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ABSTRACT
We present scale-dependent measurements of the normalized growth rate of structure fσ 8(k,
z = 0) using only the peculiar motions of galaxies. We use data from the 6-degree Field Galaxy
Survey velocity sample together with a newly compiled sample of low-redshift (z < 0.07)
Type Ia supernovae. We constrain the growth rate in a series of �k ∼ 0.03 h Mpc−1 bins to
∼35 per cent precision, including a measurement on scales >300 h−1 Mpc, which represents
one of the largest scale growth rate measurement to date. We find no evidence for a scale-
dependence in the growth rate, or any statistically significant variation from the growth rate
as predicted by the Planck cosmology. Bringing all the scales together, we determine the
normalized growth rate at z = 0 to ∼15 per cent in a manner independent of galaxy bias and in
excellent agreement with the constraint from the measurements of redshift-space distortions
from 6-degree Field Galaxy Survey. We pay particular attention to systematic errors. We
point out that the intrinsic scatter present in Fundamental Plane and Tully–Fisher relations
is only Gaussian in logarithmic distance units; wrongly assuming it is Gaussian in linear
(velocity) units can bias cosmological constraints. We also analytically marginalize over zero-
point errors in distance indicators, validate the accuracy of all our constraints using numerical
simulations, and demonstrate how to combine different (correlated) velocity surveys using
a matrix ‘hyperparameter’ analysis. Current and forthcoming peculiar velocity surveys will
allow us to understand in detail the growth of structure in the low-redshift universe, providing
strong constraints on the nature of dark energy.

Key words: surveys – cosmological parameters – cosmology: observations – dark energy –
large-scale structure of Universe.

1 IN T RO D U C T I O N

A flat universe evolved according to the laws of General Rela-
tivity (GR), including a cosmological constant � and structure
seeded by nearly scale-invariant Gaussian fluctuations, currently
provides an excellent fit to a range of observations: cosmic mi-
crowave background (CMB) data (Planck Collaboration XVI 2013),
baryon acoustic oscillations (Blake et al. 2011b; Anderson et al.
2013), supernova (SN) observations (Conley et al. 2011; Freedman
et al. 2012; Ganeshalingam, Li & Filippenko 2013), and redshift-
space distortion (RSD) measurements (Blake et al. 2011a; Reid
et al. 2012). While the introduction of a cosmological constant term

� E-mail: asjohnson@swin.edu.au

allows observational concordance by inducing a late-time period
of accelerated expansion, its physical origin is currently unknown.
The inability to explain the origin of this energy density compo-
nent strongly suggests that our current understanding of gravita-
tion and particle physics, the foundations of the standard model of
cosmology, may be significantly incomplete. Various mechanisms
extending the standard model have been suggested to explain this ac-
celeration period such as modifying the Einstein–Hilbert action by
e.g. considering a generalized function of the Ricci scalar (Sotiriou
& Faraoni 2010), introducing additional matter components such as
quintessence models, and investigating the influence structure has
on the large-scale evolution of the universe (Clifton 2013; Wiltshire
2013).

Inhomogeneous structures in the late-time universe source grav-
itational potential wells that induce ‘peculiar velocities’ (PVs) of
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galaxies, i.e. the velocity of a galaxy relative to the Hubble rest
frame. The quantity we measure is the line-of-sight PV, as this
component produces Doppler distortions in the observed redshift.
Determination of the line-of-sight motion of galaxies requires a
redshift-independent distance estimate. Such estimates can be per-
formed using empirical relationships between galaxy properties
such as the ‘Fundamental Plane’ (FP) or ‘Tully–Fisher’ relation,
or one can use ‘standard candles’ such as Type Ia SNe (Colless
et al. 2001; Springob et al. 2007; Magoulas et al. 2010; Turnbull
et al. 2012). A key benefit of directly analysing PV surveys is that
their interpretation is independent of the relation between galax-
ies and the underlying matter distribution, known as ‘galaxy bias’
(Cole & Kaiser 1989). The standard assumptions for galaxy bias are
that it is local, linear, and deterministic (Fry & Gaztanaga 1993);
such assumptions may break down on small scales and introduce
systematic errors in the measurement of cosmological parameters
(e.g. Cresswell & Percival 2009). Similar issues may arise when
inferring the matter velocity field from the galaxy velocity field:
the galaxy velocity field may not move coherently with the matter
distribution, generating a ‘velocity bias’. However, such an effect is
negligible given current statistical errors (Desjacques et al. 2010).

Recent interest in PV surveys has been driven by the results of
Watkins, Feldman & Hudson (2009), which suggest that the local
‘bulk flow’ (i.e. the dipole moment) of the PV field is inconsistent
with the predictions of the standard � cold dark matter (�CDM)
model; other studies have revealed a bulk flow more consistent with
the standard model (Ma & Scott 2013). PV studies were a very
active field of cosmology in the 1990s as reviewed by Strauss &
Willick (1995) and Kaiser (1988). Separate from the measurement
of the bulk flow of local galaxies, a number of previous studies have
focused on extracting a measurement of the matter power spectrum
in k-dependent bins (e.g. see Jaffe & Kaiser 1995; Freudling et al.
1999; Zehavi & Dekel 2000; Silberman et al. 2001; Zaroubi et al.
2001; Macaulay et al. 2012). This quantity is closely related to the
velocity power spectrum. Other studies have focused on directly
constraining standard cosmological parameters (Gordon, Land &
Slosar 2007; Abate & Erdoǧdu 2009).

The quantity we can directly measure from the 2-point statistics
of PV surveys is the velocity divergence power spectrum.1 The am-
plitude of the velocity divergence power spectrum depends on the
rate at which structure grows and can therefore be used to test mod-
ified gravity models, which have been shown to cause prominent
distortions in this measure relative to the matter power spectrum
(Jennings et al. 2012). In addition, by measuring the velocity power
spectrum we are able to place constraints on cosmological param-
eters such as σ 8 and �m (the rms of density fluctuations, at linear
order, in spheres of comoving radius 8 h−1 Mpc; and the fractional
matter density at z = 0, respectively). Such constraints provide an
interesting consistency check of the standard model, as the con-
straint on σ 8 measured from the CMB requires extrapolation from
the very high redshift universe.

The growth rate of structure f (k, a) describes the rate at which
density perturbations grow by gravitational amplification. It is
generically a function of the cosmic scalefactor a, the comoving
wavenumber k and the growth factor D(k, a); expressed as f (k,
a) ≡ d ln D(k, a)/d ln a. We define δ(k, a) ≡ ρ(k, a)/ρ̄(a) − 1, as
the fractional matter overdensity and D(k, a) ≡ δ(k, a)/δ(k, a = 1).

1 Note in this analysis we will constrain the ‘velocity power spectrum’ which
we define as a rescaling of the more conventional velocity divergence power
spectrum (see Section 3).

The temporal dependence of the growth rate has been readily mea-
sured (up to z ∼ 0.9) by galaxy surveys using RSD measurements
(Blake et al. 2011a; Beutler et al. 2013b; de la Torre et al. 2013),
while the spatial dependence is currently only weakly constrained,2

particularly on large spatial scales (Bean & Tangmatitham 2010;
Daniel & Linder 2013). The observations are in fact sensitive to the
‘normalized growth rate’ f (k, z)σ 8(z), which we will write as fσ 8(k,
z) ≡ f (k, z)σ 8(z). Recent interest in the measurement of the growth
rate has been driven by the lack of constraining power of geometric
probes on modified gravity models, which can generically repro-
duce a given expansion history (given extra degrees of freedom).
Therefore, by combining measurements of geometric and dynam-
ical probes strong constraints can be placed on modified gravity
models (Linder 2005).

A characteristic prediction of GR is a scale-independent growth
rate, while modified gravity models commonly induce a scale-
dependence in the growth rate. For f (R) theories of gravity this tran-
sition regime is determined by the Compton wavelength scale of the
extra scalar degree of freedom (for recent reviews of modified grav-
ity models see Tsujikawa 2010; Clifton et al. 2012). Furthermore,
clustering of the dark energy can introduce a scale-dependence in
the growth rate (Parfrey et al. 2011). Such properties arise in scalar
field models of dark energy such as quintessence and k-essence
(Caldwell, Dave & Steinhardt 1998; Armendariz-Picon, Mukhanov
& Steinhardt 2000). The dark energy fluid is typically characterized
by the effective sound speed cs and the transition regime between
clustered and smooth dark energy is determined by the sound hori-
zon (Hu & Scranton 2004). The clustering of dark energy acts
as a source for gravitational potential wells; therefore, one finds
the growth rate enhanced on scales above the sound horizon. In
quintessence models c2

s = 1; therefore, the sound horizon is equal to
the particle horizon and the effect of this transition is not measurable.
Nevertheless, in models with a smaller sound speed (c2

s � 1) such
as k-essence models, this transition may have detectable effects.3

Motivated by these arguments we introduce a method to mea-
sure the scale-dependence of the growth rate of structure using PV
surveys. Observations from PVs are unique in this respect as they
allow constraints on the growth rate on scales inaccessible to RSD
measurements. This sensitivity is a result of the relation between
velocity and density modes v(k, z) ∼ δ(k, z)/k which one finds in
Fourier space at linear order (Dodelson 2003). The extra factor of
1/k gives additional weight to velocities for larger scale modes rel-
ative to the density field. A further advantage arises because of the
low redshift of PV surveys, namely that the Alcock–Paczynsi effect
– transforming the true observables (angles and redshifts) to co-
moving distances – only generates a very weak model dependence.

A potential issue when modelling the velocity power spectrum is
that it is known to depart from linear evolution at a larger scale
than the density power spectrum (Scoccimarro 2004; Jennings,
Baugh & Pascoli 2011). We pay particular attention to modelling
the non-linear velocity field using two loop multipoint propagators
(Bernardeau, Crocce & Scoccimarro 2008). Additionally, we sup-
press non-linear contributions by smoothing the velocity field using
a gridding procedure. Using numerical N-body simulations, we val-
idate that our constraints contain no significant bias from non-linear
effects.

2 A scale-dependent growth rate can be indirectly tested using the influence
the growth rate has on the halo bias (e.g. Parfrey, Hui & Sheth 2011).
3 The presence of dark energy clustering requires some deviation from
w = −1 in the low-redshift universe.
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For our study, we use the recently compiled 6-degree Field Galaxy
Survey velocity (6dFGSv) data set along with low-redshift SNe
observations. The 6dFGSv data set represents a significant step for-
ward in PV surveys; it is the largest PV sample constructed to date
by a factor of ∼3, and it covers nearly the entire southern sky. We im-
prove on the treatment of systematics and the theoretical modelling
of the local velocity field, and explore a number of different meth-
ods to extract cosmological constraints. We note that the 6dFGSv
data set will also allow constraints on the possible self-interaction
of dark matter (Linder 2013), local non-Gaussianity (Ma, Taylor &
Scott 2013), and the Hubble flow variance (Wiltshire et al. 2013).

The structure of this paper is as follows. In Section 2, we in-
troduce the PV surveys we analyse; Section 3 describes the theory
behind the analysis and introduces a number of improvements to
the modelling and treatment of systematics effects. We validate
our methods using numerical simulations in Section 4; the final
cosmological constraints are presented in Section 5. We give our
conclusion in Section 6.

