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Abstract. Dialogue semantics for logic are two-player logic games between a Pro-
ponent who puts forward a logical formula ϕ as valid or true and an Opponent
who disputes this. An advantage of the dialogical approach is that it is a uniform
framework from which different logics can be obtained through only small variations
of the basic rules. We introduce the composition problem for dialogue games as the
problem of resolving, for a set S of rules for dialogue games, whether the set of
S-dialogically valid formulas is closed under modus ponens. Solving the composition
problem is fundamental for the dialogical approach to logic; despite its simplicity, it
often requires an indirect solution with the help of significant logical machinery such
as cut-elimination. Direct solutions to the composition problem can, however, some-
times be had. As an example, we give a set N of dialogue rules which is well-justified
from the dialogical point of view, but whose set N of dialogically valid formulas is
both non-trivial and non-standard. We prove that the composition problem for N
can be solved directly, and introduce a tableaux system for N.
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1. Introduction

Dialogical logic was introduced by Lorenzen in the 1950s and developed
by Lorenzen and Lorenz in the 1970s [23, 24]. The basis of dialogical
logic is a two-player game (dialogue) between a Proponent (P) who at-
tempts to show via a dialogue-game that a formula ϕ is valid; the other
player, Opponent (O), disputes this. As with other logic games [14],
less attention is paid to actual plays of dialogue games than to the
tree of all possible ways the game could go, given an initial formula
ϕ; of particular interest is the existence of a winning strategy for P,
which specifies how P can reply to any move of O in such a way that
P can win. Lorenz claimed that Lorenzen’s dialogue games offer a new
type of semantics for intuitionistic logic IL and asserted the equivalence
between dialogical validity (defined in terms of winning strategies for P)
and intuitionistic derivability [20, 21]. Lorenz’s proof contained some
gaps, and later authors sought to fill these gaps; the first complete
appeared in [9].1

Dialogue games are not restricted to intuitionistic logic. By modify-
ing the rules, these games can also provide semantics for both classical
logic CL [1, 10] and other non-classical logics such as paraconsistent,
connexive, modal and linear logics [16, 34]. Semantics for these logics,
obtained by extending and adapting the original formulation of dialogue
games, are achieved either by adding rules for new connectives, which
are called particle rules, or by changing or adding rules governing the di-
alogues as wholes, called structural rules. Of course, one cannot change
the rules randomly and expect to retain something sensible. It is a
question of philosophical importance what types of changes to the rules
can be well motivated and justified, and it is important to note that
what is at issue is the justification of a ruleset S, and not a justification
of the resulting set of S-valid formulas. Except at the risk of being ad
hoc, one cannot adequately justify a set of dialogical rules solely on the
basis that the ruleset characterizes some well-known logic, even though,
as Krabbe notes, such a characterization is always welcome: “At the
very least, [students of dialogue logic] want [their systems] to yield some
well-known logic, so that they can prove completeness and correctness
and get their papers published” [18, p. 35]. The point is that we cannot
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always antecedently know that what we will obtain from a particular
combination of rules is going to be “acceptable” (under some criteria
of acceptability), and thus we must locate the problem of justification
at the input (i.e., the ruleset) rather than the output (i.e., the set of
dialogically valid formulas). Instead, there must be appeal to additional
means of justification. Again, as Krabbe notes, “[a] problem for some
motivations [in discussions of acceptable structural rules] was that it
was felt to be highly desirable to end up with a system that yielded
a respectable logic. . . but that, at least by some, it was not seen as
permissible to let this desire be part of the motivation” [19, p. 694].

However, while many authors have recognized this, to date there
has been little philosophical discussion of the problem of criteria for
what constitutes a “good” or “justified” set of rules, and hence on
what types of changes to a set of rules can and cannot be allowed.2

The fact that there is no clear principled restriction on how dialogical
rules can be modified naturally raises the question of when the set
of S-valid formulas, for a particular set S of dialogical rules, actually
corresponds to a logic. To answer this question, we need to identify
properties that a set of formulas must have in order for it to be called a
logic. One such desirable property is that the set be closed under modus
ponens: If ϕ and ϕ → ψ are S-dialogically valid, then so should ψ be;
we discuss others in §3. In this paper, we consider a dialogical ruleset
which arises via a rather natural modification of a well-known ruleset,
but our method of modification differs from previous attempts: Instead
of changing a rule or adding to the set of rules, we remove a specific
structural rule. We then investigate the properties of the resulting set
of formulas which are dialogically valid according to this ruleset.

