

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

SIAM/ASA J. UNCERTAINTY QUANTIFICATION © 2016 Society for Industrial and Applied Mathematics
Vol. 4, pp. 495–519 and American Statistical Association

Hierarchical Emulation: A Method for Modeling and Comparing Nested
Simulators∗

Rachel H. Oughton† and Peter S. Craig†

Abstract. Computer simulators often contain options to include extensions, leading to different versions of
a particular simulator with slightly different input spaces. We develop hierarchical emulation, a
method for emulating such simulators and for learning about the differences between versions of
a simulator. In an example using data from an ocean carbon cycle model, hierarchical emulators
outperformed standard emulators both in their predictive accuracy and their coherence with the
emulation model. The hierarchical emulator performed particularly well when a comparatively small
amount of training data came from the extended simulator. This benefit of hierarchical emulation
is advantageous when the extended simulator is costly to run compared to the simpler version.

Key words. Bayesian emulation, computer models, nested simulators, ecosystem models

AMS subject classification. 62

DOI. 10.1137/15M1007914

1. Introduction. Computer simulators are used in many fields to better understand the
behavior of complex systems. Although a simulator is built using experts’ understanding of
a system, the combination of many subprocesses means that in terms of going from input to
output variables, it is often a black box. The number of input variables can be large, and the
complexity of the model can make the simulator slow to run. Because of this, it is usually
impossible to fully explore the behavior of a simulator (denoted s(·)), over its input space x.

Bayesian emulation [3, 7, 13, 8], summarized in section 2, allows us to approximate the
simulator’s behavior. An emulator is usually much faster to run than the simulator and enables
us to make probability statements about the output anywhere in the input space, given some
simulator data we have seen and the probability model we specify. Emulators are powerful
tools for dealing with continuous input variables.

Two simulators, s0(·) and s1(·), of the same system may be nested in the sense that the
input variables for s0 are a subset of the input variables for s1. Alternatively, a single simulator
can have one or more “switch” input variables. A switch turns a particular process on or off,
or adds additional parameters to a process when on. A switch may be binary or continuous.
A continuous switch takes effect through one or more continuous input variables for which
there is a null value which corresponds to turning the process off or removing parameters.
The simulator version with all switches off, s0, is nested in the version s1 with all switches on.
When there is more than one switch, there is a more complicated nesting structure involving

∗Received by the editors February 10, 2015; accepted for publication (in revised form) January 19, 2016; published
electronically May 3, 2016.

http://www.siam.org/journals/juq/4/M100791.html
†Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK (r.h.oughton@durham.ac.uk,

p.s.craig@durham.ac.uk). The work of the first author was supported by a UK Natural Environment Research Council
doctoral training grant.

495

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/juq/4/M100791.html
mailto:r.h.oughton@durham.ac.uk
mailto:p.s.craig@durham.ac.uk

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

496 RACHEL H. OUGHTON AND PETER S. CRAIG

simulator versions intermediate between s0 and s1 for which a subset of the switches is on.
If turning on switches makes the simulator much more computationally intensive, there

may be particular value in seeking to build an emulator of s1 using more data from s0, or
from intermediate versions, than from s1. Alternatively, for example if the effect of an added
process is unknown or poorly understood, there may be particular interest in understanding
the difference between simulator output from s0 and s1 when the input variables to s0 are set
to the same values in s1.

Section 3 presents hierarchical emulation, a method for emulating nested simulators, with
particular emphasis on situations involving continuous switches. The relationship between
s0 and s1, and any intermediate simulators, is captured in the emulation structure. The
framework of hierarchical emulation presents issues for the choice of prior distribution and for
the design of training data, and these are discussed in sections 3.2.1 and 3.2.2.

Any task that a hierarchical emulator can perform can also be done by a “standard” em-
ulator. In section 4 we discuss how to compare the performance of hierarchical and standard
emulators. In sections 5–7 we demonstrate hierarchical emulation using HadOCC, an ocean
carbon cycle simulator, and compare the performance of hierarchical and standard emulators.
Section 7 shows a substantial improvement over standard methods when only a small propor-
tion of the data comes from the more complex version of the simulator. Overall, we find that
the hierarchical emulators predict the simulator’s behavior more accurately than a standard
emulator.

An alternative hierarchical structure is provided in [6] but is restricted to situations where
all switches, also known as branching factors, are binary. In [6], simulators need not be
nested, and the two values of a switch can add different sets of input variables to the set of
input variables common to the two simulator versions. No comparison is made in [6] of the
performance of different approaches to emulation.

2. Emulation. An emulator is a statistical representation of beliefs about a simulator.
Instead of giving precise output values for a set x of input points (as the simulator does),
an emulator returns a joint probability distribution, or some other measure of uncertainty,
for s(x) (the simulator output) conditional on some known simulator data. This gives an
approximation of the simulator’s output, and a measure of confidence in that approximation.

Usually an emulator is much faster to run than the simulator. Consequently, the number
of input points at which approximate output values can be obtained using the emulator is
higher than the number for which it would be feasible to obtain true values from the simulator.
If the emulator’s approximation is good enough, then it may be used for subsequent analyses.

Begin by representing the simulator, which is assumed here to be scalar-valued, as

(2.1) s(x) =

q∑
j=1

βjξj(x) + ε(x),

where ξj(x) are q specified regression basis functions intended to account for a substantial
part of the variation in simulator output, β is a vector of uncertain coefficients, and ε(x) is a
correlated error term modeled by a stationary Gaussian process with specified autocorrelation
structure and uncertain variance σ2. We use the Gaussian correlation function, but the
hierarchical emulation method would work with other choices. The strength of the correlation

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 497

of ε(x) is controlled by some parameters commonly known as “correlation lengths” which
determine how rough or smooth the function is. For a collection of input points x this
becomes a linear model s(x) = Xβ+ ε(x). Here, s(x) is the vector of simulator output values,
X is the model matrix built from the regression basis functions, and ε(x) is the vector of
values of ε(.).

Bayesian emulator construction requires training data, a collection of n input values x =
[x1, . . . , xn] and a vector of corresponding output values s(x) = (s(x1), . . . , s(xn))

′ obtained
from the simulator. It also requires a prior distribution for β and σ2. The commonly used
normal inverse-gamma prior is conjugate. In the absence of expert judgments with which to
choose a prior distribution, we use its weak form p(β, σ2) ∝ 1/σ2.

The aim is to model the simulator’s behavior at any collection x̃ = [x̃1, . . . , x̃m] of input
points, using the training data. This is equivalent to finding the posterior predictive distribu-
tion s(x̃) | s(x). Using the conjugate prior and treating correlation parameters for ε as fixed,
s(x̃) | s(x) is available analytically and is a location-scale multivariate t-distribution with n−q
degrees of freedom. This distribution represents both uncertainty about the smooth error term
at unobserved values of x and uncertainty about the regression coefficients. The procedure
can be extended to emulate multivariate output, and the posterior predictive distribution is
derived in [2] for the case of a stationary and separable covariance structure. For the fixed
correlation parameters, we use their marginal maximum a posteriori estimates based on a
uniform prior, which is equivalent to maximizing the marginal likelihood. The uncertainty
lost by using these estimates could be restored, if merited in a particular application, by
carrying out some form of Markov chain Monte Carlo (MCMC) sampling for the correlation
length parameters. Dropping the explicit dependence on x̃ (and the training inputs x), we
will write ŝ for the emulator’s expected value for simulator output E

(
s(x̃) | s(x)), and V̂ for

the emulator’s predictive covariance matrix. Derivation of these quantities is shown in [9].
Often s(x) will be some function of the simulator’s raw output, as the latter can be high-

dimensional both in time and space. We may choose an average or a collection of time points.
It may also be that the emulator will perform better using some transformation of these
quantities. To find such a transformation we can use methods such as the Box–Cox model
selection procedure.

