq. (9) in terms of Bessel functions [42]

eiz cos(ωt) =

∞∑
k=−∞

Jk(z)ikeikωt . (10)

Including all these terms in analytic calculations does, in
principle, lead to analytic results for the tunnelling. How-
ever, evaluating these analytic formulae is numerically
much more intensive than solving the time-dependent
Schrödinger equation [10]. Combining the rotating-wave-
approximation based approach which includes only the
slowly oscillating terms of h∗j [34] with the above time-
dependent perturbation theory leads to a simpler form
for the non-zero perturbations of Eq. (9):

a
(j)
j (t) ≡i1−kj

√
(N − j + 1)j

2
ΩJkj

(
2µ1

ω

)
×
∫ t

0

dτ exp(iη
(j)
kj
τ)a

(j−1)
j−1 (τ), j ≥ 1 (11)
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FIG. 2. (Colour online) Two-dimensional projection of the
time-averaged particle transfer (2) as a function of both driv-
ing frequency ω and interaction κ for N = 100 particles.
The averaging time is ΩT = 100, the driving amplitude
2µ1/ω = 1.8 and the tilt µ0 = 1.5Ω. The one-photon reso-
nance is clearly visible: it starts at the point defined by κ = 0
and ω = 3Ω and moves towards lower frequencies for larger
interactions. While many-integer-photon-resonances like the
two-photon resonance near κ = 0 and ω = 1.5Ω are also
visible, fractional photon-assisted tunnelling like the one-half
resonance near ω = 6Ω (cf. Ref. [9]) are not visible on this
scale because they are only a small effect for large particle
numbers.

where the integer kj is chosen such that |ηk|, with

η
(j)
k ≡ −kω + 2µ0 − 2[N − (2j − 1)]κ , (12)

j = 1 . . . N .

is minimised at k = kj . As in Ref. [34], it might some-

times be preferable to minimise |
∑j
ν η

(ν)
kν
| rather than

each η
(j)
k separately. For other cases (e.g. near a zero of

one of the Bessel functions) more than one term will have
to be included in the above sums. We define the number
of “photons” involved in the tunnelling process,

#photons =

N∑
j=1

kj , (13)

such that it corresponds to the total “energy” transferred
(rather than taking the sum of the moduli).

III. BEC OR FEW PARTICLES PER DOUBLE
WELL?

In order to demonstrate why it is necessary to use a few
atoms per double well as opposed to a BEC to observe
fractional resonances, we compare the results obtained
for N = 100 particles with N = 4. Figure 2 shows the
time averaged particle transfer probability for N = 100
atoms initially in the lower well. While there are no

FIG. 3. (Colour online) Time-averaged transfer probability
to well 2 for N = 4 calculated using the same parameters as
in Fig. 2 but with an averaging time of ΩT = 10. Experi-
mentally, this could be realised in the double-well lattice of
Refs. [7, 8].

resonances visible at higher frequencies, the one-photon-
resonance which starts at ω = 3Ω for small interactions
is clearly visible. For a BEC initially in the upper well,
the one-photon resonance would move toward higher fre-
quencies for increasing interaction.

Figure 3 shows the time-averaged transfer probability
for N=4 calculated using the same parameters as Fig. 2
with an averaging time of ΩT = 10. For this shorter
averaging time-scale, Fig. 3 displays many features also
seen in Fig. 2. The visible lines are either tunnelling res-
onances which can be understood on the single-particle
level like the 1-photon resonance near κ ≈ 0 and ω ≈ 3Ω
or the horizontal lines. These correspond to, e.g., the
energy of all particles being in the lower well and one
particle having tunnelled being equal. The straight lines
with non-zero gradient correspond to adding one or sev-
eral photons to those horizontal lines.

More interesting features, including fractional photon
resonances, emerge for larger averaging times (Fig. 4).
While the short-time effects visible in Fig. 3 can be ex-
plained by simply looking at tunnelling of a single parti-
cle, Fig. 4 displays many features which are due to many-
particle tunnelling. For larger particle numbers, similar
features will only be visible on even larger time-scales
(cf. Sec. VI). In Fig. 4, both the 1/2-photon and the
1/4-photon resonance are visible for a broad range of in-
teraction strengths.