The plan of the paper is as follows. In the next section, we provide
an introduction to (propositional) dialogical logic and give a dialogical
definition of a new sub-classical propositional logic which we call N.
In §3 we introduce the composition problem for a set of dialogical rules,
relating it to the problem of showing that the set of formulas is a logic.
In §4, we prove a number of results which lead to a positive solution
to the composition problem for N. Then, in §5, we prove properties
about N, locating it within the universe of known propositional logics.
§§6 and 7 are devoted to a tableau-based characterization of N. We
conclude in §8.

2. Dialogical logic

Developments in dialogical logic after Lorenzen and Lorenz’s seminal
works can be roughly divided into two different trends: the Lille-school
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of dialogues in the tradition of Rahman and Rückert on the one hand,
and the proof-theoretic tradition of Felscher on the other. These tradi-
tions differ not in the underlying framework within which they work but
in how the dialogues are presented. In Lille-style dialogues, the empha-
sis in the presentation is on “rounds”, that is, pairs of moves consisting
of an attack and the corresponding defense, if possible, with the attack
opening the round and the defense closing it. In this approach, the focus
is on individual dialogues rather than winning strategies. Moreover, in
the Lille tradition dialogues are generally restricted to be finite with the
help of numerical bounds on the number of times the two players may
repeat themselves. By contrast, in the Felscher tradition such bounds
are absent, with the result that dialogues may be infinite. For more
information on the Lille tradition, see [16, 31].

In the tradition of Felscher (who gave the first rigorous proof of cor-
respondence between a particular set of dialogical validity and validity
in intuitionistic logic [9]), dialogues are presented in such a way that
makes clear their essential similarity to semantic tableaux or (Gentzen-
style) sequent calculi. Such an approach simplifies completeness proofs
for various dialogical logics due to the close connection between the di-
alogues and the proof theory. Dialogues building on Felscher’s notation
(or showing strong similarity to his) can be found in [11, 12, 17, 36, 37,
40], among others.

In this paper we follow the tradition of Felscher, using [9] as our
basis because it allows more perspicuous and direct conversions be-
tween dialogue strategies, tableaux, and sequent proofs and, thus, lends
itself better to proving rigorous results in a straightforward fashion.
Consequently, our results are not immediately applicable without mod-
ification to Lille-style dialogues. However, given that the two schools
are rooted in the same approach to logic via dialogues, it should be
possible for our results about Felscher-style dialogues to be adapted to
Lille-style dialogues.

We work with a propositional language; formulas are built from
atoms and ¬, ∨, ∧, and →. As is customary, lowercase Roman letters
are used as atomic variables, and Greek letters are used as formula
variables. In addition to formulas, there are the three so-called sym-
bolic attack expressions, ?, ∧L, and ∧R, which are distinct from all the
formulas and connectives. Together formulas and symbolic attacks are
called statements; they are what is asserted in a dialogue game.

The rules governing dialogues are divided into two types. Particle
rules (also known as argumentation forms) define the meanings of con-
nectives in a local fashion and say how formulas can be attacked and
defended depending on their main connective. Structural rules operate
globally and define what sequences of attacks and defenses count as
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Table I. Particle rules for dialogue
games

Assertion Attack Response

ϕ ∧ ψ ∧L ϕ

∧R ψ

ϕ ∨ ψ ? ϕ or ψ

ϕ→ ψ ϕ ψ

¬ϕ ϕ —

dialogues, thus giving a global meaning to the connectives. Different
logics can be obtained by modifying either set of rules.

The standard particle rules are given in Table I. According to the
first row, there are two possible attacks against a conjunction: The
attacker specifies whether the left or the right conjunct is to be de-
fended, and the defender then continues the game by asserting the
specified conjunct. The second row says that there is one attack against
a disjunction; the defender then chooses which disjunct to assert. The
interpretation of the third row is straightforward. The fourth row says
that there is no way to defend against the attack against a negation;
the only appropriate “defense” against an attack on a negation ¬ϕ is
to continue the game with the new information ϕ.