For example, some emulation choices have been made in this description of emulation.
A different correlation function family would easily be accommodated. Others, for example,
the authors of [6], might dispense with regression functions and compensate by increasing the
complexity of the stationary autocorrelation model for ε. This could be accommodated in the
procedure described above but at the price of increasing the number of parameters for which
posterior uncertainty is neglected. On the other hand, the choice to be Bayesian is fairly
fundamental for three reasons: (i) there is no repeatable random experiment being modeled
here, and so probability is being used to quantify uncertainty rather than variability; (ii) it
accounts for uncertainty about β and σ; (iii) the need in section 3.3 to combine uncertain
predictions from multiple emulators requires that emulator predictions and uncertainties be
expressed using multivariate probability distributions. Avoiding MCMC by fixing correlation
parameters means that the emulation procedure is easy to implement and does not involve
a heavy computational burden. As a consequence, the emulator can be used for a wider
range of tasks, for example in design calculations for choosing input points at which to run a
computationally expensive simulator.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

498 RACHEL H. OUGHTON AND PETER S. CRAIG

2.1. Validating an emulator. For an input point x whose output we do not know, the
emulator’s approximation should be plausible in view of our beliefs and the data we have, and
the probability distribution should reflect our uncertainty about what the simulator may do at
this point. Verifying this requires some care, and here we describe some validation techniques
for univariate emulators. More detail is given in [1].

If we observe the actual simulator output s̃ = s(x̃), a measure for comparing the predic-
tions with the true values is the root mean squared error

RMSE(s̃) =

√
1

m
‖s̃− ŝ‖2 =

√√√√ 1

m

m∑
1

(
s(x̃i)− ŝ(x̃i)

)2
,

which should be as small as possible and is a measure of the accuracy of the emulator’s
prediction.

To include the effects of variance, one can find the individual standardized prediction errors,

SPE(ŝ(x̃i)) = (ŝ(x̃i)− s(x̃i))
/(√

V̂ii

)
.

These are not independent but, for input points which are well spaced relative to the corre-
lation lengths being used, should approximately follow a normal distribution, and, bearing in
mind that σ will not be known precisely from the training data, the standard deviation should
be close to 1 provided that n− q is large. There should be no observable trends with respect
to x. Emulating the SPE itself as a function of x using a more complex regression surface
than that of the emulator of the output can expose problems or show whether the regression
surface in the output’s emulator is appropriate.

In order to account for the covariances between emulator predictions, which the individual
prediction errors do not incorporate, the authors of [1] suggest looking at the Mahalanobis
distance,

MD(ŝ) = (s̃− ŝ)′ V̂
−1

(s̃− ŝ).

The posterior predictive distribution of MD(ŝ) is a scaled F -distribution with m and n − q
degrees of freedom,

[(n− q) / (m(n− q − 2))]MD(s̃) | s(x) ∼ Fm,n−q.

Any set of new inputs x̃ will give one Mahalanobis distance, and the outcomes for different
sets will be predictively correlated unless they are well separated. Consequently, fit to this
distribution cannot easily be checked, but the value for each set can be compared to the
distribution to give some diagnostic for how well the emulator fits the simulator. More detail
on emulator validation is given in [1].

3. Hierarchical emulation for nested simulators. In the simplest case, there is a single
binary switch variable v which can be either on or off. If it is off, the simulator is a function
s0(x), where x is the collection of input variables. If the switch is on, extra input variables w
are introduced and the simulator becomes s1(x,w). If, instead, the single switch is continuous,

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 499

the more complex version of the simulator is s1(x, v, w) and has the property that s1(x, v
∗, w) =

s0(x) when the variables v that control the switch are at the null value v∗.
These two situations and those involving more switches are covered by the following general

framework: there is a simulator s0(x) which can be extended to s1(x, v, w) and where s1
reproduces s0 if the parameters v are set to a particular null value v∗. Thus,

(3.1) s1(x, v
∗, w) ≡ s0(x)

for all valid values of x and w. The variables w belong only to the extended simulator s1(·)
and do not affect the matching of s1 with s0 at v = v∗. From here on, v are described as
hierarchical variables and w as extra variables.

This structure is considered, albeit with a different application in mind, in [5] (see es-
pecially sections 4.3 and 6.2). They form a relationship between two simulators, one which
actually exists, and the other, a “reified” idealization, which is a hypothetical step in making
the simulator a better representation of the real system. Below, that structure is used to
develop a method to jointly emulate two simulators.

In the standard emulation framework, as described in section 2, the two versions would
essentially be emulated as two different functions, making it difficult to compare their be-
havior closely, and also losing the relationship between the functions at v = v∗. We now
introduce hierarchical emulation, which enables emulation of s1 in a way that incorporates the
information in (3.1) and the structure of multiple switches. In section 5 we give an example
using HadOCC, an ocean carbon cycle model containing switch variables.

3.1. A hierarchical emulation structure for multiple switches. Suppose first that there
is a single switch, and assume that a suitable transformation function g(·), satisfying g(v∗) =
0 ⇐⇒ v = v∗, can be chosen. The two simulator versions are then linked by s1(x, v, w) =
s0(x)+g(v)ψ(x, v, w), where the new hierarchical basis function ψ(·) is determined, for v �= v∗,
by s1(.), s0(.), and g(.).

For k switches, with hierarchical variables v1, . . . , vk and corresponding null values v∗1 , . . . , v∗k,
the structure generalizes to

s1(x, v, w) = s0(x) +

k∑
i=1

gi(vi)ψi(x, vi, w) +

k∑
i=1
j>i

gij(vi, vj)ψij(x, vi, vj , w)

+ · · ·+ g1...k(v1, . . . , vk)ψ1...k(x, v1, . . . , vk, w)

= s0(x) +
∑
[i]

g[i](v[i])ψ[i](x, v[i], w),(3.2)

where the last sum is over all possible nonempty subsets [i] of {1, . . . , k}. For each [i], v[i]
is the corresponding collection of hierarchical variables; g[i](.) is the corresponding transfor-
mation function; and the corresponding hierarchical basis function ψ[i](.) is a function of x,
v[i], and the extra variables w. Equation (3.2) allows for all possible interactions involving
the hierarchical and extra variables. In what follows, we extend the notation for subsets of
hierarchical variables to include the case where [i] is empty by taking ψ(x,w) = s0(x), andD

ow
nl

oa
de

d
05

/1
9/

16
 to

 1
29

.2
34

.2
52

.6
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

500 RACHEL H. OUGHTON AND PETER S. CRAIG

g() ≡ 1, so that (3.2) can be rewritten as

(3.3) s1(x, v, w) =
∑
[i]

g[i](v[i])ψ[i](x, v[i], w),

where the sum is now over all subsets [i] of {1, . . . , k}.
We require for each subset [i] that

(3.4) g[i](v[i]) �= 0 ⇐⇒ vj �= v∗j ∀j ∈ [i].