2 DATA A N D S I M U L AT E D C ATA L O G U E S

2.1 6dFGS peculiar velocity catalogue

The 6-degree Field Galaxy Survey (6dFGS) is a combined redshift
and PV survey that covers the whole southern sky with the excep-
tion of the region within 10◦ of the Galactic plane. The survey was
performed using the six-degree Field (6dF) multifibre instrument
on the UK Schmidt Telescope from 2001 to 2006. Targets were se-
lected from the K-band photometry of the 2MASS Extended Source
Catalog (Jarrett et al. 2000). For full details see Jones et al. (2004,
2006, 2009). To create the velocity subsample from the full 6dF
galaxy sample the following selection requirements were imposed:
reliable redshifts (i.e. redshift quality Q = 3–5), redshifts less than
cz < 16120 km s−1 in the CMB frame, galaxies with early-type
spectra, sufficiently high signal-to-noise ratio (S/N > 5 A−1), and
velocity dispersions greater than the instrumental resolution limit
(σ 0 ≥ 112 km s−1). This sample represents the largest and most
uniformly distributed PV survey to date (Fig. 1 top panel). The final
number of galaxies with measured PVs is 8896 and the average
fractional distance error is σ d = 26 per cent. The redshift distri-
bution for 6dFGSv is given in Fig. 2. The PVs for 6dFGSv are
derived using the FP relation (for details of the calibration of this
relation see Magoulas et al. 2010, 2012). The complete 6dFGSv FP
catalogue is presented in Campbell et al. (2014). Using the fitted
FP relation, the final velocity catalogue is constructed in Springob
et al. (in preparation). For each galaxy in the catalogue we determine
a probability distribution for the quantity log10(Dz/DH); where Dz

and DH are, respectively, the ‘observed’ comoving distance inferred
from the observed redshift and the true comoving distance.

2.2 Low-z SNe catalogue

To extend the velocity sample into the Northern hemisphere and
cross-check the results for systematic errors, we construct a new
homogeneous set of low-redshift Type Ia SNe. The sample contains
SNe with redshifts z < 0.07 and the distribution on the sky is given
in Fig. 1 (lower panel) and the redshift distribution is given in Fig. 2.
The sample contains the following: 40 SNe from the Lick Observa-
tory Supernova Search (LOSS) sample (Ganeshalingam et al. 2013)
analysed using the SALT2 light-curve fitter; 128 SNe from Tonry
et al. (2003); 135 SNe from the ‘Constitution’ set compiled by

Hicken et al. (2009), where we choose to use the sample reduced
using the multicolour light-curve shape method (MLCS) with their
mean extinction law described by Rv = 3.1; 58 SNe in the Union
sample from Kowalski et al. (2008);4 33 SNe from Kessler et al.
(2009), where we use the sample derived using MLCS2k2 with
Rv = 2.18; and finally 26 SNe are included from the Carnegie Su-
pernova Project (Folatelli et al. 2010). Significant overlap exists
between the samples, so for SNe with multiple distance modulus
estimates we calculate the median value. This approach appears the
most conservative given the lack of consensus between light-curve
reduction methods and the correct value of Rv; nevertheless, we
find there are no significant systematic offsets between the different
reduction methods once we correct for zero-point offsets. The final
catalogue consists of 303 SNe with an average fractional distance
error, σ d ∼ 5 per cent.

We update the redshifts in these samples with the host galaxy red-
shifts in the CMB frame given in the NASA Extragalactic Database,
excluding SNe with unknown host galaxy redshifts; this is neces-
sary as the quoted error in the redshift given for SNe data sets is
similar to the typical effect that PVs have on the observed red-
shift. A number of these data sets include an error component
σ v ∼ 300 km s−1 accounting for peculiar motion. Where applicable,
we removed in quadrature this error component of (5/ln (10))σ v/cz
from the distance modulus errors. This component is removed so
that we can treat the samples uniformly, and in our analysis we treat
the velocity dispersion as a free parameter. The estimated intrinsic
scatter in absolute magnitude σ SNe is included in the error budget
in all the samples. We define δm ≡ μobs(z) − μFid(z), where μFid

is the distance modulus calculated in a homogeneous Friedmann-
Robertson-Walker (FRW) universe at redshift, z, assuming the fidu-
cial cosmology: �b = 0.0489, �m = 0.3175, ns = 0.9624, w =−1.0,
HFid = 67 km s−1 Mpc−1 (motivated by Planck Collaboration XVI
2013).

For a consistent determination of the line-of-sight PV, S, and
the quantity δm, the value of H0 used to derive the prediction for
the fiducial cosmology μFid(z) needs to be the same as the value
assumed during the light-curve fitting procedure (where μobs(z)
is derived). The authors of different SNe samples have assumed
different values of H0 when deriving the distance moduli. Therefore,
before calculating δm and the PV we correct this using �μi =
5 ln(H0,i/HFid), where H0, i is the assumed H0 value in the ith sample
and HFid is the expansion rate at which we choose to normalize the
sample.5 The assumed value of HFid here is simply used because
it is a convenient normalization. As δm is a ratio of distances it is
independent of the assumed value of H0 (the values used to derive
both distance moduli simply need to be equivalent).

For the rest of the paper, we set H0 = 100 h km s−1Mpc−1. The
line-of-sight PV is calculated as

S = ln(10)

5

(
1 − (1 + z)2

H (z)dL(z)

)−1

δm, (1)

where dL(z) is the luminosity distance and H(z) the Hubble expan-
sion rate calculated in the fiducial model at the observed redshift z

(the derivation of this equation should be clear from equation 17).

4 The new union2.1 data set adds no additional low-z SNe.
5 In the order that the SNe samples have been introduced the assumed
velocity dispersion values are σ v = [300, 500, 400, 300, 300, 300] km s−1

and the assumed values of the Hubble constant are H0 = [70, 65, 65, 70, 65,
72] km s−1 Mpc−1.
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6dFGSv: velocity power spectrum analysis 3929

Figure 1. Mollweide projection of the 6dFGSv sample (upper) and the low-z SNe sample (lower) given in right ascension (RA) and declination (Dec.)
coordinates. We grid the RA and Dec. coordinates on to a 25 × 25 grid for the upper plot and a 20 × 20 grid for the lower plot. The colour of each cell indicates
the number of galaxies with measured PVs in that cell; as given by the colour bars on the right.

Figure 2. The redshift distribution for both the 6dFGSv and low-z SNe PV catalogues. Here we have scaled up the number count for the SNe sample in each
redshift bin by a factor of 10 in order to allow the two distributions to be overplotted.
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2.3 Mock catalogues

We construct two sets of mock catalogues (I) and (II) using the
GiggleZ N-body simulation (Poole et al. 2014). The simulation was
run inside a periodic box of 1 h−1Gpc with 21603 particles of mass
7.5 × 109h−1M�. The simulation used the GADGET2 code (Springel
2005), and haloes and subhaloes were identified using the SUBFIND

algorithm (Springel et al. 2001). The simulation is run assuming a
fiducial cosmology that is specified in Section 4. Using the Gig-
gleZ simulations 10 non-overlapping realizations of PV surveys
were constructed for both mock set (I) and (II), with the following
properties.

(I) From each central ‘observer’ a random sample of ∼3500 dark
matter haloes were selected within 100 h−1 Mpc from the full sample
available in the simulation (i.e. full sky coverage). An uncertainty
in the apparent magnitude of σ δm ∼ 0.1 was applied to each galaxy.
This corresponds to a distance error of σ d ∼ 5 per cent (viz. the
approximate distance uncertainty for SNe).

(II) From each central observer ∼8000 dark matter haloes within
150 h−1 Mpc were selected from one hemisphere of the sky. An
error in the apparent magnitude fluctuation was introduced by in-
terpolating from the observed trend for the 6dFGSv galaxies of σ δm

with redshift. Fitting a simple linear relationship to the 6dFGSv
data we find σ δm = 0.51 + 2.985z. The final range of introduced
observational uncertainties is σ δm ∼ [0.5, 0.75].

We subsample these haloes randomly from the chosen observer
volumes. We limit the size of each hypothetical survey to re-
duce large-scale correlations between the individual realizations,
although we expect that the catalogues may still contain residual
correlations though being drawn from the same simulation. This
situation is more severe for mock set (II). In general, the purpose
of mock set (I) is to test the validity of our algorithms, various
systematic effects and potential bias from non-linear effects, since
the geometry (sky coverage) of the PV survey is not important, at
first order, to answer these questions. Mock set (II) is used as an
approximate realization of the 6dFGSv survey.

In the mock simulations, we apply a perturbation to the PVs
that is similar to the scatter induced by observational error. The
process proceeds as follows. We place an observer in the simulation
box and extract from the simulation the line-of-sight velocity S
and true comoving distance DH of each surrounding galaxy. These
quantities allow us to determine the observed redshift zobs, from
zobs = (1 + zH)(1 + S/c) − 1, and hence the observed redshift-
space distance Dz. We now calculate the magnitude fluctuation
δm = 5 log10(Dz/DH) and apply an observational Gaussian error,
using the standard deviations specified above. We do not attempt to
include additional effects such as survey selection functions, which
are not required for the analysis described here.

3 TH E O RY A N D N E W M E T H O D O L O G Y

Here we discuss a number of issues, including some improvements,
in the framework for analysing PV surveys. We pay particular at-
tention to the following:

(i) the covariance matrix of the data (Section 3.1),
(ii) the effects of non-Gaussian observational errors and the re-

quirement, in order to have Gaussian observational errors, to use
an underlying variable that is linearly related to the logarithmic
distance ratio (Section 3.2),

(iii) the information we can extract from measurements of the
local velocity field using 2-point statistics (Section 3.3),

Figure 3. Scales probed by different methods to constrain gravity. The
cosmological probes shown in red lines probe gravity by its effect on the
propagation of light, i.e. weak and strong lensing (such measurements probe
the sum of the spatial and temporal gravitational potential). Probes that use
dynamical measurements are given as blue lines (these trace the temporal
part of the gravitational potential). PVs probe the largest scales of any current
probe. The figure is adapted from Lombriser et al. (2012).

(iv) modelling the velocity power spectrum, including non-linear
effects in redshift space (Section 3.4),

(v) data compression using gridding methods (Section 3.5),
(vi) Marginalization of the unknown zero-point (Section 3.6) and
(vii) Combining different correlated data sets using hyperparam-

eters (Section 3.7).

The goal of this analysis is quantifying and modelling the degree
to which PVs fluctuate from one part of the universe relative to
other spatially separated parts. The magnitude of this fluctuation
in the PV field is generated by tidal gravitational fields which are
in turn generated by the degree of departure from a homogeneous
FRW metric and the relationship between density gradients and
gravitational fields.

We introduce a method for extracting scale-dependent constraints
on the normalized growth rate of structure fσ 8(z, k). We emphasize
the unique ability of PV measurements to probe the growth rate of
structure on scales that are not currently accessible to RSD mea-
surements, and the complementarity that exists between velocity
surveys and RSD measurements in constraining modified grav-
ity theories. Fig. 3 (adapted from Lombriser et al. 2012) shows
the various length-scales probed by different methods to constrain
gravity.

These methods can also be applied to larger upcoming PV sur-
veys, such as the all-sky H I survey (WALLABY), the Taipan Fun-
damental Plane survey and the SDSS Fundamental Plane sample
(Colless, Beutler & Blake 2013; Saulder et al. 2013) for which
it will become even more crucial to extract unbiased results with
accurate error estimates. Furthermore, the improvements consid-
ered here will be significant for other approaches for extracting
information from velocity surveys, for example by using the cross-
correlation between density and velocity fields.
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3.1 Velocity covariance matrix

We start with the assumption that the velocity field is well described
by a Gaussian random field, with zero mean. Therefore, consider-
ing a hypothetical survey of N galaxies each with a measured PV
S(x, t) = v(x, t) · r̂ , one can write down the likelihood for observ-
ing this particular field configuration as

L = 1

|2πC(v)|1/2
exp

(
−1

2

∑
m,n

Sm(x, t)C(v)−1
mn Sn(x, t)

)
, (2)

where v(x, t) is the total velocity of the object evaluated at the
spatial position x and time t, and r̂ is a unit vector in the direc-
tion of the galaxy. The desired (unknown) variable in this equation,
which depends on the cosmological model, is the PV covariance
matrix. By definition C(v)

mn ≡ 〈Sm(xm)Sn(xn)〉. The validity of the
assumptions described above will be discussed in later sections.
The above approximation to the likelihood yields the probability of
the velocity field configuration (the data d) given the covariance (as
determined by the cosmological model m); this quantity is typically
denoted L ≡ P (d|m). The quantity we are interested in extracting
is the probability of the model given our observations of the veloc-
ity field, viz. P(m|d). Bayes’ theorem relates these two quantities as
P(m|d) = P(d|m)P(m)/P(d). P(d) can be absorbed into a normaliza-
tion factor and we assume a uniform prior (i.e. P(m) = 1), implying
P (m|d) ∝ L.