These notions can be made precise as follows.

Definition 1. A signed expression is a pair 〈X, e〉 where e is a state-
ment and X is either P or O. A signed expression is said to be P-signed
if its first component is P and O-signed if its first component is O. We
sometimes call a signed expression 〈X, e〉 an X-position.

Let δ be a sequence (that is, a function from an initial segment of
ω) of signed expressions and let η be a function for which:

− dom(η) = dom(δ) \ {0}, and

− for every n in dom(δ), the value η(n) is a pair [m,Z], where m is
a natural number less than n and Z is either “A” (attack) or “D”
(defend).

Given such functions δ and η, the pair (δ, η) is a dialogue if it satisfies
the three conditions:

1. If n is even, then δ(n) is a P-signed expression and if δ(n) is odd,
then δ(n) is an O-signed expression.
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2. If η(n) = [m,A], then δ(m) is a non-atomic formula and δ(n) is an
attack upon δ(m) according to the particle rules.

3. If η(n) = [m,D], then there exists a natural number k < n such
that η(m) = [k,A], and δ(n) is a defense against the attack δ(m)
according to the particle rules.

If δ(0) is 〈P,ϕ〉, we say that the dialogue (δ, η) commences with ϕ.

These minimal conditions say only that play alternates between P and
O (starting with P at move 0), and that every move (except the initial
assertion δ(0)) is either an attack or a defense against some earlier
assertion.

Definition 2. A move in a dialogue is assertive if its assertion is a
formula, that is, not a symbolic attack. An assertive move is unattacked
if it is never attacked.

Further constraints on the development of a dialogue are given by
the structural rules (see Def. 7 for a well-known set of structural rules).
Because we are interested in working with different sets of structural
rules, in the definitions below we abstract away from particular rulesets.
These several definitions, and some of the discussion in §3, are thus
parameterized by a set S of structural rules. Later we shall be interested
in a handful of concrete rulesets.

Definition 3. Given a set S of structural rules, an S-dialogue for a
formula ϕ is a dialogue commencing with ϕ that adheres to the rules of
S. P wins an S-dialogue (δ, η) if there is a k ∈ N such that dom(δ) =
[0, 2k] and there is no proper extension of (δ, η), that is, there is no
signed expression 〈X, e〉 and no natural number n such that δ could be
extended to the domain [0, 2k + 1] with the new value 〈X, e〉, with η
likewise extended to have the value [Z, n] at 2k + 1.

According to this definition, if it is possible for the dialogue to continue
(i.e., it is possible for one player to move), then neither player has yet
won; the game proceeds as long as moves are available. In some settings,
it may be preferable to enforce that any individual dialogue is finite,
but it is not necessary, and we do not require that dialogues are finite
here.

Definition 4. A branch of a rooted tree is a maximal totally ordered
set of nodes that includes the root, where order is understood as the
immediate ancestor relation. The S-dialogue tree TS,ϕ for a formula ϕ
is the rooted tree satisfying the conditions:
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− Every branch of TS,ϕ is an S-dialogue for ϕ;

− Every S-dialogue for ϕ occurs as a branch of TS,ϕ.

Remark. S-dialogue trees for non-atomic formulas can be quite com-
plex, and indeed it often happens that some branches are infinite. If all
branches are infinite, neither player wins.

Definition 5. An S-winning strategy s for P for ϕ is a rooted subtree
of TS,ϕ such that:

1. The root of s is the root of TS,ϕ;

2. Every branch of s is an S-dialogue won by P;

3. If k is odd and a is a depth-k node of s, then a has exactly one
child;

4. If k is even and a is a depth-k node of s, then a has the same
children as does the image of a in TS,ϕ.

Remark. Instead of saying “winning strategy for P” we simply say
“winning strategy”.

This definition says that a winning strategy for P is, in effect, a kind of
function saying how P should move given any move by O and guarantee
that he will win. Condition (1) requires that the strategy begins at the
beginning. By Condition (2), the nodes of a winning strategy are all
moves in a dialogue game and that all ways of playing according to the
strategy end with a win for P. Conditions (3) and (4) say that P needs
to have a unique response to any move O could make in any of the
dialogues that occur as branches in the strategy.