The consequence is that, once the transformation functions are specified, the hierarchical basis
functions ψ[i](.) are uniquely defined in terms of s1(.). When all switches are off, s1(x, v, w) =
s0(x) = ψ(x,w), which determines ψ(.). When only switch i is on, gi(vi) �= 0, and all
hierarchical variables other than vi are set to their null values. Then s1(x, v, w) = ψ(x,w) +
gi(vi)ψi(x, vi, w) so that ψi(x, vi, w) = (s1(x, v, w) − ψ(x,w))/gi(vi). Note that ψi(x, v

∗
i , w)

makes no contribution in (3.2) and is therefore effectively irrelevant.
When switches 1 and 2 are on and others are off, we have

s1(x, v, w) = ψ0(x,w) + g1(v1)ψ1(x, v1, w) + g2(v2)ψ2(x, v2, w) + g12(v1, v2)ψ12(x, v1, v2, w),
(3.5)

which determines ψ12(x, v1, v2, w), since all other quantities are already determined and
g12(v1, v2) �= 0 when the switches are on. The same process works for any other pair of
switches. The hierarchical basis function for any three switches can now be determined by
turning on only those switches, and all remaining ψ[i] can be determined by proceeding hier-
archically.

A simple way to construct the transformation functions would be first to choose a suitable
function gi(vi) for each individual switch, satisfying gi(vi) = 0 ⇐⇒ vi = v∗i . For a binary
switch, v∗i = 0, and one can simply take gi(vi) = vi. Guidance on choosing a transformation
function for a continuous switch is provided in section 3.2.2. Transformation functions for
interactions could then be obtained as g[i](v[i]) =

∏
j∈[i] gj(vj), although other choices could

be made if needed for a particular application. In order to be able to emulate the hierarchical
basis functions, they must be continuous and finite, and so the transformation function for a
continuous switch should at least be continuous.

For each hierarchical basis function, it is possible that some of the extra variables will be
inactive in the sense that changing those inputs does not change the output of the function.
This might be the case if, for example, two switches, or groups of switches, switch on different
additional processes in the full simulator. This should not cause difficulties when constructing
emulators provided that we know which extra variables are inactive for each hierarchical basis
function. For consistency, we would also expect that when an extra variable is active in ψ[i]

it is also active in ψ[i′] if [i] ⊂ [i′].

3.2. Building a hierarchical emulator. Having decomposed s1(x, v, w) using (3.3), a
hierarchical emulator can be built using a collection of standard emulators constructed as
in section 2. The hierarchical emulation strategy is to emulate s1(x, v, w) by emulating each

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 501

of the hierarchical basis functions ψ[i](x, v[i], w) separately, so that (2.1) generalizes to

ψ[i](x, v[i], w) =

q[i]∑
j=1

β[i],jξ[i],j(x, v[i], w) + ε[i](x, v[i], w) for each [i],(3.6)

where the regression basis functions and parameters for ε[i] can be different in each emulator.
Suppose that some observations ψ[i] of the corresponding hierarchical basis function at

known inputs are available for each [i]. Then each hierarchical basis function emulator can
be built separately using the framework in section 2, so that for m new input points (x̃, ṽ, w̃)
the posterior distribution

ψ[i](x̃, ṽ[i], w̃) | ψ[i](3.7)

can readily be found for each [i]. However, some issues need to be addressed: (i) why, and
under what conditions, is it legitimate to separate into multiple emulators in this way; and (ii)
how are we to combine the separate emulators to find the posterior distribution of s1(x̃, ṽ, w̃)
given the combined data?

It would clearly seem incorrect to do the Bayesian updating separately for each emulator
if there was prior dependence between the emulators. If, for a particular application, prior
knowledge was available which linked, for example, values of s0 and ψ1, that should be taken
into account. However, such prior knowledge is likely to be rare, and so we consider situations
where the uncertain components (β[i], σ[i], ε[i]) for the emulator of ψ[i] are independent a priori
of the components for each of the other hierarchical basis function emulators. This makes
all the hierarchical basis functions ψ[i](x,v[i],w) independent a priori for any set of inputs.
A consequence is that the prior variance of s1(x, v, w) increases as v moves away from v∗.
Whether or not this is undesirable is not obvious. It is evident in the examples in later
sections, but does not appear problematic.

However, even with a priori independence, were we simply to observe s1(x, v, w) at a single
point where each switch was on, it is clear from (3.3) that this would induce a posteriori
dependence between all the emulators. On the other hand, if it were possible to make direct
observations of hierarchical basis functions and those were the only data, the emulators would
remain independent a posteriori if they were independent a priori. We shall see that certain
designs for obtaining training data from s1 are equivalent to making only direct observations
of hierarchical basis functions.

We do not claim that the only way to avoid posterior dependence is prior independence
combined with the training data design proposed below, but we believe that there is little,
if any, useful possibility of doing so in another way. Some further discussion, based on the
separability ideas in the supplementary material of [7], may be found in [10]. Maintaining
dependence a posteriori is not fundamentally necessary but is advantageous: if observations
are made which lead to two of the emulators ceasing to be independent, the prior is no
longer conjugate and the joint posterior predictive distribution will involve two uncertain scale
parameters and will no longer be a multivariate t-distribution. As a result, MCMC would be
needed in order to address uncertainty about the σ parameters for the two emulators.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

502 RACHEL H. OUGHTON AND PETER S. CRAIG

3.2.1. Design for training data. For training data, s1(x, v, w) must be observed at spec-
ified points. In principle, s0(x) can also be observed, but this is equivalent to observing
s1(x, v

∗, w) for any w, and so the design question is simply about where to evaluate s1. Two
problems are intertwined here: (1) how to avoid posterior dependence between emulators and
(2) how to observe values of the hierarchical basis functions. The latter are not simulators
and therefore cannot be evaluated directly.

Consider a point (x, v, w) where all switches are on. For each [i], there is a natural cor-
responding point where only the switches in [i] are on. The corresponding point is obtained
by moving the hierarchical variables for switches not in [i] to their null values. At the corre-
sponding point, all terms in (3.3) which involve hierarchical variables for switches not in [i] are
zero. More generally, for any point where only switches in [i] are on, there is a corresponding
point for each [i′] ⊂ [i] at which only switches in [i′] are on.

Suppose that s1 is observed at a single point where all switches are on and that, for each
[i], it is also observed at the corresponding point. The observations of s1 at all of those
points are then sufficient to determine the value of each hierarchical basis function appearing
in (3.3), the expansion of s1(x, v, w) at the original point. On the other hand, if one knew
all those values of the hierarchical basis functions, one would be able to calculate s1 at the
original point and at each of the corresponding points. Because observing s1 at the original
and at all corresponding points is logically equivalent to making a number of observations
of hierarchical basis functions, observing those data does not induce a posteriori dependence
between the emulators of the hierarchical basis functions.

More generally, consider observing s1 at some point where only some subset [i] of switches
is on. The only hierarchical basis functions ψ[i′] which then contribute to the expansion in (3.3)
are those where [i′] ⊆ [i]. Suppose that s1 is observed at that point and at all corresponding
points where only a subset of the switches in [i] is on. This collection of values of s1 is
equivalent to observing the value of each ψ[i′]. Consequently, observing such a cluster of
points would again not induce dependence between emulators.

Therefore, the fundamental principle of the training design is that if the design includes
a point where the switches in [i] are on and all others are off, it must also include, for each
[i′] ⊂ [i], the corresponding point where only the switches in [i′] are on. The resulting training
dataset (TD) has two equivalent representations: (i) as a collection of values of s1 at specified
inputs and (ii) as a union of training datasets TD[i] where each TD[i] is a collection of values of
ψ[i] at specified inputs. Updating beliefs about s1 based on the TD is equivalent to updating
beliefs about each ψ[i] using the data in TD[i].