Integer-photon resonances essentially are single-
particle effects which survive interactions. Fractional
photon assisted tunnelling, however, is a true many-
particle quantum effect. For four particles, one ex-
pects [11] to observe the 1/2- and the 1/4-resonance both
of which are clearly visible in Fig. 4. Odd fractions
like the 1/3-photon resonance (cf. Sec. VI) only occur
for odd particle numbers N ≥ 3 (cf. Ref. [11]). Frac-
tional resonances also appear for the case of N = 100
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FIG. 4. (Colour online) Time-averaged transfer calculated for
the same parameters as Fig. 3 except for ΩT = 100. While
the 1/2-photon resonance is clearly visible near ω = 6Ω, the
1/4-resonance can also be found for some interactions near
ω = 12Ω.

(cf. Ref. [9]). However, for the experimentally motivated
comparatively short timescales used both here and in
Ref. [9], fractional photon-assited tunnelling is a very
small effect even for small BECs. We therefore focus
on the case of few-atoms per well for the remainder of
the paper.

IV. THE 1/2- AND 1/4- RESONANCE

For fractional resonances in a double well lattice with
few atoms per double well, most of the physics of the
tunnelling process can be understood by taking the ap-
proach of Sec. II C to a level beyond perturbation the-
ory. Within the approximation motivated by the ro-
tating wave-approximation, this leads to time-dependent
(N+1)×(N+1) matrices which can, in some cases, even
be solved analytically (see the appendix). Figure 5 shows
that the 1/2-photon resonance will be clearly visible for
four particles. As the full width at half maximum is an
order of magnitude larger than 1% (the typical error [43]
with which the interaction can be fixed in experiments
as Ref. [8]), the 1/2-photon resonance could be observed
with the existing experimental setup of Refs. [8, 30].

Given the fact that the 1/2-photon resonance has al-
ready been observed experimentally [30], it would be even
more interesting to investigate the 1/4-photon resonance
asN = 4 is the lowest number of particles for which it can
be observed. Just because 4 particles produce a large ef-
fect in the numerics does, however, not automatically im-
ply that it is a true 4-particle effect: Many features which
are already visible for the short averaging times of Fig. 3
would also occur at least similarly for lower particles.
Thus, even if we restrict our search for a 1/4-resonance
to parameters near ω = 12Ω, this could coincide with
large tunnelling for lower particle numbers. Due to the

FIG. 5. (Colour online) 1/2-photon resonance for four par-
ticles; displayed is the transfer to the second well at time
t∗ = 13.115 as a function of the scaled interaction parame-
ter κ/Ω. Dotted/magenta: model discussed in the appendix
[Eq. (A14)], dashed/blue: full numerics. The parameters are:
ω = 6Ω, µ0 = 1.5Ω, 2µ1/Ω = 4.567. As the full width at
half maximum is an order of magnitude larger than the typ-
ical experimental accuracy for κ/Ω [43], the 1/2-photon res-
onance could be observed with existing experimental setups.
Choosing the correct time will also be feasible: For κ = 1.5Ω,
numerics shows that missing the time t∗ by 10% only leads
to deviations of Ptrans(t) from Ptrans(t

∗) ' 0.92 by less than
3%.

FIG. 6. (Colour online) a) 1/4-photon resonance for four par-
ticles (κ = 2.25Ω, ω = 12Ω; 2µ1/ω = 3.08, µ0 = 1.5Ω). Black
line: exact numerics. The simplified model (magenta/grey
line) correctly describes the dynamics for not too large times.
In order to demonstrate that this is really an effect which
only occurs for four particles, N < 4 was also investigated:
b) N=3, c) N=2, d) N=1. Note that the scale on the vertical
axis differs by an order of magnitude between a) and b)-d).

experimental way to load double-well lattices via a Mott-
insulator [30], the harmonic confinement will prevent ex-
periments with all double-wells being filled with exactly
4 particles. However, as can be clearly seen from Fig. 6,
only the wells initially loaded with 4 atoms can contribute
to the observable signature of the 1/4-photon resonance.
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FIG. 7. (Colour online) Two-dimensional projection of the
fourth root of the time-averaged transfer for N = 2 particles.
The averaging time is TΩ = 500, the tilt is µ0 = 1.5Ω and the
shaking amplitude 2µ1/ω = 5.5201 (for which |J0 (2µ1/ω) | <
10−5). In Sec. V, these parameters allow the explanation of
an example how the apparent avoided-crossing-type features
(cf. Fig. 4) can appear.