Dialogue games can be used to capture notions of validity.

Definition 6. For a set S of dialogue rules and a formula ϕ, the rela-
tion �S ϕ means that P has an S-winning strategy for ϕ. If 2S ϕ, then
we say that ϕ is S-invalid.

Note that, like proof-theoretic characterizations of validity, dialogue va-
lidity is an existential notion, unlike model-theoretic notions of validity,
which are universal.

We now consider some example rulesets.

Definition 7. The ruleset D is comprised of the following structural
rules [9, p. 220]:
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(D10) P may assert an atomic formula only after it has been asserted by
O before: If δ(n) = Pa and a is atomic, then there exists m < n
such that δ(m) = Oa.

(D11) If p is an X-position, and if at p− 1 there are several open attacks
made by Y , then only the latest of them may be answered at p: If
n(p) = [n,D] and if n < j < p, j − n = 0, η(j) = [i, A], then there
exists q such that j < q < p, η(q) = [j,D].

(D12) An attack may be answered at most once: For every n there exists
at most one p such that η(p) = [n,D].

(D13) A P-assertion may be attacked at most once: If m is even, then
there exists at most one n such that η(n) = [m,A].

The main result of Felscher is the following:

THEOREM 1 (Felscher). A formula ϕ is intuitionistically valid iff �D

ϕ.

The proof goes by converting deductions in an intuitionistic sequent
calculus to D-winning strategies (via tableaux), and vice versa. (The
conversions are computable.)

Definition 8. The ruleset D + E is D plus the following rule:

(E) O can react only upon the immediately preceding P-move: If n in
def(δ) is odd, then η(n) = [n− 1, Z], Z = A or Z = D.

As Felscher notes, E implies D13, and, for odd p or n, also D11 and
D12. What is surprising is that we have that �D ϕ iff �D+E ϕ [9, p. 221];
we can change the set of moves available to O without changing the
set of dialogically valid formulas.3

A subset of D + E, dropping rules D11 and D12 (though, again, the
presence of E ensures that the effect of D11 and D12 partly remains),
generates classical logic [1].

Definition 9. The ruleset CL is D10 + D13 + E.

One motivation which gave rise to results in this paper was the role of E
in CL (the precise role of this rule is discussed in more detail in [40], and
is not covered here). Adding E to the ruleset D did not change the set of
validities: Both D and D + E correspond to intuitionistic logic. A natu-
ral question then is whether E is redundant in the same way in CL as it
is in IL, or, more specifically, whether D10 + D13 = D10 + D13 + E.4

A major result of our paper is to show that this identity does not hold.
Our counterexample is the logic N.
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Definition 10. Let the ruleset N = D10 + D13. The logic N is the set
of formulas for which P has a winning N-strategy.

Surprisingly, even though it is generated by a natural, well-motivated,
and straightforward modification of a ruleset, N will turn out to be
radically different from classical logic, and we show that it diverges
considerably from intuitionistic logic as well. As a result, it calls into
question the utility of dialogue games as logical foundations without
clear, principled, and non-ad hoc guidelines for modifying rulesets. Be-
fore we see this, however, we must first address what it means for a set
of formulas to be a logic.

3. The composition problem

In this section we discuss properties that one might wish a set of
formulas to have in order to be called a logic. The most important
property, in our opinion, is closure under modus ponens, and we define
the problem of determining whether a set of dialogical rules gives rise
to an appropriately closed set:

Definition 11. (Composition problem) The composition problem for
a set of dialogue rules S asks whether the set S of formulas ϕ for which
P has a winning strategy in the S-dialogue game for ϕ is closed under
modus ponens.

That is, if P has a winning S-strategy for ϕ and one for ϕ → ψ, can
we prove that P has one for ψ? A related problem is that of strategy
composition:

Definition 12. (Strategy composition problem) The strategy composi-
tion problem for a set of dialogue rules S asks, given winning S-strategies
for P for formulas ϕ and ϕ→ ψ, whether we compose these strategies
into one for ψ.