This principle might seem to lead to prohibitively large designs if there are even a few
switches. However, the number of points can be decreased as the order of interaction increases,
thereby reducing the total number. For example, s1 might be observed at a number of points,
where all switches are on, and also at all corresponding points. The design could then be
augmented by any number of additional observations of s0. We will see in the example in
section 7 that this can produce an emulator that outperforms a standard emulator built with
the same data. The design could also be augmented by any number of observations at points
where any single switch was on, provided that observations on the corresponding points for
s0 were also included. For situations with more than two switches, augmentations involving
groups of switches would be possible.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 503

3.2.2. Choosing the transformation function for a continuous switch. The transforma-
tion functions determine the values and distributions of the ψ[i] used to train the emulator of
ψ[i](.). A poor choice could lead to a poor emulator, with especially poor variance estimates for
predictions. As indicated earlier, we propose to construct the transformation functions for in-
teractions of switches by multiplying transformation functions chosen for individual switches.
Here we discuss how to choose a transformation function for a continuous switch.

A common approach to finding transformations of the independent variable for a regression
type model is the Box–Cox family of transformations. This is a power-law family scaled so
that it includes a logarithmic transform as the power tends to zero. The power can be
estimated using maximum likelihood. However, in finding the transformation functions gi(·),
the plan is not to transform the simulator output but rather the hierarchical variables. The
transformation will then affect the definition of the hierarchical basis functions since they are
determined by s1, s0, and the transformation functions.

Consider first the situation where there is a single switch and the switch is continuous.
For clarity, we omit the subscripts for subsets of switches from the notation. Suppose that
some parametric family g(v; θ) of transformation functions has been chosen. We propose using
maximum likelihood to estimate θ, taking as data the differences d(x, v, w) = s1(x, v, w) −
s0(x) = g(v; θ)ψ(x, v, w) for points in the training design, where the switch is on, and ignoring
the correlation structure of ε(x) so that values at distinct points are independent. For any
choice of regression functions for the emulator of ψ, the approximate maximum likelihood
procedure leads to a computationally straightforward estimation of θ. This is because, given
θ, the estimates of β and σ are available in closed form and the profile log-likelihood for
θ is easily computed. This approach has a number of advantages: (i) it would be easy to
embed within a more complex procedure for choosing regression functions, (ii) the likelihood
maximization is more computationally demanding if the autocorrelation of ε(x) is not ignored,
and (iii) estimation of correlation parameters in generalized least squares in conjunction with
other parameters has been reported to be problematic in geostatistics (see [4]).

The log-likelihood for θ, β, and σ is −∑
� log g(v�; θ) − n log σ − 1

2σ2 ‖ψ − Xβ‖2, where
� indexes observations, ψ� = d�/g(v�; θ), and X is the model matrix for the emulator of ψ.
Given θ, this is maximized when β is the usual least squares estimate β̂ = (XTX)−1XTψ and
σ2 is the usual error variance maximum likelihood estimate σ̂2 = ‖ψ −Xβ̂‖2/n. Substituting
these yields the profile log-likelihood.

Turning to situations with multiple switches, we see that each continuous switch may
have its own parameterized transformation function. The overall profile log-likelihood for
transformation function parameters is a sum of individual profile log-likelihood terms. Each
term is associated with a particular subset of switches. The term for subset [i] is a function of
the transformation function parameters for each switch in [i] and takes as data d[i](x, v[i], w) =
g[i](v[i])ψ[i](x, v[i], w) for points in the training design at which [i] is the set of switches that are
on. It will then be necessary to maximize numerically the overall profile log-likelihood. The
dimension of the optimization problem will be the total number of transformation function
parameters, and this is likely to be roughly proportional to the number of hierarchical inputs.

3.3. The resulting emulator. Suppose that a training dataset has been obtained, the
regression functions have been chosen for each emulator, and the transformation functions

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

504 RACHEL H. OUGHTON AND PETER S. CRAIG

have been chosen/estimated. Let (x̃, ṽ, w̃) be a set of new input points. Denoting the diagonal
matrix with diagonal g[i](ṽ[i]) by D[i], we have

E[s1(x̃, ṽ, w̃) | TD] =
∑
[i]

D[i]ψ̂[i],(3.8)

cov[s1(x̃, ṽ, w̃) | TD] =
∑
[i]

D[i]V̂[i]D[i],(3.9)

where ψ̂[i] = E[ψ[i](x̃, ṽ[i], w̃) | TD[i]] and V̂[i] = cov[ψ[i](x̃, ṽ[i], w̃) | TD[i]] are the predictive
mean vector and covariance matrix for the emulator of ψ[i] at the corresponding input points.
If more predictive detail is needed than provided by first and second moments, a sample can
be drawn from s1(x̃, ṽ, w̃)|TD by first sampling from each of the independent hierarchical
basis function emulators and then combining those samples using (3.3).

One feature of the hierarchical emulator is that it includes within it an emulator of the dif-
ference between the two simulator versions, since s1(x, v, w)−s0(x) =

∑
[i] g[i](ṽ[i])ψ[i](x̃, ṽ[i], w̃),

where the sum is over nonempty [i]. Having built emulators of the functions ψ[i](·), we can
easily find the predictive mean and variance of the simulator difference for new input points,
or sample from the posterior distribution, and thus explore the effect of the extension from
s0(x) to s1(x, v, w). For simulators having more than one switch, similar possibilities exist for
exploring intermediate versions of the simulator.

Building a hierarchical emulator requires many calculations and a lot of sorting and storing
of data. To do this effectively requires a careful framework, and so we developed an object-
oriented structure for hierarchical emulation in R [12].

3.4. Summary of method for building hierarchical emulator.
1. Determine the common, hierarchical, and extra input variables, and for each switch

determine v∗i . It may be necessary to reparameterize the input space, as in the example
in section 5.

2. Design the simulator inputs for training data, as in section 3.2.1, and run the simulator
at these points to produce the TD.

3. For each continuous switch, use the TD to choose a suitable transformation function
gi(vi). This will depend on the regression surface being used in each emulator. See
section 3.2.2.

4. Use the transformation functions and the TD to find the relevant values of hierarchical
basis functions to produce TD[i].

5. Build emulators for each of the 2k hierarchical basis functions ψ[i](x, v[i], w).
6. Validate the emulators using techniques from section 2.1. If these expose modeling

flaws, revisit the previous steps, focusing particularly on the structures of the regression
surfaces and correlated errors.

7. Use these emulators, combined with the g[i](v[i]) vectors, to emulate s1(x, v, w) and
s1(x, v, w) − s0(x), as described in section 3.3.

4. Comparing hierarchical emulation with the standard method. To uncover any ben-
efits deriving from hierarchical emulation, we should compare it to the status quo. Questions
we must therefore ask are the following:

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 505

1. What tasks are we asking the hierarchical emulator to perform?
2. What are the “standard” emulators against which we will compare the hierarchical

emulator?
We discuss these issues below in the general context of a simulator having a single switch,
before comparing different emulation strategies using two versions of HadOCC in subsequent
sections.

4.1. Tasks for comparison. When the hierarchical emulator is used to emulate s0(x), all
terms in (3.3) apart from the first are “switched off,” and we are left with the emulator of
s0(x). Therefore, the standard and hierarchical emulators of s0(x) will perform identically.
Predicting s1(x, v, w) output is useful in its own right, and in a situation where s0(x) is much
cheaper to run than s1(x, v, w), building a hierarchical emulator by using many runs from
s0(x) and fewer from s1(x, v, w) could be an attractive option. Consequently, the relative
performance of different emulators of s1 is of interest.