The physical interpretation of the components of the covariance
matrix is as follows: the diagonal elements can be viewed as rep-
resenting cosmic variance (later we add a further diagonal con-
tribution from observational uncertainties and non-linear contribu-
tions). As the model cosmology is changed, altering the degree of
clustering in the low-redshift universe, the magnitude of cosmic
variance changes. The covariance between individual PVs (i.e. the
off-diagonal elements) results from those velocities being generated
by the same underlying density field. Large wavelength Fourier den-
sity modes will have very similar phases for close pairs of galaxies;

thus, a similar gravitational force will be exerted on these galaxies
and therefore their PVs will be correlated.

Hitherto, the covariance matrix C(v)
mn has been calculated in terms

of the matter power spectrum, P(k). We suggest that a more natural
approach is to express the covariance matrix in terms of the velocity
divergence power spectrum. We define the velocity divergence as
θ (x, t) ≡ ∇ · v(x, t), therefore v(k) = −iθ (k) k

k2 , so the velocity
covariance matrix is given by

C(v)
mn(xm, xn)

=
∫

d3k

(2π)3
eik·xm

∫
d3k′

(2π)3
e−ik′ ·xn

(x̂m · k)
(
x̂n · k′)

k′2k2
〈θ (k) θ∗(k′)〉

= 1

2π2

∫
dkPθθ (k, a = 1)

∫
d�k

4π
eik·(xm−xn)

(
x̂m · k̂

) (
x̂n · k̂

)
.

(3)

The simplification results from 〈θ (k) θ∗(k′)〉 ≡ (2π)3δ3(k −
k′)Pθθ (k), where Pθθ (k) is the power spectrum of θ (x, t), evalu-
ated here at a redshift of zero. The advantage of this derivation is
that one is not required to assume the linear continuity equation.
The angular part of the integral in equation (3) defines the survey
window function, explicitly

W (k, αij , ri , rj ) ≡
∫

d�k

4π
eik·(xi−xj ) (

x̂i · k̂
) (

x̂j · k̂
)
. (4)

The analytic form for equation (4) is given in the appendix of Ma,
Gordon & Feldman (2011) as

W (k, αij , ri , rj ) = 1/3
[
j0(kAij ) − 2j2(kAij )

]
r̂i · r̂j

+ 1

A2
ij

j2(kAij )rirj sin2(αij ), (5)

where αij = cos−1(r̂i · r̂j ), Aij ≡ |r i − rj | and r i is the position
vector of the ith galaxy. The window function Wi, j(k) ≡ W(k, αij, ri,
rj) is plotted in Fig. 4 for a number of galaxy pairs in the 6dFGSv
catalogue. For convenience, we change the normalization of the

Figure 4. The window function for five pairs of galaxies in the 6dFGSv galaxy PV catalogue. Large-scale density fluctuations generate correlations between
the PVs of pairs of galaxies, and the window function quantifies the wavelengths of density fluctuations that contribute to a given correlation. Specifically,
the parameters input to the above window functions are as follows: for W (a) to W (e) we input [ri, rj, α](a) = [86.6, 133.7, 0.393], [ri, rj, α](b) = [76.8, 127.6,
1.313], [ri, rj, α](c) = [59.16, 142.5, 0.356],[ri, rj, α](d) = [51.9, 91.1, 0.315], and [ri, rj, α](e) = [99.49, 158.4, 0.463]. The distances are all given in units of
(h−1 Mpc) and angles in radians.
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velocity divergence power spectrum and define the ‘velocity power
spectrum’ as Pvv(k) ≡ Pθθ (k)/k2. Therefore, we have

C(v)
mn =

∫
dk

2π2
k2Pvv(k, a = 1)W (k, αmn, rm, rn). (6)

3.2 The origin of non-Gaussian observational errors

Observations of the CMB have shown to a very high degree of accu-
racy that the initial density fluctuations in the universe are Gaussian
in nature, which implies that the initial velocity fluctuations are also
well described by a Gaussian random field. Linear evolution of the
velocity field preserves this Gaussianity, as it acts as a simple lin-
ear rescaling. This simplifying property of large-scale density and
velocity fields is often taken advantage of by approximations to the
likelihood such as equation (2), which require that the PV field,
Si, be accurately described by a multivariate Gaussian distribution.
Although this is true with regards to cosmic variance, a crucial issue
is that the observational uncertainty in PV surveys is often highly
non-Gaussian in velocity units. In this section, we describe the ori-
gin of this non-Gaussian error component, with particular reference
to a FP survey; we note our conclusions are equally valid for Tully–
Fisher data sets. Furthermore, we propose a solution to this problem
and test its validity using numerical simulations in Section 4.

The FP relation is defined as Re = σa
0 〈Ie〉b, where Re is the

effective radius, σ 0 the velocity dispersion and 〈Ie〉 is the mean
surface brightness. In terms of logarithmic quantities it is defined
as r = as + bi + c (r ≡ log10(Re) and i ≡ log10(〈Ie〉)), where a
and b describe the plane slope and c defines the zero-point. The
FP relation therefore is a simple linear relation when the relevant
variables are described in logarithmic units. Within this parameter
space (or ‘FP space’) a 3D elliptical Gaussian distribution provides
an excellent empirical fit to the observed scatter of the FP variables.6

Changing the distance measure log10(Re) to a quantity not given in
logarithmic units (i.e. simply Re) one would find that the scatter of
the new variables can no longer be described by a simple Gaussian
distribution. This argument can be extended to the Tully–Fisher
relation, as it has intrinsic scatter that appears to be modelled well
by a Gaussian in absolute magnitude units.

As discussed in Springob et al. (in preparation) the fundamen-
tal quantity derived from the FP relation is the probability of a
given ratio between the observed effective radius (observed size) Rz

and the inferred physical radius (physical size) RH of the specific
galaxy viz. P (log10(Rz/RH)). In order to find the resulting proba-
bility distributions for PVs, P (vp), in standard units (km s−1) from
the measured quantity P (log10(Rz/RH)) we need to calculate the
Jacobian relating these two quantities. First, we can convert the log-
arithmic ratio of radii to a logarithmic ratio of comoving distances.
Defining x = log10(Dz/DH), one has

P (x) ≡ P
(
log10 (Dz/DH)

)
= J (DH, zH)P (log10(Rz/RH)). (7)

The Jacobian term needed to transform the probability distri-
bution from a size ratio to a distance ratio is approximated

6 This scatter is generated by the PVs of the galaxies and the intrinsic scatter
of the FP relation. Fig. 4 in Magoulas et al. (2012) shows the scatter of
the FP parameters, where one can see the data is well described by a 3D
elliptical Gaussian (see also Bernardi et al. 2003).

Figure 5. Probability distributions for x = log10(Dz/DH) and vp for four
6dFGS velocity sample galaxies. We note that the distribution of x is well
described by a Gaussian, whereas the distribution of vp contains significant
skewness.

by (Springob et al., in preparation)

J (DH, zH) ≈
(

1 + 99.939DH + 0.01636D2
H

3 × 105(1 + zH)

)
, (8)

where zH is the Hubble redshift. Any dependence on the assumed
cosmology here will be insignificant given the low redshifts of the
observations. The probability distribution P(x) is measured for each
galaxy of the 6dFGSv survey using equation (7); importantly this
distribution is very accurately described by a Gaussian distribution.
Fig. 5 gives some examples for individual galaxies in the 6dFGSv
sample.

We can now determine if the transformation from this distribution
into the probability distribution for the PV (i.e. P (x) → P (vp))
preserves the Gaussian nature of the distribution or if it introduces
non-Gaussianity. The transformation between these two probability
distributions can be accurately approximated by

P (v) = P (x)
dx

dv
≈ P (x)

(1 + zH)2

DH ln(10)c(1 + z)

dDH

dzH
, (9)

where dDH/dzH = c/(99.939 + 0.016 36DH).7 Applying this non-
linear transformation equation (9) to the P(x) distributions given in
the 6dFGSv sample we find the resulting velocity probability dis-
tributions, P (vp), become significantly skewed (as shown in Fig. 5)
and hence are poorly described by a Gaussian distribution. In Sec-
tion 4, we use numerical N-body simulations to quantify the impact
of this non-Gaussianity on cosmological parameter fits, concluding
that a measurable bias is introduced. To avoid this problem, one is
required to adopt a variable for the analysis that is linearly related
to the logarithm of the ratio of comoving distances.

7 This result can be derived from the approximation between comoving
distance and redshift given in Hogg (in preparation), and is valid to <1 per
cent within the range of redshift we are interested in.
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3.2.1 Changing variables

The velocity variable we use is the apparent magnitude fluctuation,
defined by δm(z) = [m(z) − m̄(z)], where both quantities are being
evaluated at the same redshift (the observed redshift), see Hui &
Greene (2006) and Davis et al. (2011). So the fluctuation is be-
ing evaluated with respect to the expected apparent magnitude in
redshift space. The overbar here refers to the variable being eval-
uated within a homogeneous universe, i.e. in a universe with no
density gradients and as a result no PVs. Recalling that the apparent
magnitude is defined as

m = M + 5 log10(dL(z)) + 25, (10)

where M is the absolute magnitude and dL(z) is the luminosity dis-
tance in parsecs, we find δm(z) = 5x(z). We must now determine the
covariance of magnitude fluctuations Cm

ij ≡ 〈δmi(zi)δmj (zj )〉. The
full treatment of this problem, which is effectively the derivation
of the luminosity distance in a perturbed FRW universe, includes a
number of additional physical effects besides peculiar motion that
act to alter the luminosity distance, namely: gravitational lensing,
the integrated Sachs–Wolfe effect, and gravitational redshift (Pyne
& Birkinshaw 2004; Bonvin, Durrer & Gasparini 2006). For the
relevant redshift range all these additional effects are currently in-
significant. Here we focus on an intuitive derivation that captures
all the relevant physics.

We first define the fractional perturbation in luminos-
ity distance about a homogeneous universe as δdL (z) ≡
[dL(z) − d̄L(z)]/d̄L(z) and note from equation (10) that δm =
(5/ ln 10)δdL . Therefore, the problem is reduced to finding CL

ij ≡
〈δdL (zi)δdL (zj )〉. The relationship between the observed flux F and
the intrinsic luminosity L is given by

F (z) = L

4π(1 + z)4

δ�0

δAe
, (11)

where δAe is the proper area of the galaxy (emitter) and δ�0 is
the observed solid angle. The angular diameter distance and the
luminosity distance are defined as

dA =
√

δAe/δ�0, dL = dA(1 + z)2, (12)

both of which are valid in homogeneous and inhomogeneous
universes8 (Peebles 1993). In a homogeneous universe we have

d̄A(z̄) = χe/(1 + z̄)

χe ≡ χ (z̄) = c

∫ z̄

0
dz′/H (z′)

d̄L(z̄) = d̄A(z̄)(1 + z̄)2, (13)

where χ is the comoving distance and H is Hubble’s constant.
Introducing a PV component into this homogeneous system, i.e.
perturbing the system, has two effects (at first order) as follows.

(i) The redshift of the object is perturbed (via the Doppler effect).
For small velocities (i.e. v < c), as is applicable to local motions
of galaxies, the relation between the redshift in the homogeneous
universe z̄ and the inhomogeneous universe z is given by

1 + z = (1 + z̄)(1 + ve · n̂ − v0 · n̂), (14)

8 For completeness we note that the term inhomogeneous universe is used
somewhat liberally in this section, the term should be taken to refer to
a weakly perturbed Friedmann–Lemaître–Robertson–Walker geometry. In
the context of general inhomogeneous universes the nature of the luminosity
distance relation is unknown in most cases, and other physical contributions
may become significant.

where ve is the emitting galaxy’s velocity, v0 is the observer’s
velocity relative to the CMB, and n̂ is a unit vector in the direction
of the emitter from the absorber.