V. AVOIDED-CROSSING-TYPE FEATURES

Figure 4 shows several features which resemble avoided
crossings. The smallest particle number for which they
can occur is N = 2 for which the feature is particu-
larly strong at the 1/2-photon frequency near zeros of
the Bessel function responsible for the tunnelling of the
first particle. Such a situation is depicted in Fig. 7. For
parameters near the centre of this figure, i.e. µ0 = 1.5Ω,
ω = 6Ω and κ = 1.5Ω, the tunnelling of the first parti-
cle would normally be described by a 0-photon process
while the tunnelling of the second particle would be a
1-photon process. Only the average number of photons
per tunnelling process justifies the word “1/2-photon res-
onance”. If, however, J0 (2µ1/ω) = 0 (as chosen for
Fig. 7), we have an entirely different situation. Now
the tunnelling of the first particle consists of two com-
peting processes: a 1-photon process and a −1-photon
process, making the overall tunnelling a superposition of
a 0-photon and a 2-photon process [see Eq. (13)]. As
J−1(x) = −J1(x), we have:

a
(1)
1 =

Ω√
2
J1

(
2µ1

ω

)exp
(
iη

(1)
1 t
)

iη
(1)
1

+
exp

(
iη

(1)
−1t
)

iη
(1)
−1


− Ω√

2
J1

(
2µ1

ω

) [ 1

iη
(1)
1

+
1

iη
(1)
−1

]
(14)

This equation already explains why there is no transfer
visible at µ0 = 1.5Ω, ω = 6Ω and κ = 1.5ω, as

η
(1)
1 = −η(1)

−1 (15)

for these parameters. In the vicinity of this point, the
time-independent part of Eq. (14) will be responsible for
a2 eventually becoming larger, in particular, for param-

eters for which η
(2)
1 = 0:

a
(2)
2 ∼Ω2

2
J2

1

(
2µ1

ω

) [ 1

iη
(1)
1

+
1

iη
(1)
−1

]
t . (16)

Combined with the fact that η
(2)
1 = 0 corresponds to the

line

κ =
ω − 3Ω

2
, (17)

this explains why transfer becomes large when following
this line away from the point (ω = 6Ω, κ = 1.5Ω); for
the line perpendicular to this line through the same point
such increased transfer is neither to be expected nor does
it show in the numerics of Fig. 7.

VI. 1/N-RESONANCE: LARGE EFFECT ONLY
IN NTH ORDER PERTURBATION THEORY

The system investigated here offers the unique possi-
bility to construct physically relevant examples for which
the perturbation theory is small up to (N − 1)th order
while the Nth order produces results that dominate the
dynamics.

If

η
(j)
kj
6= 0 (18)

for all j = 1 . . . N and furthermore[44]

j∑
ν=`

η
(ν)
kν

{
6= 0 : ` < j < N
= 0 : ` = 1, j = N

, (19)

perturbation theory will give only (small) oscillatory
terms up to (N − 1)th order. However, in Nth order
we obtain a term linear in time proportional to:

(
a

(N)
N (t)

)
leading

∝

 N∏
j=1

Jkj
(

2µ1

ω

) t . (20)

However, just because Eq. (20) becomes large this does
not automatically imply that this can be observed in

the numerics: as soon as a
(N)
N (t) becomes large, aN−1(t)

changes which in turn influences aN (t). Nevertheless,
there are examples for which Eq. (20) well describes the
tunnelling:

For N = 3, the above criteria are fulfilled, e.g., for
µ0 = 1.5Ω, κ = 2.1Ω, ω = 9Ω and 2µ1/ω = 0.75:

η
(1)
0 = −5.4Ω (21)

η
(2)
0 = 3Ω (22)

η
(3)
1 = 2.4Ω. (23)

The tunnelling can thus be understood to be a 1-photon-
process, the photon being responsible for the tunnelling
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FIG. 8. (Colour online) Probability to find n particles in
the upper well if initially all N = 3 particles are in the lower
well for µ0 = 1.5Ω, κ = 2.1Ω, ω = 9Ω and 2µ1/ω = 0.75. a)
Black solid line: numerics using the model (1); magenta/grey
dotted line: as predicted by numerically evaluated perturba-

tion theory by adding |a(1)1 |2 + |a(2)2 |2 as defined in Eq. (9).
The sum is much smaller than the probability to transfer all 3
particles which is displayed in the lower panel. b) Solid black
line: numerics using the model (1), dotted magenta/grey line:

|a(3)3 |2 as defined in Eq. (9), dashed blue/black line: analytic
estimate of Eq. (24).