In comparing the two versions of the simulator, being able to reliably predict the difference
between them may be useful. This may make it possible to discern not only the circumstances
in which the two versions are very different but also when they behave similarly. Relative
performance of different emulators of s1(x, v, w) − s0(x) is therefore of interest.

When the switch is continuous, a particular interest lies in how prediction accuracy of dif-
ferent emulators depends on the values of the hierarchical inputs v. This may reveal inappro-
priate features of some emulators. In particular, it may be interesting to compare predictions
of the more complex version’s behavior when it is very close to the simpler simulator, that is,
when the v are very close to v∗.

4.2. Standard emulators. By “standard” emulators we refer to those built using the
methods in section 2, where the emulator is the sum of one regression surface and one station-
ary autocorrelated error term. In these terms, a hierarchical emulator is a linear combination
of standard emulators. In either setting there are choices to be made about prior distribution,
regression surface, and correlation function, and, while these are important, they are not the
focus of this paper. In building any emulator, these choices should be made to best suit the
simulator at hand. Here, we focus on the choice of an independent variable and the use of
training data. The set of “standard” emulators, with which hierarchical emulators might be
compared, should include the choices that intuitively best suit the tasks we have determined.

First, one could build a standard emulator of s1. It could be used to predict both
s1(x̃, ṽ, w̃) and s0(x̃) = s1(x̃, ṽ

∗, w̃). If the predictions were made for both sets of inputs
simultaneously, the predictive covariance matrix would enable calculation of the predictive
covariance matrix for the difference s1(x̃, ṽ, w̃)− s0(x̃). This emulator could therefore be used
for each of the tasks discussed. An emulator of s1 could be built either using only the training
data, where the switch is on, or using all of the simulator data available. In the examples in
section 5, both approaches are applied.

Instead of using an emulator of s1 only, one could build separate emulators of s1 and s0, and
then use these to predict s1(x̃, ṽ, w̃) and s0(x̃). The two emulators could be combined to find
the expected difference. Bounds on the variance of the difference for each input point could
be calculated using the Cauchy–Schwarz inequality, but the exact value var[s1(x̃, ṽ, w̃)− s0(x̃)]
could not.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

506 RACHEL H. OUGHTON AND PETER S. CRAIG

Finally, as long as the training data are set up in the correct way, the difference s1(x, v, w)−
s0(x) can be calculated exactly, and then emulated using standard methods. Intuitively, this
might be expected to produce the best emulator of the difference. It would not, however,
provide a way to see the difference relative to the values of each output, and so it would be
useful only when combined with an emulator of s0 or s1.

A truly comparable standard emulator? In comparing the performance of the hierarchical
emulator with that of the standard method, it seems appropriate to include, as far as possible,
the same information in both emulators. In terms of input data, this can be achieved by using
the same training data. However, the very structure of the hierarchical emulator includes
the information in (3.1) because of the transformation functions which switch off terms as
necessary. A fair question to ask then is, can this same information be included in a standard
emulator?

A crucial aspect of this information is that when v = v∗, the value of w does not affect the
value of s1(·). This information could be incorporated into a regression function simply by
making sure that all terms involving w also involve v in such a way that this is true. However,
for (3.1) to hold in the correlated error term, the correlation structure would have to be
drastically changed. One method would be to have correlation lengths for w that depend on
v such that when v = v∗ the extra inputs w add no variance. This seems a sufficiently serious
deviation from standard emulation for it to be fair to compare the hierarchical emulator with
those in section 4.2 and to consider the capacity to include the information in (3.1) as a
benefit, rather than an unfair advantage, of hierarchical emulation.

4.3. A small example. Suppose that s0(x) = sin(8
√
x) and that s1(x, y, z) = s0(x) +

y2[cos(12x)+sin(9z+3x)], where x, y, and z all lie in [0,1]. Then there is a continuous switch
with hierarchical variable y, for which the null value y∗ = 0, and z is an extra variable.

Emulation of s0 is straightforward since both function and derivative vary smoothly. Any
decent method should perform well.

Emulation of s1 is much more challenging. The amount of variability of s1 with respect to
changing z (and to some extent x also) is strongly dependent on y. An emulator which does
not incorporate this fact is likely to have too high a predictive variance for y near 0, especially
for points where only z differs from an observation point, and too low a predictive variance
for y near 1. Moreover, when the predictive variance is unnecessarily high, the predictions
themselves are likely to be unnecessarily inaccurate.

A standard emulator, with or without basis functions, has a stationary autocorrelated
error and so cannot incorporate the heterogeneity described in the previous paragraph. Basis
functions can help capture the right mean behavior but do not address the heterogeneity of
variability.

A hierarchical emulator can perform much better, provided that a suitable transformation
function g(y) is chosen. It is not necessary that g(y) be exactly some multiple of y2, but it
does need to capture that behavior for small y and to be a reasonable approximation to y2

throughout [0, 1]. Then the emulator will automatically build in the heterogeneity referred to
previously.

Note that emulation of s1(x, y, z)− s0(x) is more challenging: the heterogeneity issue now
applies to the variability due to changing either x or z. Both cases are strongly influenced by
the value of y.D

ow
nl

oa
de

d
05

/1
9/

16
 to

 1
29

.2
34

.2
52

.6
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 507

5. An example: HadOCC. HadOCC [11] is a compartmental ocean carbon cycle model
that models the concentrations of four tracers: nutrient (N), phytoplankton (P), zooplankton
(Z), and detritus (D). The output variables are given as time series over a year and include
quantities such as particulate organic nitrogen, total carbon, and concentrations of the four
tracers.

HadOCC has several switch parameters, which are listed in the supplementary mate-
rial. One that is relevant to this method is rcchlopt, which enables us to change the car-
bon:chlorophyll (C:Chl) ratio. The C:Chl ratio can be made constant (by setting rcchlopt =

0) or varying (by setting rcchlopt = 1). In the case where C:Chl varies, two new parameters
rcchlmin and rcchlmax are introduced, setting the minimum and maximum of the ratio.
HadOCC’s continuously varying inputs are given in the supplementary material.

In either case, a parameter rcchl sets the initial value of C:Chl (this remains the same
if C:Chl is constant). If C:Chl is varying and we set rcchlmin = rcchl = rcchlmax, then
HadOCC behaves exactly as with C:Chl constant at the same rate. So, with some reparam-
eterization, we can have a v∗ such that s0(x) = s1(x, v

∗, w). Therefore, these versions of
HadOCC can be used to build a hierarchical emulator. We choose iz.chl, the chlorophyll
concentration, to be the output because it is strongly affected by the C:Chl ratio, and there-
fore by the switch variable rcchlopt. We hoped that this would lead to nonnegligible values
for the ψ[i]() functions.

Although the two versions of HadOCC described above are identical for certain input
points, we cannot immediately discern the hierarchical variables v and extra variables w.
For this, the inputs must be reparameterized. Two valid parameterizations using rcchlmin,

rcchl, and rcchlmax are introduced here, either of which could be used to build a hierarchical
emulator.

Cuboid parameterization. One difference between the possible parameterizations is the
shape of the new input space. This parameterization takes the three inputs related to C:Chl
(rcchlmin, rcchl, and rcchlmax) and produces three more, R, m1, and m2, whose ranges
form a cuboid. These are defined by

R = rcchlmax− rcchlmin ∈ [0,M+ −M−),

m1 =
rcchlmin−M−
M+ −M− −R

∈ [0, 1],

m2 =
rcchlmax− rcchl

R
∈ [0, 1],

whereM− and M+ are the minimum and maximum, respectively, for rcchlmin, rcchl, and
rcchlmax, given that each has the same range.