Clearly, a positive answer to the strategy composition problem will also
be a positive answer to the more general problem, but the reverse is not
the case: It may be possible that some set S of formulas is closed under
modus ponens, but the winning strategies which generate the set are
not composable. That is, a positive answer to the composition problem
combined with a negative answer to the strategy composition problem
would indicate the non-constructivity of the positive answer.

The composition problem is closely linked to what it conventionally
means for a set of sentences to be a logic. Traditionally, a ‘logic’ has
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been defined as a set of formulas closed under modus ponens and unre-
stricted uniform substitution [38]. However, even though the “regular
closure under uniform substitution is an ordinary feature of many log-
ics” [25, p. 221], it is not a universally-accepted feature, and requiring it
is too strong, as it would force us to exclude from the category of ‘logic’
many systems that are generally agreed to be (non-classical) logics,
for example: public announcement logic (PAL) [15]5, certain types of
connexive logics (see, e.g., [27]), the inconsistency-adaptive logic LPm
[28, p. 225, fn. 10], certain paraconsistent logics [32], approximated
logics [13, p. 210], and indeed, nonmonotonic logics in general.6 Even if
one were to insist on the presence of unrestricted uniform substitution,
there are logics whose dialogical characterizations do not validate un-
restricted uniform substitution, such as connexive logic [26], [34, §4.2]
and relevance logic [34, §3.3].

Furthermore, as Marcos notes, “It has in fact often been assumed
in the literature that closure under uniform substitution of atoms by
complex sentences is presumed by the received (Aristotelian?) notion
of ‘logical form’. But this needs not be so. For a start. . . no non-trivial
extension of the consequence relation associated to classical logic (such
as a supra-classical non-monotonic logic) can be defined unless uniform
substitution is abandoned” [25, pp. 221]. This is related to the fact that
the definition of logical consequence for a particular logic or theory can
be either substitutional or not; that is, either the valid consequences
are schemata or not.7

However, to avoid triviality, some constraint that goes beyond mere
closure under modus ponens is required for an arbitrary set of atomic
formulas to be called a logic.8 One natural constraint is to require
the existence of at least one type of non-trivial restricted uniform
substitution. We return to this issue in §5 below.

Thus, we deviate from the Tarskian definition by weakening the
second requirement:

Definition 13. Given a language L, a logic is a set L of L-formulas
which is closed under modus ponens (that is, if ϕ ∈ L and ϕ→ ψ ∈ L,
then ψ ∈ L as well) and at least one form of uniform substitution (that
is, there is some non-trivial function σ from atomic letters to formulas
such that if ϕ ∈ L, then σ(ϕ) ∈ L).

A uniform solution to the composition problem for a wide range of
rulesets S seems unrealistic. In specific cases, a single counterexam-
ple of course suffices for a negative solution, but proofs of positive
solutions generally require heavy proof-theoretic machinery. Given the
above-mentioned correspondences (completeness theorems) between di-
alogical validity and validity in various logics, there are a number of

n-forjpl.tex; 29/07/2015; 9:47; p.10



11

rulesets S for which a positive solution to the composition problem
for S holds, since the sets of formulas valid in intuitionistic logic, clas-
sical logic, connexive logic, various modal logics, etc., are all closed
under modus ponens. However, the relevant completeness proofs in
general use significant amount of non-dialogical machinery, specifically
translations of dialogical strategies into derivations in some appropriate
cut-free proof theory. One often-utilized method for proving a positive
solution to what we are calling the composition problem is to give a
correspondence between winning strategies and proofs or tableaux in
proof-theory known to admit cut elimination [9, 12]. Thus, these corre-
spondences require that one already have a proof theory for the target
logic in question and that this proof system admits cut elimination;
in many cases one or both of these may be lacking. As a result, in
this paper, we prefer direct methods which work solely with dialogues
without appeal to outside methods.