of the third particle with no photons being involved in
the tunnelling of the other two. Thus:(

a
(3)
3 (t)

)
leading

= 3Ω3

4η
(1)
0

(
η
(1)
0 +η

(2)
0

)J2
0

(
2µ1

ω

)
J1

(
2µ1

ω

)
t

(24)

Figure 8 shows that Eq. (24) well describes the time-
scale on which the probability for all particle having tun-
nelled to the other well becomes large. The figure fur-
thermore shows that the probability to find either one or
two particles in the upper well remains small and this ef-
fect can thus be labelled co-tunnelling of three particles.
Equation (24) does, however, not precisely match the re-
sult of the numerical perturbation theory of Sec. II B.
Higher order processes would change the prefactors in
both equations. For N = 3 there is, e.g., the +1-, −1-,
+1-photon process which also contributes to the linear
time-dependence, although it is low compared with the
dominating 0-, 0-, +1-photon process included in the an-
alytic result. Note that changing the driving amplitude
might change which is the dominating contribution.

For N = 4 similar parameters can be found. Using
µ0 = 1.5Ω, ω = 12Ω, κ = 1.95Ω, and 2µ1/ω = 0.5, one

FIG. 9. Probability to find n particles in the upper well
if initially all N = 4 particles are in the lower well for
µ0 = 1.5Ω, ω = 12Ω κ = 1.95Ω, and 2µ1/ω = 0.5. a) Black
line: numerics using the model (1); magenta/grey line: as
predicted by numerically evaluated perturbation theory by

adding |a(1)1 |2 + |a(2)2 |2 + |a(3)3 |2 as defined in Eq. (9). The sum
is much smaller than the probability to transfer all 3 particles
which is displayed in the lower panel. b) From bottom to top:
numerics using the model (1), analytic estimate of Eq. (29) ,

numeric evaluation of |a(4)4 |2 as defined in Eq. (9). The upper
two curves lie very close together.

has as the leading order contribution:

η
(1)
0 = −8.7Ω (25)

η
(2)
0 = −0.9Ω (26)

η
(3)
0 = 6.9Ω (27)

η
(4)
1 = 2.7Ω, (28)

with∣∣∣∣(a(4)
4 (t)

)
leading

∣∣∣∣ =
3Ω4J3

0

(
2µ1

ω

)
J1

(
2µ1

ω

)
2
∣∣∣η(1)0

(
η
(1)
0 +η

(2)
0

)(
η
(1)
0 +η

(2)
0 +η

(3)
0

)∣∣∣ t .
(29)

This analytic function correctly predicts that the tun-
nelling of all 4 particles at once takes place at a much
longer time-scale than for three particles (Fig. 9). As
for the previous figure, the tunnelling can be labelled a
co-tunnelling process, now of four particles.

VII. CONCLUSION

Both perturbation-theory and beyond-perturbation-
theory approaches can be applied to understand the
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physics of fractional photon-assisted tunnelling in optical
super-lattices. In some cases even analytical calculations
are possible. While the 1/2-resonance has already been
observed experimentally, we predict that both the 1/3-
photon resonance and the 1/4-photon resonance should
be observable experimentally.

For the 1/3-resonance, an interesting phenomenon oc-
curs: although both first and second order perturbation
theory are small, third order perturbation theory never-
theless correctly describes it is a large effect. This effect
can also be found for larger particle numbers. It will,
however, be much more realistic to try and observe this
effect for 3 particles than for much larger particle num-
bers: Both the time-scales for the transfer to the upper
well becomes large and the model (1) becomes less valid.

In the same way in which it is possible to describe the
1/2-resonance for some parameters alternatively as co-
tunnelling of a pair of atoms [30], we thus numerically
observe co-tunnelling for both 3 and 4 atoms.
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[6] S. Fölling, University of Munich, private communication,
2010.

[7] S. Folling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,
A. Widera, T. Muller, and I. Bloch, Nature 448, 1029
(2007).

[8] P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger,
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[40] S. Zöllner, H.-D. Meyer, and P. Schmelcher, Phys. Rev.
Lett. 100, 040401 (2008).