R is the only hierarchical variable and R∗ = 0, since the two versions of HadOCC are the
same at R = 0. When R = 0, rcchlmin = rcchl, and m1 = (rcchl−M−) / (M+ −M−) ,
and so m1 replaces rcchl in the common inputs. Finally, m2 is an extra variable and exists
only when R �= 0.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

508 RACHEL H. OUGHTON AND PETER S. CRAIG

Noncuboid parameterization. In this parameterization, we keep rcchl and introduce two
new variables,

dmin = rcchl− rcchlmin ∈ [0, rcchl−M−] ,
dmax = rcchlmax− rcchl ∈ [0, M+ − rcchl] .

These are both hierarchical variables, since we must have dmin = dmax = 0 to achieve

rcchlmin = rcchl = rcchlmax.

This parameterization creates a more complicated input space, whose shape depends on rcchl.
By contrast, generating input Latin hypercubes in the cuboid parameterization is simple.

In fact, because of the constraint in the original input space that rcchlmin ≤ rcchl ≤
rcchlmax, generating designs is more straightforward in the cuboid input space than in the
original input space. That said, the cuboid parameterization may create scaling issues. When
R is small, the effect of m1 could potentially be large, since the small range can be anywhere
within [M−,M+], but the effect of m2 is limited, because there is only a small range in which
rcchl can sit. When R is large, this is reversed. Whether or not this is a problem is not
immediately obvious. Another advantage of this parameterization is that having only one
hierarchical variable, R, means that the training data design criteria do not force us to have
too great a number of points.

6. Equal data from both versions of the simulator. Here we show some hierarchical
emulators of the two versions of HadOCC built using the cuboid parameterization, and we
compare them to some standard emulators.

Training data. The training data for this example were formed using a 1,000 point Latin
hypercube over the reparameterized input space of s1(x,R,m2), where x denotes 26 continu-
ously varying parameters which are common to both versions of HadOCC. HadOCC was run
at each point, and the annual mean iz.chl calculated. To satisfy the design requirements,
the annual mean of iz.chl was also found for s0(x) at each point. This gave an input design
of 2,000 points, which we refer to as lhd1. The subdesign containing points at which R = 0
will be lhd1 0, and the subset of points at which R �= 0 will be lhd1 1, and each of these
contains 1,000 points. Note that the corresponding points in lhd1 0 and lhd1 1 share common
m1 values rather than common rcchl values. This means we must be careful and make sure
to use the reparameterized input variables when building standard emulators of the difference.

Emulation choices. This study requires many emulators, and for them to be as compara-
ble as possible we decided to fix the type of emulator. Therefore, in this section the regression
terms are all first order, with all input variables included, and the correlated error terms are
isotropic, with the correlation length found using maximum marginal likelihood. To make
the isotropic correlation more appropriate, the inputs are all first rescaled to the same inter-
val. None of these choices is necessary for the hierarchical emulator to work, and indeed, one
should usually make such choices carefully for the problem at hand. These are also general
issues in emulation about which there is not a consensus. We are not suggesting that our
specifications are somehow correct; rather, they are a way of avoiding tuning which might
unintentionally favor one emulation method over another.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 509

The relationship between the annual mean iz.chl and some of the more influential input
variables suggested that the logarithm of the annual mean would be an appropriate choice of
output variable, and this was confirmed by the Box–Cox procedure. Therefore, from now on
s0(·) and s1(·) denote the logarithm of the annual mean of iz.chl.

For the transformation function for R, we chose the family g(R) = [log(1 + κ(R))/κ]λ

which has two positive parameters κ and λ. This g(v) behaves like the power law Rλ over
the range of R when κ is small enough. For larger κ, it has the same power law behavior for
R close to 0 but grows less rapidly than the power law for higher R. The damping effect for
higher R increases as κ increases. One might also like the possibility for more extreme growth
at larger R, but we felt it was less likely and not needed for the example.

Using the profile log-likelihood described in section 3.2.2, we found that the optimization
headed toward the boundary where κ = 0 with λ tending at the same time to 0.7781, and so
we set g(R) = R0.7781.

Validation data. HadOCC is relatively quick to run, and so we produced a large dataset
with which to validate our emulators. The design lhd6 was formed using a one million point
Latin hypercube built using the staggered Latin hypercube design (LHD) method introduced
by [10], with c = 1,000 and m = 1,000. This means that it breaks down into 1,000 sub-LHDs,
each containing 1,000 points. Each of these points was matched by a corresponding point with
R = 0. HadOCC was then run at all two million points to produce both s1 and s0 data. For
each emulator we can therefore produce 1,000 sets of prediction summaries for each version
of HadOCC, that is, one for each sub-LHD.

Standard emulator performance. Performance summaries of emulators of s0 (x),
s1(x,R,m2), and (s1(x,R,m2)− s0 (x)) are given in the supplementary material. The “best
standard emulator” choices are summarized in Table 1. The best standard emulator of s0(x)
uses the cuboid parameterization and only the data lhd1 0 from s0(x), and therefore is ex-
actly the emulator used for the first term of the hierarchical emulator. Diagnostics for s0 are
therefore omitted from the hierarchical emulator tables.

Diagnostics are summarized by their minima, maxima, mean, and standard deviation.
Plots are also given and show interesting results. Because the Mahalanobis distance combines
so much information, it will not be used to choose between methods, although the values will
be shown for some emulators.

For the first three tasks, Tables 1 and 2 give a clear indication of the best strategy. The
emulator built using lhd1 0 (s0(x) data only) and the cuboid parameterization outperforms
each of the other standard emulators at predicting s0(x).D

ow
nl

oa
de

d
05

/1
9/

16
 to

 1
29

.2
34

.2
52

.6
5.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

510 RACHEL H. OUGHTON AND PETER S. CRAIG

Table 1
Summaries for the best standard emulators of s0, s1, and s1 − s0 used over each of the 1,000 sub-LHDs in

lhd6.

Min. Max. Mean SD

Cuboid inputs, lhd1 0

RMSE(s0) 0.113 0.137 0.125 0.00437
Mean SPE(s0) -0.0502 0.103 0.0261 0.0268

Variance SPE(s0) 0.940 1.43 1.18 0.0804

Cuboid inputs, lhd1 1

RMSE(s1) 0.126 0.157 0.140 0.00510
Mean SPE(s1) -0.0705 0.120 0.0268 0.0301

Variance SPE(s1) 0.940 1.44 1.15 0.0817

Difference data

RMSE(s1 − s0) 0.0941 0.115 0.103 0.00357
Mean SPE(s1 − s0) -0.114 0.0979 0.00878 0.0304

Variance SPE(s1 − s0) 0.948 1.39 1.12 0.0706

MD(s1) , transformed
0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6
7

(a) MD(s1), standard emulator of
s1 built from lhd1 1.

MD(s1 − s0) , transformed
0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8

(b) MD(s1 − s0), standard emulator of s1(·)−
s0(·) built from difference data.

Figure 1. Transformed Mahalanobis distances for the predictions of s1 (left) and s1(·) − s0(·) (right) for
the best standard emulator. The corresponding F -distribution densities are shown by solid lines.

The best method for predicting s1(·) is the cuboid parameterization built with the training
data lhd1 1. The difference is best predicted by the direct emulator of the difference between
logs calculated from the data lhd1. In most cases, standard emulators that perform well at
one of the tasks perform poorly at the others, where they can achieve them at all.