(ii) The angular diameter distance is changed as a result of rel-
ativistic beaming. This occurs as the angle of the galaxy is shifted
by δ�0 → δ�0(1 − 2v0 · n̂). The result is

dA(z) = d̄A(z̄)(1 + v0 · n̂). (15)

Using equations (12), (14) and (15) the luminosity distance in the
perturbed universe is given by

dL(z) = d̄L(z̄)(1 + 2ve · n̂ − v0 · n̂). (16)

Taylor expanding d̄L(z) about z̄ gives (Hui & Greene 2006)

δdL (z) = δdL

dL
= r̂ ·

(
ve − (1 + z)2

H (z)dL
[ve − v0]

)
, (17)

where we work in units with c = 1. This relation is accurate to
first order in perturbation theory, ignoring other contributions. Our
Galaxy’s motion is very accurately known from observations of the
CMB therefore we can transform the observed PV to the CMB rest
frame and correct for the effect of v0.9 Given δm = (5/ ln 10) δdL

and using equation (6) one finds

Cm
ij =

(
5

ln 10

)2 (
1 − (1 + zi)2

H (zi)dL(zi)

) (
1 − (1 + zj )2

H (zj )dL(zj )

)

×
∫

dk

2π2
k2Pvv(k, a = 1)W (k, αij , ri , rj ). (18)

In Section 3.5, we update the formula for the covariance matrix to
account for a smoothing of the velocity field we implement; the
updated formula is given in equation (30).

3.2.2 Including the intrinsic error

To complete the covariance matrix of magnitude fluctuations we
must add the observational part of the errors, uncorrelated between
objects. This has two different components: the error in the mea-
sured apparent magnitude fluctuation σobs and a stochastic noise
contribution σ v, which is physically related to non-linear contribu-
tions to the velocity (Silberman et al. 2001). The total magnitude
scatter per object is given by

σ 2
i = σ 2

obs +
(

5

ln 10

)2 (
1 − (1 + zi)2

H (zi)dL(zi)

)2

σ 2
v . (19)

The updated posterior distribution is therefore given by

P (�|δm) = |2π�|−1/2 exp

(
−1

2
δmT�−1δm

)
, (20)

where

�ij ≡ Cm
ij + σ 2

i δij , (21)

where δm is a vector of the observed apparent magnitude fluc-
tuation. For the SNe sample σobs represents both the light-curve
fitting error and the intrinsic dispersion, as derived by the original

9 We assume that the correlation between ‘our’ motion and nearby galaxies
is insignificant (i.e. 〈vev0〉 = 0). This is justified given we are working in the
CMB frame. Any residual correlations when working in this reference frame
are introduced by the effects of relativistic beaming which is a function of
our local motion.
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SNe analysis. We do not need to vary σobs as a free parameter be-
cause its effect is degenerate with the contribution from the velocity
dispersion, which we allow to vary.

3.3 Methods to extract information from the local velocity field

The aim of this section is to outline the parametrizations of the
velocity covariance matrix (equation 18) we consider, and hence
the type of cosmological models we constrain.

3.3.1 Traditional parametrizations

We first discuss two different methods already present in the litera-
ture. Both compare data to model by calculating a model-dependent
covariance matrix, but they differ in the power spectrum model used
to generate that covariance matrix. In the first method, power spec-
tra are generated for a range of cosmological models (as described
below), while in the second method the power spectra are generated
in a single fiducial cosmological model, and then perturbed in a
series of Fourier bins. The first method is more easily compared
directly to physical models, while the second allows detection of
generic scale-dependent effects.

Within the standard cosmological model the velocity power spec-
trum Pvv(k) can be calculated as a function of the cosmological
parameters (σ 8, �m, �b, ns, w, H0). The parameters not previ-
ously described are defined as follows: �b is the baryon density
divided by the critical density; ns describes the slope of the primor-
dial power spectrum; w is the dark energy equation of state; and
H0 is the current expansion rate. Current velocity data sets do not
contain enough statistical power to constrain all these parameters,
therefore we focus on the two most relevant parameters: σ 8, which
describes the overall normalization and �m, which controls the
scale-dependence of power. Therefore, we fix (�b = 0.0489, ns =
0.9624, w = −1.0 and H0 = 67 km s−1 Mpc−1) to the best-fitting
Planck values (see e.g. Planck Collaboration XVI 2013). Now
we can parametrize the velocity power spectrum as Pvv(k) =
Pvv(k, �m, σ8), and from equations (18) and (19) we can predict the
covariance matrix as a function of these cosmological parameters,
� = �(�m, σ 8), such that

P (�m, σ8|δm) = |2π�(�m, σ8)|−1/2

× exp

(
−1

2
δmT�−1(�m, σ8)δm

)
. (22)

Note that the quantity |2π�(�m, σ8)| depends on the cosmological
parameters, as a result we do not expect the posterior distributions
to be exactly Gaussian. Similar parametrizations were explored by
Zaroubi et al. (2001), Zehavi & Dekel (2000) and Jaffe & Kaiser
(1995).

The second method involves specifying a fiducial velocity power
spectrum PFid

vv (k) which we choose using the current best-fitting
Planck constraints, explicitly (�m = 0.3175, σ8 = 0.8344, �b =
0.0489, ns = 0.9624, w = −1.0, H0 = 67 km s−1 Mpc−1). The
power spectrum is now separated into bins in Fourier space and
a free parameter Ai is introduced and allowed to scale the ‘power’
within the given k range of a bin. One can hence constrain the am-
plitude of the velocity power spectrum in k-dependent bins. This
parametrization is similar in nature to that explored in Macaulay
et al. (2012) and Silberman et al. (2001), although the specifics of
the implementation are somewhat different. This approach is more
model independent than the first parametrization because it allows
more freedom in the shape of the velocity power spectrum. Consid-
ering a case with N different bins, we define the centre of the ith

bin as kcen
i and the bin width as �i ≡ (

kmax
i − kmin

i

)
. We define

(k, �i, k
cen
i ) ≡ H(k − (kcen

i − �i/2)) − H
× (

k − (
kcen

i + �i/2
))

, (23)

where H(x) is a Heaviside step function, so (k, kcen
i , �i) is equal

to one if k is in the ith bin and zero otherwise. Including the free
parameters Ai which scale the amplitude of the velocity power
spectrum within each bin, the scaled velocity power spectrum is
given by10

PScaled
vv (k) ≡ A1PFid

vv (k)(k,�1, k
cen
1 ) + A2PFid

vv (k)(k,�2, k
cen
2 )

. . . + ANPFid
vv (k)(k,�N, kcen

N ). (24)

The free parameters Ai do not have any k-dependence, and as a
result one finds∫

dk

2π2
k2PScaled

vv (k)W (k, α12, r1, r2)

=
N∑

i=1

Ai

∫ kcen
i +�i/2

kcen
i −�i/2

dk

2π2
k2PFid

vv (k)W (k, α12, r1, r2)

so the magnitude covariance matrix for the scaled velocity power
spectrum is given by

Cm
ij (A1, A2, . . . , AN ) =

(
5

ln 10

)2 (
1 − (1 + zi)2

H (zi)dL(zi)

)

×
(

1 − (1 + zj )2

H (zj )dL(zj )

) N∑
i=1

Ai

∫ kcen
i +�i/2

kcen
i −�i/2

× dk

2π2
k2PFid

vv (k)W (k, αi,j , ri , rj ).

From equations (20) and (21) we then have

P (A1, A2, . . . , AN |δm) = |2π�(A1, A2, . . . , AN )|−1/2

× exp

(
−1

2
δmT�−1(A1, A2, . . . , AN )δm

)
. (25)

The best-fitting values Ai can be used to check the consistency with
the fiducial model (Ai = 1) or to obtain the effective measured power
Pi in each bin:

Pi = Ai

∫ kcen
i +�i/2

kcen
i −�i/2

dk
Pvv(k)

�i

. (26)

The Pi values can now be compared with the predictions of the
velocity power spectrum from different cosmological models.

3.3.2 Scale-dependent growth rate

We can also relate the measured Ai values to the growth rate of
structure at each scale, as follows.

Here we will assume linear perturbation theory to be valid for
both the density and the velocity fields; the justification for this
assumption will be given in Section 3.5. In this regime, the linear
continuity equation is valid, i.e. θ (k) = −fHδ(k). These assumptions
are required to place constraints on the growth rate, but not required
for the previous parametrizations. A shift in f (z)σ 8(z) from the

10 Note we have by definition

PFid
vv (k) = PFid

vv (k)(k, �1, k
cen
1 ) + PFid

vv (k)(k,�2, k
cen
2 )

· · · + PFid
vv (k)(k, �N, kcen

N ).
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fiducial value to a new value, viz. fσ 8(z)Fid. → fσ 8(z), has an effect
on the velocity divergence power spectrum that can be calculated as
Pθθ (k) → A1Pθθ (k), where A1 = (fσ 8(z)/fσ 8(z)Fid)2. One can then
write down a ‘scaled’ velocity divergence power spectrum as

PScaled
θθ (k) ≡ (

f σ8(z, kcen
1 )/f σ8(z)Fid

)2 PFid
θθ (k)(k,�1, k

cen
1 )

+ (
f σ8(z, kcen

2 )/f σ8(z)Fid
)2 PFid

θθ (k)(k, �2, k
cen
1 )

. . . + (f σ8(z, kcen
N )/f σ8(z)Fid)2PFid

θθ (k)(k,�N, kcen
N ),

(27)

where again PScaled
vv (k) ≡ PScaled

θθ (k)/k2, and there are N different
bins that span the entire k range. The growth rate is considered to
be constant over the wavenumber range of a given bin. The above
relation equation (27) results from the approximation Pθθ (k, z) ∝
(σ8f (k, z))2.

The velocity power spectrum is calculated (at z = 0) by assum-
ing the standard �CDM expansion history and that the growth of
perturbations is governed by GR. We note that modifying the ex-
pansion history and/or deviations from GR at higher redshifts will
affect the current growth rate. Therefore, in order to consistently
examine the possibility of a scale-dependence of the growth rate of
structure (i.e. moving beyond a consistency test) such effects would
need to be taken into account. Such an approach is beyond the scope
of this paper and left for future work; here we simply consider if the
observed growth rate as a function of scale is consistent with that
expected within the framework of the standard model.

3.4 Modelling of the velocity power spectrum

In this section, we will outline the model we use for the velocity
power spectrum in terms of the cosmological parameters.

We calculate the real-space velocity power spectrum using the
code VELMPTBREEZE (an extension of MPTBREEZE in Crocce, Scocci-
marro & Bernardeau 2012), which computes the velocity power
spectrum using two loop multipoint propagators (Bernardeau et al.
2008) in a similar way to renormalized perturbation theory (RPT;
Crocce & Scoccimarro 2006). VELMPTBREEZE uses an effective de-
scription of multipoint propagators introduced in Crocce et al.
(2012) which significantly reduces computation time relative to
other RPT implementations. The results from VELMPTBREEZE were
extensively tested against N-body simulations (Crocce & Scocci-
marro, in preparation).

3.5 Reducing non-linear systematics and computation time

The velocity field is directly driven by the tidal gravitational field
∇�, where � is the gravitational potential, which causes it to de-
part from the linear regime at larger scales than the density field
(Scoccimarro 2004). While the off-diagonal elements of the covari-
ance matrix equation (30) are dominated by large-scale modes, as a
result of the survey geometry,11 this is not the case for the diagonal
(cosmic variance) elements where the small-scale power contributes

11 This can be seen when plotting the window function W (k) ≡
(
∑N

j=1
∑N

i=1 W (k, αij , ri , rj ))/N2 of the survey (where W(k, αij, ri, rj)
is defined in equation 5) and N is the number of galaxies in the survey.
This window function only influences off-diagonal elements of the covari-
ance matrix. One finds that the amplitude of W(k) significantly reduces as
small scales are approached, therefore less weight is attached to the power
spectrum on small scales.

to the intrinsic scatter. Hence, non-linear effects are important to
consider and minimize.

In order to suppress non-linear contributions and hence reduce
potential systematic biases we adopt a simple smoothing (grid-
ding) procedure. Gridding the velocity field significantly reduces
the computation time by reducing the size of the covariance matrix;
this will be essential for next-generation data sets given the com-
putational demands of the likelihood calculation (which requires a
matrix inversion for each likelihood evaluation).