[41] J. Grond, T. Betz, U. Hohenester, N. J. Mauser,
J. Schmiedmayer, and T. Schumm, ArXiv e-prints(2011),
arXiv:1102.1459 [quant-ph].

http://dx.doi.org/10.1103/PhysRevB.82.205123
http://dx.doi.org/10.1088/0953-4075/43/20/205304
http://dx.doi.org/10.1103/PhysRevA.83.053627
http://dx.doi.org/10.1103/PhysRevB.84.054301
http://arxiv.org/abs/1104.1833
http://arxiv.org/abs/1105.4629
http://arxiv.org/abs/1102.1459


8

[42] M. Abramowitz and I. A. Stegun, Pocketbook of Mathe-
matical Functions (Verlag Harri Deutsch, Thun, 1984).

[43] S. Trotzky, University of Munich, private communica-
tion, 2010.

[44] NB: The above conditions are necessary to construct ex-
amples for which Nth order perturbation theory is the
first to be large. It is, however, possible to find parame-
ters for which the 1/N -resonances do not meet all those

conditions (cf. Fig. 7). Furthermore,
∣∣∣a(N)

N
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Appendix A: Understanding the tunnelling for N = 4
via beyond-perturbation theory calculations

Reference [34] demonstrates that it is possible, at least
for cases with one dominant frequency for each tunnelling
event, to use a beyond-perturbation theory version of
Sec. II C. In the present Section, the analytic calculations
within the effective model [34] are performed in detail for
N = 4 particles.

Using the abbreviations

Ω
(j)
k ≡

√
j
√
N − j + 1

2
ΩJk(2µ1/ω) (A1)

B
(j)
k = ikΩ

(j)
k , (A2)

we can rewrite the equations of Sec. II C in such a way
that they can be solved beyond the perturbation theory
approach. We are, however, restricted to cases where
only one frequency plays a role. For those we have:

d

dt


a0(t)
a1(t)
a2(t)
a3(t)
a4(t)

 = A(t)


a0(t)
a1(t)
a2(t)
a3(t)
a3(t)

 (A3)

where A(t) is a Hermitian 5 × 5 matrix which has only
non-zero entries for (A(t))n,m with n = m± 1:

(A(t))n,n+1 = B
(n)
kn

exp
(
−iη(n)

kn
t
)

(A4)

and

(A(t))n+1,n = (B
(n)
kn

)∗ exp
(
iη

(n)
kn
t
)
. (A5)

This can be solved using the ansatz


a0(t)
a1(t)
a2(t)
a3(t)
a4(t)

 =


ã0 exp(−iωt)

ã1 exp[−i(ω − η(1)
k1

)t]

ã2 exp[−i(ω − η(1)
k1
− η(2)

k2
)t]

ã3 exp[−i(ω − η(1)
k1
− η(2)

k2
− η(3)

k3
)t]

ã4 exp[−i(ω − η(1)
k1
− η(2)

k2
− η(3)

k3
− η(4)

k4
)t]


(A6)

which leaves us to calculate the eigenvalues of the time-
independent matrix:

B =


0 −B(1)

k1
0 0 0

−B∗(1)
k1

η
(1)
k1

−B(2)
k2

0 0

0 −B∗(2)
k2

η
(1)
k1

+ η
(2)
k2

−B(3)
k3

0

0 0 −B∗(3)
k3

∑3
j=1 η

(j)
kj

−B(4)
k4

0 0 0 −B∗(4)
k4

∑4
j=1 η

(j)
kj

 .

(A7)
In order to obtain a 1/2-photon resonance the following
conditions [10] are imposed on the choice of the ideal

frequencies η
(j)
kj

:

η
(1)
k1

+ η
(4)
k4

= 0⇒ k1 + k4 = 1 ,

η
(2)
k2

+ η
(3)
k3

= 0⇒ k2 + k3 = 1 ,

η
(1)
k1

+ η
(2)
k2

= 0⇒ κ = −1

8
(k1 + k2)ω − 1

2
µ0 . (A8)

Furthermore ω/2 = 2µ0 and thus one may choose κ =
ω/4 implying k1 + k2 = −1. Once choosing k1 all fre-
quencies are fixed. With the above conditions fulfilled
it is now possible to solve the eigenvalue problem ana-
lytically. For the sake of readability from now on the
following further changes in the notation will be adopted
in the four-particle case:

Ω
(1)
k1
→ Ω1 ,

Ω
(2)
−k1−1 → Ω2 ,

Ω
(3)
k1+2 → Ω3 ,

Ω
(4)
1−k1 → Ω4 ,

η
(1)
k1
→ η1 . (A9)