Although the predictions from the lhd1 emulator are quite accurate, the SPE and MD
summaries show that the emulator’s variance is not as it should be according to the model.
Figures 1a and 1b show the Mahalanobis distances, transformed to fit the F -distribution as
described in section 2.1, compared with the true F -distribution, and the correspondence is
poor.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 511

The plots in Figure 2 illustrate the standard emulators’ performance as the hierarchical
input R changes. Panels (a) and (b) show the SPE for the standard emulator of s1(·) built
using lhd1 1. The SPE for s1 and the SPE for s1 − s0 (not shown) both have a slight trend
with R, and the distribution of the SPE values for the difference is biased. Panels (c) and (d)
show SPE versus R, for s1 and s1− s0, for the emulator built from lhd1. This time, both show
a considerable trend to SPE against R, particularly the difference prediction. Other plots not
included here showed a similar pattern for several of the other standard emulators, especially
the emulator built from the difference data, with SPE values becoming more variable with
increased R.

0 50 100 150

−
8

−
6

−
4

−
2

0
2

4

R

S
P

E
(s

1)

(a) Standard s1(·) emulator, built using
lhd1 1, used to predict s1.

SPE(s1 − s0)

D
en

si
ty

−10 −8 −6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

(b) Standard s1(·) emulator, built using
lhd1 1, used to predict s1(·)− s0(·), with
the N(0, 1) density plotted as a line.

0 50 100 150

−
4

−
2

0
2

4

R

S
P

E
(s

1)

(c) Standard s1(·) emulator, built using
lhd1, used to predict s1.

0 50 100 150

−
3

−
2

−
1

0
1

2
3

R

S
P

E
(s

1
−

s 0
)

(d) Standard s1(·) emulator, built using
lhd1, used to predict s1(·)− s0(·).

Figure 2. Examples of poor behavior in the standardized prediction errors (SPEs) for predictions of s1
(plots (a) and (c)) and s1(·) − s0(·) (plots (b) and (d)) for some standard emulators. The prediction data-
set used for these plots is a pair of 1,000 point sub-LHDs from the lhd6 data.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

512 RACHEL H. OUGHTON AND PETER S. CRAIG

Table 2
Diagnostics summaries for the hierarchical emulator with g(R) = R0.7781 used over lhd6.

Min. Max. Mean SD

RMSE(s1) 0.113 0.142 0.125 0.00471
Mean error s1 -0.0159 0.00332 -0.00694 0.00356
Mean SPE(s1) -0.0343 0.110 0.0424 0.0247

Variance SPE(s1) 0.621 1.05 0.768 0.0598

RMSE(s1 − s0) 0.0792 0.103 0.0902 0.00400
Mean error s1 − s0 -0.0127 0.00396 -0.00402 0.00250
Mean SPE(s1 − s0) -0.0334 0.144 0.0497 0.0271

Variance SPE(s1 − s0) 0.858 1.37 1.06 0.0782

0 50 100 150

−
6

−
4

−
2

0
2

4
6

R

S
P

E
(s

1)

(a) Predicting s1.

0 50 100 150

−
5

0
5

R

S
P

E
(s

1
−

s 0
)

(b) Predicting s1(·)− s0(·).

Figure 3. SPE for predictions made using the hierarchical emulator with g(R) = R0.7781 over one of the
sub-LHDs from lhd6.

Hierarchical emulators. The diagnostic summaries for the hierarchical emulator are
shown in Table 2. The predictions are more accurate using a hierarchical emulator than
with the best standard alternatives listed in Table 1, shown by the smaller RMSE values for
both s1 and s1 − s0. Recall that the summaries for the hierarchical emulator’s predictions of
s0 will be identical to that of the best standard emulator shown in Table 1.

Although the improvement is modest, showing roughly a 10% reduction in RMSE, it is
achieved by a single emulator. When compared to any single standard emulator, the improve-
ment is more striking.

The SPE values for the hierarchical emulator or s1 (·) are promising, with mean and
variance consistently close to 0 and 1, respectively, although the variance tends to be somewhat
less than 1. Figure 3 shows the behavior of the SPE with R for the hierarchical emulator.
Mahalanobis distances are shown in Figure 4 and indicate a much better fit than that for

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 513

MD(s1) , transformed
0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6
7

(a) MD(s1), hierarchical emulator.

MD(s1 − s0) , transformed
0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6
7

(b) MD(s1 − s0), hierarchical emulator.

Figure 4. Transformed Mahalanobis distances for the predictions of s1 (a) and s1(·) − s0(·) (b) for the
hierarchical emulator with g(R) = R0.7781. The corresponding F -distribution densities are shown by solid lines.

the corresponding standard emulators. Strictly speaking, the F -distribution shown in panel
(a) is not appropriate, as the hierarchical emulator is effectively the sum of two independent
emulators, each of which has an uncertain error variance; however, we show the F -distribution
for a single emulator to give some feel for the variability expected.

A smaller training dataset. In order to see if the conclusions would be similar for a
smaller training set, a set of 100 points was selected from the original 1,000 s1 input points.
The 100 points were chosen to have an acceptable minimum distance and provide a close-to-
orthogonal design for the main effects. Tables of emulator performance are provided in the
supplementary material. The hierarchical emulator is still the best for emulating s1 in terms of
RMSE, although the variance of standardized prediction errors is a bit low. It is also the best
emulator of the difference s1 − s0, and there the SPE variance is satisfactory. The standard
emulator of s0 inside the hierarchical emulator is still the best emulator of s0. Overall, the
hierarchical emulator remains the best.

7. Working with reduced s1(·) data. It is possible to build a hierarchical emulator using
training data containing many runs of s0(x) and comparatively few of s1(x, v, w). This is
particularly helpful when s1(x, v, w) is more costly to run than s0(x).

We built a hierarchical emulator using 1,000 input points for the simpler version of
HadOCC, and only 100 for the extended version. These 100 runs from s1 are all matched
in their x and m1 values by a point in the s0 data, and therefore the design satisfies the
criteria in section 3.2.1. They were taken from a 2,000 point design, so that other emulators
could be built with 1,000 points each in the s0 and s1 input spaces.

The emulator was constructed using the same choices as the previous ones in this example,
namely, a first order regression surface involving all terms and a single estimated correlation
length for each level of the hierarchy. The transformation function g(R) = R0.7781 was used.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

514 RACHEL H. OUGHTON AND PETER S. CRAIG

Three other emulators were also built for comparison with this reduced s1 emulator. A stan-
dard emulator was built using the 100 s1 and 1,000 s0 points (i.e., the same reduced s1 data as
the hierarchical emulator), and another using just the 1,000 s1 points.1 A second hierarchical
emulator was built from the full 2,000 point design.

We suspected that when a small number of s1 data were used, the emulator would perform
considerably better “closer to s0,” i.e., for smaller values of R. This feature has not manifested
in the emulators with equal numbers of points from both versions. The errors (emulator
prediction minus simulator output) for each emulator are plotted against R in Figure 5 (for
emulators of s1) and Figure 6 (for emulators of s1− s0).

The standard emulators summarized in Figures 5a and 6a use the same data as the hierar-
chical emulators in Figures 5c and 6c. For predictions of s1 (·), this is the 1,100 point design.
For predictions of the difference, only those points evaluated by both s0 (·) and s1 (·) can be
used, so the design is reduced to 200 points.