The binning method we implement was developed and tested in
Abate et al. (2008). The grid geometry used is a cube of length L,
where the average apparent magnitude fluctuation δm and error σ δm

are evaluated at the centre of the ith grid cell xi :

δmi(xi) = 1

Ni

∑
j

δm
gal
j (xj )�ij ,

σδm,i = 1

N
3/2
i

∑
j

σ
gal
δm,j�ij , (28)

where Ni is the number of galaxies located within the ith cell,
δmgal is the inferred fluctuation in apparent magnitude for a spe-
cific galaxy and σ

gal
j is the error component as defined in equation

(19). The optimal choice for the gridding length-scale is evaluated
using numerical simulations and is discussed in Section 4. Both the
observational error from the distance indicators and the error intro-
duced by the non-linear velocity dispersion σ v are being averaged.
The sum over j is taken over the entire sample, where �ij equals
one when the galaxy is within the grid cell and zero otherwise.
The process of smoothing the velocity field effectively damps the
velocity power spectrum, this acts to suppress non-linear contribu-
tions. The function describing this damping is given by the Fourier
transform of the kernel �ij, introduced in equation (28). Letting
�(k) ≡ F [�ij ] from above we have

�(k) =
〈

sinc

(
kx

L

2

)
sinc

(
ky

L

2

)
sinc

(
kz

L

2

)〉
k∈k

, (29)

where 〈F (k)〉k∈k is the expectation value of F (k) in the phase space
k ∈ k, i.e. 〈F (k)〉k∈k = 1/4π

∫
d�F (k). Examples of �(k)2, for a

range of different smoothing scales, are given in Fig. 6. This al-
lows one to calculate the velocity power spectrum between separate
grid points; therefore, once the velocity field has been smoothed
we alter the theoretical prediction of the velocity power spectrum

Figure 6. Examples of the smoothing kernel �(k) ≡ F [�ij ] for different
values of the smoothing length L, given in units of h−1 Mpc. We plot the
square of the kernel as this is the term that modulates the velocity power
spectrum, i.e. the term occurring in equation (30).
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by Pvv(k) → PGrid
vv (k) = Pvv(k)�2(k). Now the covariance of δm

between grid centres, C̃ij , is given by

C̃ij =
(

5

ln 10

)2 (
1 − (1 + zi)2

H (zi)dL(zi)

) (
1 − (1 + zj )2

H (zj )dL(zj )

)

×
∫

dk

2π2
k2Pvv(k, a = 1)W (k, αij , ri , rj )�2(k). (30)

Using numerical N-body simulations Abate et al. (2008) explore
the dependence of the recovered best-fitting parameters (σ 8 and
�m) on the smoothing length. Specifically, they find that (relative
to the statistical error) a smoothing scale greater than 10 h−1 Mpc
results in an unbiased estimation of the cosmological parameters of
interest.

In order to derive equation (30) one must pre-suppose that the PVs
inside each cell are well described as a continuous field. However,
the velocities inside a grid cell represent discrete samples from the
PV field; therefore, as the number density inside each cell becomes
small this approximation becomes worse. In Abate et al. (2008) a
solution to this ‘sampling problem’ was proposed and tested using
N-body simulations. To mitigate the effects of this approximation
one interpolates between the case of a discrete sample and that of the
continuous field limit. The weight attached to each is determined
using the number of galaxies within each cell Ni. The diagonal
elements of the covariance matrix are now updated as

C̃ii → C̃ii + (C̃ii − Cm
ii )/Ni, (31)

where Cm
ii is defined in equation (18). For this correction, the contin-

uous field approximation is assumed for the off-diagonal elements.12

3.6 Effect of the unknown zero-point

The zero-point in a PV analysis is a reference magnitude, or size
in the case of FP surveys, for which the velocity is known to be
zero. From this reference point, one is able to infer the velocities
of objects; without such a reference point only the relative veloci-
ties could be determined. An incorrectly calibrated zero-point intro-
duces a monopole component to measured PVs. To give an example,
for SNe the zero-point is determined by the absolute magnitude M
and the Hubble parameter H0.

When deriving PV measurements the zero-point is typically fixed
at its maximum likelihood (ML) value found during the calibration
phase of the analysis; this allows the velocities of all the objects in
the sample to be determined. However, this zero-point may contain
error. In this section, we introduce a method to analytically prop-
agate the uncertainty in the zero-point into the final cosmological
result.

We first consider the case of analysing a single velocity survey.
We define a as an offset in the magnitude fluctuation, such that
δm → δm + a. This indirectly represents a perturbation to the
velocity zero-point. Given we have some prior knowledge of the
distribution of this variable we give it a Gaussian prior, i.e.

P (y|σy) = 1

(2π)1/2σy

exp
[−y2/2σ 2

y

]
. (32)

We define x as an N dimensional vector where each element is set
to one (i.e. (x)i = 1, for i = 1 , . . . , N). Here N is the dimension
of δm. The parameter a alters the theoretical prediction for the

12 This approach is valid given the off-diagonal elements of the covariance
matrix are significantly damped at small scales, and hence the smoothing of
the velocity field has only a small effect on these elements.

mean velocity, 〈δmp〉 = 0, to 〈δmp〉 = yx. Now we can analytically
marginalize over the unknown zero-point (Bridle et al. 2002)

P (�|δm) =
∫

dyP (�|δm, y)P (y|σy)

= |2π�|−1/2(1 + xT �−1xσ 2
y )−1/2 exp

[
1

2
δmT �−1

M δm
]
,

(33)

where

�−1
M ≡ �−1 − �−1xxT�−1

xT�−1x + σ−2
y

. (34)

We may wish to combine a number of different PV surveys with
potentially different zero-point offsets. In this case, it is necessary
to consider how one can marginalize over the independent zero-
points simultaneously. We consider the example of two different
PV surveys but note that this approach can be readily generalized
to a larger number of surveys (Bridle et al. 2002).

First we decompose the data vector into apparent magnitude
fluctuations from the first and second surveys,

δm =
(

δm(1)

δm(2)

)
N

, (35)

where the first survey has n1 data points and the second has n2,
therefore the combined vector has length N = n1 + n2. The data
from the two surveys need to be smoothed on to two different grids,
this is a simple modification to the binning algorithm:

δm =
⎛
⎝ 1

N1,i

∑
j≤n1

δm
gal
j (xj )�ij

1
N2,i

∑
n1<j≤n2

δm
gal
j (xj )�ij

⎞
⎠ , (36)

where N1, i and N2, i are the number of galaxies inside the ith cell
from the first and second survey, respectively.

We now introduce two free parameters (y, b) which will allow the
zero-point to vary for each survey, again both parameters are given
Gaussian priors (i.e. are distributed according to equation 32). To
account for a changing zero-point we alter the theoretical prediction
for the mean value of the apparent magnitude fluctuations 〈δmp〉.
This quantity is normally set to zero as PVs are assumed to be
distributed according to a multivariate Gaussian with a mean of
zero, now we have 〈δmp〉 = yx(1) + bx(2), where x

(1)
i = 1 if i ≤ n1

and x
(1)
i = 0 otherwise and x

(2)
i = 1 if i ≥ n1 and x

(2)
i = 0 otherwise.

The updated likelihood is then

P (�|δm, y, b) = |2π�|−1/2

× exp

(
−1

2

(
δm + 〈δmp〉)T

�−1
(
δm + 〈δmp〉)).

We desire a posterior distribution independent of the zero-
point corrections therefore we analytically marginalize over these
parameters

P (�|δm) =
∫

dy

∫
db P (�|δm, y, b)P (y|σy)P (b|σb)

= |2π�|−1/2(1 + x(1)T �−1x(1)σ 2
y )−1/2

× (1 + x(2)T �−1x(2)σ 2
b )−1/2 exp

[
1

2
δmT �−1

M δm
]

,

(37)
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6dFGSv: velocity power spectrum analysis 3937

where

�−1
M ≡ �−1 − �−1x(1)x(1)T

�−1

x(1)T
�−1x(1)

− �−1x(2)x(2)T
�−1 + σ−2

y

x(2)T
�−1x(2) + σ−2

b

. (38)

Here we need to consider the variation to the determinant as the
covariance matrix is being varied at each likelihood evaluation. For
all zero-points here we choose a Gaussian prior with a standard
deviation of σ y = σ b = 0.2. We find the choice of width of the prior
has an insignificant effect on the final results.

3.7 Combining multiple (correlated) velocity surveys

Given the limited number count and sky coverage of objects in
velocity surveys it is common for different surveys to be combined
in a joint analysis. In this situation, individual data sets may contain
unrecognized systematic errors, requiring them to be reweighted in
the likelihood analysis.

The first method we consider to do this is a recent upgrade to
the hyperparameter analysis. The original hyperparameter method
was developed to remove the inherent subjectivity associated with
selecting which data sets to combine in an analysis and which to
exclude (see Lahav et al. 2000; Hobson, Bridle & Lahav 2002).
This process is achieved by including all the available data sets but
allowing free hyperparameters to vary the relative ‘weight’ attached
to each data set, the hyperparameters are then determined in a
Bayesian way. Consider two hypothetical surveys with chi-squared
of χ2

A and χ2
B. The combined constraints are typically found by

minimizing the quantity

χ2
com = χ2

A + χ2
B. (39)

This gives both data sets equal weight. Introducing the hyperparam-
eters one has

χ2
com = αχ2

A + βχ2
B. (40)

The hyperparameters can be interpreted as scaling the errors for each
data set, i.e. σ i → σ iα

−1/2, or equivalently the covariance matrix of
each data set Ci → α−1Ci. The final values of the hyperparameters,
more accurately their probability distributions P(α) and P(β), give
an objective way to determine if there are systematic effects present
in the data (e.g. a value α > 1 can be interpreted as reducing the
errors or correspondingly increasing the relative weight of the data
set).

The problem with the traditional hyperparameter analysis for PV
surveys is that it assumes that the individual data sets are not corre-
lated (this assumption is required to write down equation equations
39 and 40). If the surveys cover overlapping volumes or are influ-
enced by the same large-scale modes this is not the case. Recently
the hyperparameter formalism has been extended to a hyperparam-
eter matrix method which includes the cross-correlations between
surveys (Ma & Berndsen 2013). Here the hyperparameters scale
both the covariance between objects in a given data set and the
covariance between the data sets:

CDiDj → (
αiαj

)−1/2
CDiDj , (41)

where Di represents the ith data set, so CDiDj gives the covari-
ance between the ith and jth data sets. For simplicity, here we
outline the case of two different data sets. In this case, there are two
hyperparameters (α1, α2) which we treat as free parameters. The
hyperparameter matrix is defined as

H =
(

α−1
1 (α1α2)−1/2

(α1α2)−1/2 α−1
2

)
. (42)

The final likelihood function is

P (δm|θ , α)

=
[

2∏
i=1

( αi

2π

)ni/2
]

1√|C| exp

(
−1

2
δmT

(
Ĥ�C−1

)
δm

)
.

Here � is an ‘element-wise’ product (or Hadamard product) defined
as (Ĥ�C−1)ij = Ĥij × (C−1)ij and θ represents the parameters of
interest. Ĥ is the Hadamard inverse of the ‘hyperparameter’ matrix
(i.e. Ĥij = P −1

ij ), and n1 and n2 are the number of data points in the
first and second surveys, respectively.

As described in Section 3.2.2 a free parameter σ v is typically in-
troduced to account for non-linear random motion. One issue with
the likelihood function defined above is that σ v and the hyperpa-
rameters are quite degenerate. Therefore, for our hyperparameter
analysis, we fix σ v at the values found when analysing the surveys
independently.

4 TESTI NG WI TH SI MULATI ONS

We require simulations of PV catalogues for several aspects of this
analysis. First, to determine if non-linear effects from the growth
rate of structure or RSDs cause systematic errors. Secondly, to de-
termine the approximate survey geometry and distance errors for
which the non-Gaussian observational scatter of PVs becomes im-
portant. Finally, to determine the effect (on the final constraints) of
marginalizing over the zero-point uncertainty. Note the construction
of the mock catalogues used in this section is outlined in Section 2.