The eigenvalues ωi are:

ω1 = 0 ,

ω2/3 =
1

2

{
η1 ∓

√
η2

1 + 2
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4 −
√
K
)}

,

ω4/5 =
1

2

{
η1 ∓

√
η2

1 + 2
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4 +
√
K
)}

,

(A10)

where K represents the expression:

K ≡ Ω4
1 + Ω4

2 + 2Ω2
2(Ω2

3 − Ω2
4) +

+ 2Ω2
1(Ω2

2 − Ω2
3 − Ω2

4) + (Ω2
3 + Ω2

4)2 . (A11)

The corresponding eigenvectors ṽ(i) are inserted into the
ansatz (A6) and yield five independent, not yet nor-
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malised, solutions to the time-dependent problem:

v(1)(t) =


−Ω2Ω4

Ω1Ω3

0
iΩ4

Ω3

0
1

 ,

v(2)(t) =



Ω1(−Ω2
1−Ω2

2+Ω2
3+Ω2

4+
√
K)

2Ω2Ω3Ω4

− i
−k′ (−Ω2

1−Ω2
2+Ω2

3+Ω2
4+
√
K)

2Ω2Ω3Ω4
ω2e

iη1t

− i(Ω
2
1+Ω2

2+Ω2
3−Ω2

4−
√
K)

2Ω3Ω4

− i
−k′+1

Ω4
ω2e

iη1t

1


e−iω2t ,

v(3)(t) =



Ω1(−Ω2
1−Ω2

2+Ω2
3+Ω2

4+
√
K)

2Ω2Ω3Ω4

− i
−k′ (−Ω2

1−Ω2
2+Ω2

3+Ω2
4+
√
K)

2Ω2Ω3Ω4
ω3e

iη1t

− i(Ω
2
1+Ω2

2+Ω2
3−Ω2

4−
√
K)

2Ω3Ω4

− i
−k′+1

Ω4
ω3e

iη1t

1


e−iω3t ,

v(4)(t) =



−Ω1(Ω2
1+Ω2

2−Ω2
3−Ω2

4+
√
K)

2Ω2Ω3Ω4

i−k
′
(Ω2

1+Ω2
2−Ω2

3−Ω2
4+
√
K)

2Ω2Ω3Ω4
ω4e

iη1t

− i(Ω
2
1+Ω2

2+Ω2
3−Ω2

4+
√
K)

2Ω3Ω4

− i
−k′+1

Ω4
ω4e

iη1t

1


e−iω4t ,

v(5)(t) =



−Ω1(Ω2
1+Ω2

2−Ω2
3−Ω2

4+
√
K)

2Ω2Ω3Ω4

i−k
′
(Ω2

1+Ω2
2−Ω2

3−Ω2
4+
√
K)

2Ω2Ω3Ω4
ω5e

iη1t

− i(Ω
2
1+Ω2

2+Ω2
3−Ω2

4+
√
K)

2Ω3Ω4

− i
−k′+1

Ω4
ω5e

iη1t

1


e−iω5t .

(A12)

Any state |Ψ(t)〉 of the four-particle system can now be
expressed as a linear combination |Ψ(t)〉 = b1v

(1)(t) +
b2v

(2)(t) + b3v
(3)(t) + b4v

(4) + b5v
(5) of the eigenstates.

The coefficients bi are again obtained from the initial
condition |Ψ(0)〉 ≡ |0〉.

The probability to find the system in a Fock state |i〉
is given by the overlap with |Ψ(t)〉 and may be expressed

as the square of an amplitude |ai(t)|2 with v
(j)
i being the

i-th component of the j-th eigenvector:

|〈Ψ(t) |i 〉| = |ai(t)|2 =

∣∣∣∣∣∣
5∑
j=1

bj
v

(j)
i+1(t)∣∣v(j)(t)

∣∣
∣∣∣∣∣∣
2

. (A13)

Finally, the time-dependent transfer Ptrans(t) is expressed
in terms of the amplitudes ai(t) as

Ptrans(t) =
1

4

[
4 |a4(t)|2 + 3 |a3(t)|2 + 2 |a2(t)|2 + |a1(t)|2

]
.

(A14)
This expression for given time and amplitude of the driv-
ing is displayed as a function of the coupling strength in
Fig. 5.
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