There is a clear reduction in the error for the hierarchical emulator, particularly for small
R. Improvement is greatest in the hierarchical emulators of the difference, where the hierar-
chical structure enforces the relationship between the simulator versions, so that the difference
when R = 0 is always zero. The error gradually increases with R (see Figure 6c) until its
accuracy appears roughly the same as the standard alternative.

Figure 7 shows how the RMSE changes as the range of R in the data changes. Because
the number of points used to find the RMSE changes along the x axis, we should be careful
when comparing these values. In particular, the values with small maximum R contain far
fewer points, and therefore involve more sampling errors.

Figure 7a shows four emulators used to predict s1. The hierarchical emulator built with
reduced s1 data (solid line) shows an increase in RMSE as R increases, performing well for
small R. For most of the range of R this emulator outperforms the standard emulator built
with all 1,000 s1 input points. The hierarchical emulator built with all 2,000 data points also
shows increasing RMSE as R increases, but less noticeably.

Figure 7b shows emulators of the difference, s1 − s0. The standard emulators are emulators
of the difference calculated from the training data, which was shown to be the best standard
method in section 5. The reduced s1 standard emulator is therefore built from the difference
at each of the 100 points included with R �= 0. The hierarchical emulator of the difference
is built from the points for which a difference (or ψ data) is available, and therefore the
hierarchical emulator built from reduced s1 data is also built only from these 100 points.

The advantage of the hierarchical emulation structure is much more apparent with reduced
s1 data. The only extra information contained in the hierarchical emulator, compared to the
standard emulator with reduced s1 data (dot-dashed line), is the inclusion of the relationship
s1(x,R,m2) = s0(x) + g(R)ψ(x,R,m2), and it appears from Figure 7 that this is a valuable
addition to the emulator. This supports the idea that when the more complex version is costly
to run compared to the simpler version, hierarchical emulation is a very effective strategy.

1From the previous examples of standard emulators, this appears to be a better strategy than using all
2,000 points.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 515

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(a) Standard emulator, 1,100 point design.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or
(b) Standard emulator, full 1,000 point design
over s1.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(c) Hierarchical emulator, 1,100 point design.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(d) Hierarchical emulator, full 2,000
point design.

Figure 5. Errors for four emulators of s1, plotted against R.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

516 RACHEL H. OUGHTON AND PETER S. CRAIG

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(a) Standard emulator, 200 point design.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or
(b) Standard emulator, 2,000 point design.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(c) Hierarchical emulator, 200 point design.

0 50 100 150

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

R

E
rr

or

(d) Hierarchical emulator, full 2,000
point design.

Figure 6. Errors for four emulators of s1 − s0, plotted against R.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 517

0 50 100 150

0.
0

0.
1

0.
2

0.
3

Maximum R

R
M

S
E

 (
ou

tp
ut

)

Standard, full
Standard, reduced
Hierarchical, full
Hierarchical, reduced

(a) Emulators of s1.

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Maximum R

R
M

S
E

 (
di

ffe
re

nc
e)

Standard, full
Standard, reduced
Hierarchical, full
Hierarchical, reduced

(b) Emulators of s1 − s0.

Figure 7. RMSE for four emulators, changing as the subset of data used changes. The prediction data
were restricted to R less than “maximum R” for values from 1 to 180 (the maximum value R takes in our
experiment). The number of input points considered ranges from 5 (when R ≤ 1) to 1,000 (when R ≤ 180).

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

518 RACHEL H. OUGHTON AND PETER S. CRAIG

8. Summary. In this paper we have introduced hierarchical emulation, a method for
emulating a simulator that can be extended by turning on one or more switches. The simulator
versions must have the property that when a small subset of the inputs, the hierarchical inputs,
are set to particular values, the two versions behave identically. Hierarchical emulation makes
use of this relationship to emulate the more complicated simulator using a combination of
other emulators, one of which is an emulator of the simpler simulator.

We have established a prior structure for the emulator that ensures separability between
terms. The implications of this method for the design of experiments have been explored,
and some criteria have been established for the structure of the training data. A hierarchical
emulator requires some transformation functions g(·), and desirable properties for these have
been explored.

In order to assess the performance of hierarchical emulation, a validation study was con-
ducted using two versions of HadOCC. For this, a 1 million point staggered LHD was created
so that hierarchical and standard emulators could be compared with respect to various tasks.
Overall, this showed that hierarchical emulation outperforms the standard method, both in
its predictive accuracy and its coherence with the emulation model.

A further experiment to assess the performance of a hierarchical emulator built with a
reduced amount of data from the more complicated version of the simulator showed very
promising results compared to the standard emulator, and this reinforced our beliefs that
including the relationship between the two versions is beneficial.

One natural generalization of the model might be to consider situations where a switch
cannot be turned on unless some other switch(es) has/have already been turned on. Another
might be to consider situations where switches are mutually exclusive, in other words, they
could not be turned on simultaneously. Both would have implications for the training dataset
design.

Acknowledgments. The authors would like to thank the associate editor and two referees
for their suggestions for improvements to the paper.

REFERENCES

[1] L. S. Bastos and A. O’Hagan, Diagnostics for Gaussian process emulators, Technometrics, 54 (2009),
pp. 425–438.

[2] S. Conti and A. O’Hagan, Bayesian emulation of complex multi-output and dynamic computer models,
J. Stat. Plann. Inference, 140 (2010), pp. 640–651.

[3] P. S. Craig, M. Goldstein, A. H. Seheult, and J. A. Smith, Pressure matching for hydrocarbon
reservoirs: A case study in the use of Bayes linear strategies for large computer experiments, in
Case Studies in Bayesian Statistics, Vol. II, Lecture Notes in Statistics 121, C. Gatsonis et al., eds.,
Springer-Verlag, New York, 1997, pp. 37–93.

[4] N. A. C. Cressie, Statistics for Spatial Data, revised reprint of the 1991 edition, Wiley Ser. Probab.
Math. Statist. Appl. Probab. Statist., John Wiley & Sons, Inc., New York, 1993.

[5] M. Goldstein and J. Rougier, Reified Bayesian Modelling and Inference for Physical Systems, J. Stat.
Plann. Inference, 139 (2009), pp. 1221–1239.

[6] Y. Hung, V. R. Joseph, and S. N. Melkote, Design and analysis of computer experiments with
branching and nested factors, Technometrics, 51 (2009), pp. 354–365.

[7] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B
Stat. Methodol., 63 (2001), pp. 425–464.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL EMULATION 519

[8] A. O’Hagan, Bayesian analysis of computer code outputs: A tutorial, Reliability Engineering and System
Safety, 91 (2006), pp. 1290–1300.

[9] A. O’Hagan and J. Forster, Kendall’s Advanced Theory of Statistics. Vol. 2B. Bayesian Inference,
2nd ed., John Wiley & Sons, Ltd., Chichester, 2004.

[10] R. H. Oxlade, Comparing Multiple Simulators Using Bayesian Emulators, Ph.D. thesis, Department of
Mathematical Sciences, University of Durham, Durham, UK, 2012.

[11] J. R. Palmer and I. J. Totterdell, Production and export in a global ocean ecosystem model, Deep-Sea
Res., 48 (2001), pp. 1169–1198.

[12] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2011. Available online at http://www.R-project.org/.

[13] T. J. Santner, B. J. Williams, and W. Notz, The Design and Analysis of Computer Experiments,
Springer Ser. Statist., Springer-Verlag, New York, 2003.

D
ow

nl
oa

de
d

05
/1

9/
16

 to
 1

29
.2

34
.2

52
.6

5.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.R-project.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