All the cosmological parameters not allowed to vary freely
here are set to those input into the simulation (i.e. �� = 0.727,
�m = 0.273, �k = 0, H0 = 100 h km s−1 Mpc−1, σ 8 = 0.812,
ns = 0.960). For the velocity power spectrum fits we use a smooth-
ing scale (defined in Section 3.5) of 10 h−1 Mpc, while for the anal-
ysis of �m and σ 8 we adopt a length of 20 h−1 Mpc. We use a larger
grid size for the analysis of �m and σ 8 because the evaluation of the
likelihood (i.e. equation 22) is more computationally demanding
relative to the evaluation of the likelihood given in equation (25),
the larger grid size reduces the computational requirements.13 We
first shift the haloes within the simulation to their redshift-space po-
sition, using xs = xr + v(x, t) · r̂/H0. Now we transform the PVs
within the simulation to apparent magnitude fluctuations, δm.

At small scales the predictions from RPT become less ac-
curate and are known to break down (experience exponential
damping relative to the expectations from N-body simulations) at
k ∼ 0.15 h Mpc−1 for the velocity power spectrum evaluated assum-
ing the fiducial cosmology of the simulation at a redshift of zero.
We therefore truncate the velocity power spectrum fits at this scale.
We note that this scale varies for different cosmological parameters,
therefore for the (�m, σ 8) fits we test a range of values, kmax, for
truncating the integral when calculating the covariance matrix, to
decide the optimal choice for the data.

Now using eight different observers from mock set (I) we test
the ability of each parametrization to recover the input cosmology,
under the conditions outlined above. Recall for mock set (I) the input
distance error is σ d ∼ 5 per cent, the approximate distance error
for SNe. The derived constraints on (�m, σ 8) for various values
of kmax are given in Fig. 7; the black square symbols here give the

13 This is the case because for each �m and σ 8 posterior evaluation we are
required to recalculate the entire covariance matrix (equation 30). This is
not the case for the other parametrizations considered here.

MNRAS 444, 3926–3947 (2014)

 at D
urham

 U
niversity L

ibrary on O
ctober 10, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3938 A. Johnson et al.

Figure 7. 68 per cent confidence regions for the matter density, �m, and the rms clustering in 8 h−1 Mpc spheres, σ 8, using mock set (I), including RSD and
using the δm variable. The transparent contours (dashed outline) give the constraints from some example single-survey realizations. The opaque contours (solid
outline) give the combined constraints from eight realizations. For the combined constraints, we give 68 and 95 per cent confidence regions. A smoothing length
of 20 h−1 Mpc is used for all constraints. For each plot, we vary the length-scale, kmax at which we truncate the integral for the calculation of the covariance
matrix, that is the integral given in equation (30) (i.e. the smallest scales included in the analysis). Varying this scale allows us to test the validity of the constraints
as we move into the non-linear regime. From left to right the wavenumbers at which we cut off the integration are kmax = [0.1, 0.15, 0.175, 0.20] h Mpc−1.
The black square symbols give the cosmology input into the simulation.

Figure 8. 68 per cent confidence intervals for the amplitude parameters Ai describing the mean ‘power’ within each bin using mock set (I). The thick blue
(horizontal) lines give the mean power in each bin for the fiducial cosmology calculated using equation (26). Here we include RSDs, use δm and a smoothing
length of 10 h−1 Mpc. The blue points are the constraints found for individual mock realizations, while the red points show the constraints found by combining
the results from eight different mocks. Consistency with the assumed fiducial cosmology occurs when the given confidence levels overlap with the mean power;
the specific position of the point along the bin length is arbitrary. The green dashed line shows the velocity power spectrum calculated assuming the fiducial
cosmology. Section 5.3 gives the wavenumber bin intervals used here, with the exception that kmin = 0.0065 h Mpc−1 = 2π/Lbox.

input cosmology of the simulation. The velocity power spectrum
measurements are given in Fig. 8 and the constraints for a scale-
dependent growth rate, fσ 8(z = 0, k), are given in Fig. 9. The thick
blue lines in Fig. 8 give the predictions for the average power within
the defined bin ranges for the fiducial cosmology, this is calculated
using equation (26) with Ai = 1. In addition to giving the results
for a single mock realization we also average the results found for
eight different mock realizations in order to provide a more accurate
systematic test. Again some care needs to be taken when interpreting
the combined constraints given that on the largest scales the mock
realizations are significantly correlated. This is most pronounced
for the largest scale bin in Figs 8 and 9, for which we interpret
the consistently ‘high’ measurement power as being produced by
correlations. Also note the mock simulations considered here have

significantly greater statistical power than current PV surveys, so
we are performing a sensitive systematic check. We find that at the
investigated error levels we are able to accurately recover the input
cosmology of the simulation for all parametrizations considered.
We conclude therefore that the bias from non-linear structure is
currently insignificant, the linear relation between the PV and δm is
valid and non-linear RSD effects do not bias our final constraints.

Following Fig. 8, we conservatively fix kmax = 0.15 h Mpc−1 for
the (�m, σ 8) fits, given that on smaller scales we observe a slight
trend away from the fiducial cosmology (yet still consistent at the
2σ level). For the power spectrum fits, we note a small amount of
correlation exists between the different wavenumber bins. We give
a typical example of the correlation coefficients between the bins in
Fig. 10, determined using the Markov chain Monte Carlo (MCMC).
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6dFGSv: velocity power spectrum analysis 3939

Figure 9. 68 per cent confidence intervals for the normalized scale-dependent growth rate f (z = 0, k)σ 8(z = 0) in five different bins in Fourier space. The
thick black line gives the prediction of the input cosmology. For each k-bin, we plot the results from six different realizations from mock set (I). We include
RSDs in the mocks, use the variable δm, and choose a smoothing length of 10 h−1 Mpc. The specific k-values within a given bin for the measurements are
arbitrary. The bin intervals used here are given in Section 5.3, with the one correction that kmin = 0.0065 h−1 Mpc, corresponding to the size of the simulation.

Figure 10. Correlation coefficients r between the amplitude parameters Ai,
and the non-linear velocity dispersion σ v. The results here were calculated
using an MCMC chain (of length ∼106) produced when analysing a sin-
gle realization from mock set (I). We expect very similar correlations to
exist between the growth rate measurements and note that the correlations
between the different bins are quite weak.

When testing the effect of non-Gaussian observational error for
PVs, both the sky coverage of the survey and the distance error are
relevant, therefore we consider both mock set (I) and (II). We find
that for mock set (I) using the velocity not magnitude as the variable
in the analysis results in no significant bias. This continues to be
true even when we limit the survey to one hemisphere. This can be
understood because the degree of departure from Gaussianity of the
probability distribution of PVs, P(v), is dependent on the magnitude
of the distance error. With relatively small distance errors, P (vp) is
described well by a Gaussian distribution.

In the case of a distance and sky distribution corresponding to
6dFGSv, that is, σ d ∼ 30 per cent and only considering one hemi-
sphere (i.e. mock set II) we find a significant bias is introduced when

using PVs.14 We use eight realizations from mock set (II), generate
realistic observational errors and perform the likelihood analysis
twice using either PV or δm as the variable. For the likelihood anal-
ysis using PV one is required to input a single velocity value, which
gives us some freedom in how we choose to compress the distribu-
tion P (vp) into a single value. Here we consider the mean, ML and
median. For a detailed investigation into the effect of these choices,
in the context of bulk flow measurements, see Scrimgeour et al.
(in preparation). In all prior PV analysis, when the full probability
distribution of the distance measure (e.g. the absolute magnitude,
M, in the case of the Tully–Fisher relation) was not available the
PV was calculated directly from this variable. The Jacobian term
is ignored in this case, we label this method the ‘direct approach’.
To give an example for the FP relation using this direct method one
would determine the ML value of x ≡ log10(Dz/DH) then using this
value calculate the corresponding PV, again ignoring the Jacobian
term given in equation (9).

We give the constraints for the amplitude of the velocity power
spectrum and the cosmological parameters σ 8 and �m, found when
using the magnitude fluctuation δm, in Fig. 11. For the fits of σ 8

and �m we also use the mean of P (vp) and the direct method; while
for the velocity power spectrum fits we use the median of P (vp)
(viz. vi = Median[P (vi)]). Here we have combined the constraints
from different mock realizations. Note for the separate fits using δm
and the PV we have used the same mock realizations. We interpret
the slight offset from the fiducial model (still within 1σ ) of the
constraints found using δm as simply a result of cosmic variance
and covariance between mock realizations.

We conclude that for the constraints on σ 8 and �m using the
mean, median and ML of P (vp) and the direct method in the like-
lihood analysis all introduce a significant bias (i.e. >2σ ) in the
final cosmological parameter values when considering a radial and
angular halo distribution similar to 6dFGSv (and averaging over
eight realizations). We find a similar, yet less significant, bias for
the velocity power spectrum, given the derived constraints are now

14 This also applies for future analyses; a number of FP and Tully–Fisher
surveys are forthcoming and will have similar properties.
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3940 A. Johnson et al.

Figure 11. Left: 68 per cent confidence intervals for the velocity power spectrum amplitude in three Fourier bins. We consider five separate realizations
taken from mock set (II). The small blue points show the individual constraints found using the variable δm, while the small red points show the constraints
found using the median of the velocity distributions (viz. vi = Median[P (vi )]) (this gives very similar results to the direct method). The larger blue and red
points show the results from combining the five realizations. The circle symbols (left-hand panel) give the median value of the probability distributions. Right:
constraints on the parameters �m and σ 8 found from combining the results from eight different realizations with mock set (II). The contours give 68 and 95
per cent confidence levels. The blue contour shows the result of using the variable δm. The red and green contours show the result of using the PV as the main
variable, where the red contour gives the result from directly calculating the PV from the observable quantity ignoring the Jacobian term, and the green contour
gives the constraints from using the mean value of P(v).

consistent at the 2σ level. As shown in the left-hand panel of Fig. 11,
the result is more power relative to the fiducial cosmology on the
largest scales, which is consistent with a low bias in �m. The non-
Gaussian distributions imprint a bias in the mean radial velocity
and therefore influence power on the largest scale. Once a full sky
survey is considered this effect is less severe as the bias tends to
average out.

We test the sensitivity of the final constraints to the process of
marginalizing over the zero-point. We find that the final results
are reasonably insensitive to this procedure. As expected, the error
in measurements on the largest scales is increased, which slightly
weakens the constraints in the largest scale bin for the growth rate
and velocity power spectrum measurements, and equivalently weak-
ens the constraints on the matter density �m.

5 PA R A M E T E R F I T S TO V E L O C I T Y
DATA SETS

In this section, we present the results from the analysis of the
6dFGSv and low-z SNe PV surveys. Analysing the fluctuations
in the measured PVs and their correlations (as a function of their
spatial separation) we are able to derive constraints on the following:
the cosmological parameters �m and σ 8 (Section 5.2); the ampli-
tude of the velocity power spectrum, Pvv(k) ≡ Pθθ (k)/k2 in a series
of (five) �k ∼ 0.03 h Mpc−1 bins (Section 5.3); the scale-dependent
normalized growth rate of structure, fσ 8(z = 0, k), in a series of (five)
�k ∼ 0.03h Mpc−1 bins (Section 5.4); and the scale-independent
growth rate of structure, fσ 8(z = 0) (Section 5.4). All the constraints
given are at a redshift z ∼ 0. We emphasize that, because we have
not included any information from the local density field, as inferred
by the local distribution of galaxies, the results presented here do
not rely on any assumptions about galaxy bias. Additionally, here
we are working solely within the standard �CDM model.

For Sections 5.2–5.4 we give the results derived when analysing
the individual surveys separately. Comparing the results from dif-
ferent PV surveys allows one to check for systematic effects. When
combining the PV surveys we consider two different approaches,
both introduce extra degrees of freedom that allow the relative
‘weight’ of each sample to vary in the likelihood calculation. First,
we introduce a free parameter σ v to each survey, this term accounts
for non-linear velocity dispersion. Secondly, we allow the relative
weight of each survey to be varied by the use of a matrix hyperpa-
rameter method (introduced in Section 3.7). In this case, we fix the
σ v values of both surveys to the ML values found when analysing
the surveys separately. The purpose of the hyperparameter analysis
is to check the statistical robustness of our constraints. In the case
that the hyperparameter analysis is statistically consistent with the
standard method of combining the surveys we quote the results from
the standard method as our final measurement. The two PV samples
we use for this analysis have significant overlap, therefore we ex-
pect the individual results to be highly correlated, given they share
the same cosmic variance. This limits the benefits from combining
the samples. In addition, complications arise when data points from
each survey are placed on the same grid point, as occurs when the
velocity surveys are separately smoothed on to grids.15

For all likelihood calculations in the following sections we
marginalize over the unknown zero-point16 (i.e. a monopole con-
tribution to the velocity field). The result of this process is that our
constraints are not sensitive to the uncertainties present in the de-
termination of the zero-point in PV surveys and the assumptions
required to determine the zero-point.

15 We treat these data points as if they were perfectly correlated in the full
covariance matrix.
16 We allow each survey to have different zero-point offsets for the marginal-
ization.
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5.1 MCMC sampling strategy

To sample the posterior distributions, we use a python implemen-
tation of the affine-invariant ensemble sampler for MCMC MCMC-
HAMMER (Foreman-Mackey et al. 2013). This technique was intro-
duced by Goodman & Weare (2010). We use the MCMC-HAMMER

algorithm because, relative to the standard Metropolis–Hastings
(M–H) algorithm the integrated autocorrelation time is lower and
less ‘tuning’ is required; specifically, only two parameters are re-
quired to tune the performance of the Markov chain, as opposed to
N[N + 1]/2 parameters in M–H, where N is the dimension of the pa-
rameter space. Additionally, the MCMC-HAMMER algorithm is trivially
parallelized using MPI and the affine invariance (invariance under
linear transformations) property of this algorithm means it is in-
dependent of covariances between parameters17 (Foreman-Mackey
et al. 2013).

We discard the first 20 per cent of each chain as ‘burn in’ given
that the sampling may be non-Markovian, while the convergence
of each chain is assessed using the integrated autocorrelation time.
From the samples, we generate an estimate of the posterior ML
and median; given the posterior distributions of the parameters tend
to be non-Gaussian, the 68 per cent confidence intervals we quote
are found by calculating the 34 per cent limits about the estimated
median. In the case where we cannot quote a robust lower bound,
when the probability distribution peaks near zero, we quote 95 per
cent upper limits.

5.2 Matter density and clustering amplitude

The base set of parameters we allow to vary in this analysis is [�m,
σ 8, σ v]. In the case, where we combine PV surveys we consider
two extensions to this base set. First, we include a free parameter
modelling the non-linear velocity dispersion σ v for each survey
and therefore consider the set of parameters [�m, σ 8, σ v, 1, σ v, 2].
Secondly, we fix the values for the velocity dispersion and introduce
hyperparameters, this gives the set [�m, σ 8, α6dF, αSNe].

For each likelihood evaluation of the cosmological parameters we
must compute the corresponding velocity power spectrum. While
the calculation of the velocity power spectrum in VELMPTBREEZE

is significantly faster than previous RPT calculations, it remains
too slow to embed directly in MCMC calculations. Therefore, the
approach we take here is to pre-compute a grid of velocity power
spectra then use a bilinear interpolation between the grid points to
estimate the power spectra.

Using VELMPTBREEZE we evaluate a grid of velocity power spec-
tra; we use the range �m = [0.050, 0.500] and σ 8 = [0.432, 1.20],
which act as our priors. We use step sizes of ��m = 0.01 and
�σ 8 = 0.032. We do not investigate the region of parameter space
where �m < 0.05 as here the theoretical modelling of the veloc-
ity power spectrum becomes uncertain as it becomes highly non-
linear on very large scales. The prior placed on all σ v parameters is
σ v = [0, 1000] km s−1 and αi = [0, 10]. For each value of �m, the
matter transfer function needs to be supplied, to do this we use the
CAMB software package (Lewis, Challinor & Lasenby 2000). The
numerical integration over the velocity power spectrum requires us
to specify a k-range. Here we integrate over the range k = [0.0005,
0.15] h Mpc−1. We note that integrating to larger scales (i.e. smaller
values of k) when computing the full covariance matrix has a neg-
ligible effect on the derived constraints. Additionally, for the con-

17 No internal orthogonalization of parameters is required.

straints given in this section we smooth the local velocity field with
a gridding scale of 20 h−1 Mpc.

The constraints for the parameters are shown in Fig. 12 and
the best-fitting values and 68 per cent confidence regions are
given in Table 1. Using only the 6dFGSv sample, we determine
�m = 0.136+0.07

−0.04 and σ8 = 0.69+0.18
−0.14, and for the SNe velocity sam-

ple we determine �m = 0.233+0.134
−0.09 and σ 8 = 0.86 ± 0.18. The

results show that the two PV samples are consistent with each other
and given the size of the errors we do not find a strong statistical
tension (less than 2σ ) with the parameter values reported by Planck.
Combining the two PV surveys we determine �m = 0.166+0.11

−0.06

and σ 8 = 0.74 ± 0.16; similarly we find no strong statistical ten-
sion with Planck. For the matrix hyperparameter analysis, we find
α6dF = 1.23 ± 0.05, αSNe = 0.87 ± 0.08, �m = 0.228+0.12

−0.08 and
σ8 = 0.96+0.14

−0.16; although the constraints from the hyperparameters
are best fitted with the slightly higher σ 8 value, we find the results
from the hyperparameter analysis are statistically consistent with
the previous constraints, as shown in Fig. 12.

The constraints on �m and σ 8 outlined in this section, while not
competitive in terms of statistical uncertainty to other cosmological
probes, do offer some insight. In contrast to most methods to deter-
mine the matter density, �m, constraints from PV do not result from
determining properties of the global statistically homogeneous uni-
verse (geometric probes); the constraints arise from the dependence
of the clustering properties of dark matter on �m. The consistency
between these probes is a strong test of the cosmological model.

5.3 Velocity power spectrum

Analysing the surveys individually, we consider the base parameter
set [A1(k1), A2(k2), A3(k3), A4(k4), A5(k5), σ v]. Each Ai parameter
(defined in equation 24) acts to scale the amplitude of the velocity
power spectrum, Pvv(k), over a specified wavenumber range given
by k1 ≡ [0.005, 0.02], k2 ≡ [0.02, 0.05], k3 ≡ [0.05, 0.08], k4 ≡
[0.08, 0.12] and k5 ≡ [0.12, 0.150]. When combining samples we
consider the parameter sets [A1, A2, A3, A4, A5, σ v, 1, σ v, 2] and [A1,
A2, A3, A4, A5, α6dF, αSNe]. We use a flat prior on the amplitude
parameters, Ai = [0, 100], and the hyperparameters αi = [0, 10].

The constraints for the amplitude of the velocity power spectrum
are shown in Fig. 13 and the best-fitting values and 68 per cent
confidence regions are given in Table 2. The deviation between
the ML values and median values (as shown in Table 2) is caused
by the skewness of the distributions and the physical requirement
that Ai > 0. This requirement results in a cut-off to the probability
distribution that becomes more significant as the size of the errors
increases. Therefore, we caution that defining a single best-fitting
value from the distribution requires subjective choices; note this is
not the case for the growth rate constraints as shown in the next
section. The fiducial power in each Fourier bin is consistent with
that expected in our fiducial cosmological model assuming the best-
fitting Planck parameters.

5.4 Scale-dependent growth rate

We consider the results outlined in this section the most significant
component of this work. We present the first measurement of a scale-
dependent growth rate which includes the largest scale growth rate
measurement to date (viz. length-scales greater than 300 h−1 Mpc).
Additionally, we present a redshift zero measurement of the growth
rate that is independent of galaxy bias and accurate to ∼15 per cent.
Comparing this result to that obtained from the RSD measurement
of 6dFGS (i.e. Beutler et al. 2012a) allows one to test the systematic
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Figure 12. 68 per cent confidence intervals for the matter density �m, σ 8 and the non-linear velocity dispersion σ v. Results are shown for 6dFGSv (blue), the
SN sample (green), the combined analysis (red) and the combined hyperparameter analysis (black). The σ v constraints from the combined analysis are very
similar to the individual constraints hence we do not add them here.

Table 1. Derived cosmological parameter values for �m and σ 8 plus the derived value for the non-linear velocity dispersion σ v and the hyperparameters α6dF

and αSNe. Parameters not allowed to vary are fixed at their Planck ML values. Columns 2 and 3 give results from the 6dFGSv survey data alone. Columns 4 and
5 give results from the SNe sample data alone. For columns 6 and 7 we give the results combining both surveys; and for columns 8 and 9 we give the results
combining both surveys using a matrix hyperparameter analysis. Note that the hyperparameters are only given for columns 8 and 9 as they are not included in
the other analysis. All varied parameters are given flat priors.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGSv + SNe (Hyp)
Parameter ML ML Median ML Median ML Median

(68 per cent limits) (68 per cent limits) (68 per cent limits) (68 per cent limits)

�m 0.103 0.136+0.07
−0.04 0.169 0.233+0.134

−0.09 0.107 0.166+0.11
−0.06 0.183 0.228+0.12

−0.08

σ 8 0.66 0.69+0.18
−0.14 0.89 0.86 ± 0.18 0.73 0.74 ± 0.16 1.06 0.96+0.14

−0.16

σ v[km s−1] 32.7 114+245 388 395+54
−58 – – – –

α6dF – – – – – – 1.22 1.23 ± 0.05

αSNe – – – – – – 0.86 0.87 ± 0.08

influence of galaxy bias, a significant source of potential systematic
error in RSD analysis.

Analysing the surveys individually we consider two parameter
sets: first, we determine the growth rate in the scale-dependent bins
defined above constraining the parameter set [fσ 8(ki), σ v] (i = 1..5);
secondly, we fit for a single growth rate measurement [fσ 8(z = 0),
σ v]. When combining data sets we consider the extensions to the
base parameter set +[σ v, 1, σ v, 2] and +[α6dF, αSNe], and use a
smoothing length of 10 h−1 Mpc. We fix the shape of the fiducial
velocity power spectrum �m to the Planck value. By separating
the power spectrum into wavenumber bins we expect that our final

constraints are relatively insensitive to our choice of �m. Varying
�m generates a k-dependent variation in the power spectrum over
very large scales; considering small intervals of the power spectrum
this k-dependence is insignificant and to first order the correction
to a variation in �m is simply a change in amplitude of the power
spectrum, which we allow to vary in our analysis.

We first consider the scale-dependent constraints which are
shown in Fig. 14; with the best fit and 68 per cent confidence
internals given in Table 3 and the full probability distributions
in Fig. 15. For 6dFGSv we determine: f σ8(ki) = [0.72+0.17

−0.23,

0.38+0.17
−0.20, 0.43+0.20

−0.20, 0.55+0.22
−0.23, 0.52+0.25

−0.22]. For the SNe velocity
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6dFGSv: velocity power spectrum analysis 3943

Figure 13. 68 per cent confidence intervals for the amplitude parameters Ai scaled by the mean power within each bin for the 6dFGSv data, SNe data and
the combined constraint. The thick blue lines give the mean power in each bin in the fiducial cosmology calculated using equation (26). The black dashed line
shows the velocity power spectrum Pvv(k) calculated assuming the Planck cosmology. The circle symbols here give the median of the posterior distribution.

Table 2. Constraints on the velocity power spectrum amplitude parameters Ai plus the value of the non-linear velocity dispersion σ v and the hyperparameters
α6dF and αSNe. Parameters not allowed to vary are fixed at their Planck ML values. Columns 2 and 3 give results from the 6dFGSv survey data alone. Columns
4 and 5 give results from the SNe sample data alone. For columns 6 and 7 we give the results combining both surveys; and for columns 8 and 9 we give the
results combining both surveys using a matrix hyperparameter analysis. All varied parameters are given flat priors.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGS + SNe (Hyp)
Parameter ML Median ML Median ML Median ML Median

(68 per cent limits) (68 per cent limits) (68 per cent limits) (68 per cent limits)

A1(k1) 1.98 2.64+2.15
−1.18 1.62 2.50+2.80

−1.40 2.43 3.20+2.62
−1.60 2.22 3.17+2.64

−1.65

A2(k2) 0.20 0.74+1.08
−0.55 0.25 0.89+1.43

−0.67 0.14 0.44+0.84
−0.34 0.26 0.65+1.13

−0.49

A3(k3) 0.20 0.94+1.20
−0.70 0.57 1.0+1.55

−0.73 0.13 0.50+0.86
−0.38 0.27 0.63+0.96

−0.48

A4(k4) 0.27 1.51+1.61
−1.06 0.43 1.34+2.14

−0.99 1.52 2.07+1.37
−0.98 1.89 2.26+1.43

−0.99

A5(k5) 0.30 1.36+1.84
−0.98 0.84 2.79+4.49

−2.03 0.38 1.17+1.48
−0.86 0.40 1.39+1.86

−1.00

σ v[km s−1] 98.4 137.5+110
−91 372.8 365.2+43

−45 – – – –

α6dF – – – – – – 1.198 1.189 ± 0.034

αSNe – – – – – – 0.940 0.980+0.104
−0.091

sample we have: f σ8(ki) = [0.70+0.29
−0.22, 0.42+0.23

−0.19, 0.45+0.24
−0.20,

0.51+0.29
−0.23, 0.74+0.41

−0.33]. As shown in Table 3 the constraints on σ v

from 6dFGSv are very weak relative to the constraints from the
SNe sample. The reason the σ v parameter is much lower (and has
a larger uncertainty) for the 6dFGSv sample relative to the SNe
sample is that the gridding has a stronger effect for the 6dFGSv
sample given the higher number density. This significantly reduces
the contribution of non-linear velocity dispersion to the likelihood
and hence increases the final uncertainty. In addition, we note that
the magnitude of σ v will be dependent on the mass of the dark
matter halo that the galaxy resides in. The halo mass may vary
between PV surveys, therefore, causing σ v to vary between PV
surveys.

The results (again) show that the two surveys are consistent
with each other, viz. they are within one standard deviation of
each other for all growth rate measurements. We detect no sig-
nificant fluctuations from a scale-independent growth rate as pre-
dicted by the standard �CDM cosmological model. Although the
power in the largest scale Fourier bin is high, it is consistent with

statistical fluctuations. When combining both the 6dFGSv sam-
ple and the SNe velocity sample we find (no hyperparameters):
f σ8(ki) = [0.79+0.21

−0.25, 0.30+0.14
−0.19, 0.32+0.19

−0.15, 0.64+0.17
−0.16, 0.48+0.22

−0.21]. We
find no significant departure from the predictions of the standard
model.

We next fit for a scale-independent growth rate by scal-
ing the fiducial power spectrum across the full wavenumber
range. The measurements of a scale-independent growth rate of
structure are given in Fig. 16. Here we also compare with pre-
viously published results from RSD measurements and the pre-
dictions from the assumed fiducial cosmology. The best-fitting
values and 68 per cent confidence intervals are given at the bot-
tom of Table 3. We also plot the full probability distributions in
Fig. 17, in addition to the results from the hyperparameter anal-
ysis. For 6dFGSv, the SNe velocity sample and 6dFGSv+ SNe
(with no hyperparameters) we determine, respectively, f σ8(z) =
[0.428+0.079

−0.068, 0.417+0.097
−0.084, 0.418 ± 0.065]. The measurements of the

growth rate all show consistency with the predictions from the fidu-
cial model as determined by Planck. Specifically, the best-fitting
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3944 A. Johnson et al.

Figure 14. 68 per cent confidence intervals for the normalized scale-dependent growth rate f (z = 0, k)σ (z = 0) in five different bins in Fourier space. The
thick black line is the prediction found assuming the fiducial Planck cosmology. For each k-bin, we plot the results from 6dFGSv, the SNe sample and the
combined constraint. The bin intervals used here are given in Section 5.3. The largest scale bin corresponds to length-scales >300 h−1 Mpc. The circle symbols
give the ML of the posterior distribution.

Table 3. Constraints on the growth rate as a function of scale and independent of scale (final row) plus the value of the non-linear velocity dispersion σ v and
the hyperparameters α6dF and αSNe. Columns 2 and 3 give results from the 6dFGSv survey data alone. Columns 4 and 5 give results from the SNe sample data
alone. For columns 6 and 7, we give the results combining both surveys, and for columns 8 and 9 we give the results combining both surveys using a matrix
hyperparameter analysis.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGS + SNe (Hyp)
Parameter ML Median ML Median ML Median ML Median

(68 per cent limits) (68 per cent limits) (68 per cent limits) (68 per cent limits)

fσ 8(k1) 0.68 0.72+0.17
−0.23 0.63 0.70+0.29

−0.22 0.76 0.79+0.21
−0.25 0.79 0.80+0.23

−0.25

fσ 8(k2) 0.39 0.38+0.17
−0.20 0.34 0.42+0.23

−0.19 0.21 0.30+0.14
−0.19 0.31 0.36+0.17

−0.21
fσ 8(k3) 0.44 0.43+0.20

−0.20 0.38 0.45+0.24
−0.20 0.260 0.32+0.19

−0.15 0.38 0.35+0.17
−0.19

fσ 8(k4) 0.57 0.55+0.22
−0.23 0.52 0.51+0.29

−0.23 0.69 0.64+0.17
−0.16 0.66 0.66+0.17

−0.19

fσ 8(k5) 0.49 0.52+0.25
−0.22 0.67 0.74+0.41

−0.33 0.49 0.48+0.22
−0.21 0.53 0.52+0.15

−0.17

σ v [km s−1] 98.4 137.5+110
−91 372.8 365.2+43

−45 – – 98.4 372.8

α6dF – – – – – – 1.198 1.189 ± 0.034

αSNe – – – – – – 0.940 0.980+0.104
−0.091

fσ 8(z = 0) 0.424 0.428+0.079
−0.068 0.432 0.417+0.097

−0.084 0.429 0.418 ± 0.065 0.492 0.496+0.044
−0.108

Planck parameters predict fσ 8(z = 0) = 0.443. In addition, we find
consistency with the measurement of the growth rate of structure
from the RSD analysis of the 6dFGS (see Fig. 16) (Beutler et al.
2012a).

For the hyperparameter analysis, the results for the scale-
dependent and scale-independent measurements are indistinguish-
able. We determine α6dF = 1.189 ± 0.034 and αSNe = 0.980+0.104

−0.091;
the results for both analysis have been included in Figs 14 and 16. We
find that, while there is a slight shift in the best-fitting values, the
hyperparameter analysis gives results statistically consistent with
the previous results; for the scale-independent measurements this is
best shown in Fig. 17.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have constructed 2-point statistics of the velocity field and tested
the �CDM cosmology by using low-redshift 6dFGSv and Type Ia
SNe data. We summarize our results as follows.

(i) We introduced and tested a new method to constrain the
scale-dependence of the normalized growth rate using only PV
data. Using this method, we present the largest scale constraint
on the growth rate of structure to date. For length-scales greater
than ∼300 h−1 Mpc (k < 0.02 h Mpc−1) we constrain the growth
rate to ∼30 per cent. Specifically, we find for 6dFGSv, which
provides our best constraints, f σ8(k < 0.02 h Mpc−1) = 0.72+0.17

−0.23.
This result is consistent with the standard model prediction of
fσ 8(z = 0) = 0.4439, albeit higher than expected.

(ii) Examining the scale-dependence of the growth rate
of structure at z = 0, we find the constraints f σ8(ki) =
[0.79+0.21

−0.25, 0.30+0.14
−0.19, 0.32+0.19

−0.15, 0.64+0.17
−0.16, 0.48+0.22

−0.21] using the
wavenumber ranges k1 ≡ [0.005, 0.02], k2 ≡ [0.02, 0.05], k3

≡ [0.05, 0.08], k4 ≡ [0.08, 0.12] and k5 ≡ [0.12, 0.150]. We
find no evidence for a scale-dependence in the growth rate,
which is consistent with the standard model. All the growth
rate measurements are consistent with the fiducial Planck
cosmology.
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6dFGSv: velocity power spectrum analysis 3945

Figure 15. 68 per cent confidence intervals for the normalized growth rate f (k, z = 0)σ (z = 0) for the combined constraints (using no hyperparameters). The
prediction for the growth rate of structure assuming a fiducial Planck cosmology is given by the solid black line.

Figure 16. 68 per cent confidence intervals for the normalized growth rate f (z = 0)σ (z = 0) averaging over all scales. The solid black line gives the theoretical
prediction for fσ 8(z) assuming the Planck cosmology and the dashed-black line gives the prediction assuming the Wilkinson Microwave Anisotropy Probe
cosmology. The redshift separation of the PV measurements (coloured points) is simply to avoid overlapping data points; the redshift of the green data point
gives the redshift of all the points. We compare our PV measurements to previous constraints from RSD measurements from the 6dFGS, 2dFGRS, GAMA,
WiggleZ, SDSS LRG, BOSS CMASS and VIPERS surveys given by the black points (Hawkins et al. 2003; Blake et al. 2011a, 2013; Beutler et al. 2012a;
de la Torre et al. 2013; Samushia et al. 2013).
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Figure 17. Posterior distributions for the (scale averaged) growth rate of
structure fσ 8(z = 0) for 6dFGSv (blue), SNe (green), combining samples
(red) and for the hyperparameter analysis (black). The posterior distributions
are also given for the hyperparameters α6dF and αSNe. The prediction for
the growth rate of structure assuming a fiducial Planck cosmology is given
by the solid black line.

(iii) Averaging over all scales, we measure the growth rate to
∼15 per cent which is independent of galaxy bias. This result
fσ 8(z = 0) = 0.418 ± 0.065 is consistent with the RSD analysis of
6dFGS which produced a measurement of fσ 8(z) = 0.423 ± 0.055
(Beutler et al. 2012a), increasing our confidence in the modelling of
galaxy bias. In addition, this measurement is consistent with the con-
straint given by Hudson & Turnbull (2012) of fσ 8 = 0.400 ± 0.07,
found by comparing the local velocity and density fields. In contrast
to our constraint this measurement is sensitive to galaxy bias and any
systematic errors introduced during velocity field reconstruction.

(iv) We also consider various other methods to constrain the
standard model. We directly constrain the amplitude of the velocity
power spectrum Pvv(k) ≡ Pθθ (k)/k2 for the same scale range as
specified above; we find that the predictions from two loop multi-
point propagators assuming the Planck cosmology gives an accurate
description of the measured velocity power spectrum. Specifically,
the derived amplitudes Ai of the power spectrum of four bins are
consistent with the fiducial cosmology at the 1σ level, and the largest
scale bin is consistent at the 2σ level. We can also compare these
constraints to those given by Macaulay et al. (2012). Similarly to
our results they found the amplitude of the matter power spectrum,
determined using the composite sample of PVs, to be statistically
consistent with the standard �CDM cosmology. In addition, they
also find on the largest scales a slightly higher amplitude of the
power spectrum that is expected in the standard model.18

(v) We show that when analysing PV surveys with velocities
derived using the FP or the Tully–Fisher relation, one should per-
form the analysis using a variable that is a linear transformation of
x = log10(Dz/DH). We show the intrinsic scatter is not Gaussian for

18 Note we cannot directly compare these sets of results, given different bin
ranges were used.

the PV and this can significantly bias cosmological constraints. We
show how the analysis can be reformulated using the variable δm,
which removes the bias.

With a large number of upcoming PV surveys, the prospect for
understanding how structure grows in the low-redshift universe
is excellent. Future work will move beyond consistency tests by
adopting specific modified gravity models and phenomenological
parametrizations, including measurements of RSDs and by self-
consistently modifying the growth and evolutionary history of the
universe. This will allow a vast range of spatial and temporal scales
to be probed simultaneously, providing a strong and unique test
of the standard �CDM model, and perhaps even providing some
insight on the so-far mysterious dark energy component of the
universe.
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