Defining ‘logic’ in this way highlights the importance of the compo-
sition problem: Solving the composition problem for a given set L of
formulas is a prerequisite for declaring L a logic. Further, this definition
of ‘logic’ helps bring to light our fundamental question: When are di-
alogical “logics” really logics? Not all combinations of structural rules
with the standard particle rules result in a logic: There are rulesets
where a negative answer to the composition problem can easily be
given. For example, let CL′ be CL with D10 modified such that P
is now allowed to also assert atoms in defense of disjunctions. Then,
�CL′ p ∨ ¬p and �CL′ (p ∨ ¬p) → p, but 2CL′ p. The set of formulas
CL′ for which P has a winning CL′-strategy is therefore not a logic.
A less trivial example is the ruleset composed of D10 + D12 + D13;
the set of formulas for which P has a winning strategy according to
this ruleset is not closed under modus ponens, as both ¬¬ϕ → ϕ and
(¬¬ϕ→ ϕ)→ (ϕ∨¬ϕ) are valid, but ϕ∨¬ϕ is not. (The same is true
if one adds E to the set) [40, Lemma 3.4].

Thus, even if we have justified a set S of structural rules without
appealing to some already pre-defined logic that we wish to characterize
dialogically, the problem of showing that the set of S-valid sentences
form a logic still remains. In particular, in order to justify our calling N
a logic, we must show that it meets the requirements of Definition 13. In
the next section, we give a positive answer to the strategy composition
problem for N, thus proving that the solution to the more general com-
position problem is positive, hence that it is closed under modus ponens,
and in §5 we demonstrate closure under non-trivial substitutions.
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4. A positive solution to the composition problem for N

In this section we prove the main result of the paper, namely, a positive
solution to the composition problem for N. We begin by proving some
properties of winning N-strategies.

LEMMA 1. Every branch for an N-dialogue tree that contains a de-
fensive move by O either terminates at an O-move, or is infinite.

Proof. If a branch of an N-dialogue tree (i.e., a maximal totally
ordered set of nodes of the tree that contains the root) contains such
a node a but does not terminate at an O-node, then P has a response
to some previous assertion of O. But in this case, O can respond
to P’s move by repeating the earlier defense of a that occurs in the
branch; note that D13 rules out only repeated O-attacks, not repeated
O-defenses. Thus branches containing a defensive move for O that do
not end with an O-move are infinite.9 2

Corollary 1. No N-winning strategy contains a branch where O de-
fends.

Proof. If s were an N-winning strategy with a branch that contains
an defensive O-node a, then, by Lemma 1, every branch of s containing
a either terminates at an O-move or is infinite. But since s is a winning
strategy, there can be no branches of s that terminate at an O-move,
nor can there be any infinite branches. 2

The corollary implies that when every branch of the N-dialogue tree
for a formula ϕ contains a defensive move by O, then ϕ is N-invalid.
The converse, interestingly, fails: In the N-dialogue tree for (p→ (¬q∨
¬r))→ ((¬p→ ¬q)∨(¬p→ ¬r))), which is N-invalid, O never defends
in any branch. A consequence of these results is that we can understand
N as incorporating (implicitly) Krabbe’s rule D4,∞,∞, which allows
both O and P to defend against an attack as many times as they like
[17, p. 304].

LEMMA 2. No branch of a winning N-strategy contains an unattacked
assertive P-move.

Proof. There is exactly one fewer O move than there are P-moves
in any branch of a winning N-strategy, and the final move is by P. By
Corollary 1, all O moves are attacks. If there were an assertive P-move
that is unattacked by O, then by the pigeonhole principle there would
be a P-move that gets attacked more than once. But this is ruled out
by D13. 2
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LEMMA 3. In every branch of a winning N-strategy, if P makes an
assertive move, then O must respond immediately to this move by
attacking P’s assertion.

Proof. We do not need to consider defensive moves by O, by Corol-
lary 1. If O does not immediately attack a P-assertion when it is made,
then O must be attacking some earlier P-assertion (note that, by the
particle rules, only assertive moves may be attacked). But this violates
D13. (We are implicitly employing a proof by induction on the length
of the branch.) 2

Thus, although Rule E is missing from N, some of E’s effects are present.

LEMMA 4 (Weakening). If �N ψ, then �N ϕ→ ψ, for all formulas ϕ.
Proof. Let sψ be an N-winning strategy for ψ. The N-dialogue tree

Tϕ→ψ for ϕ → ψ begins with P’s assertion of ϕ → ψ, followed by O’s
attacking assertion ϕ. These first two nodes of Tϕ→ψ themselves form
a two-element chain, c. Carry out the following modification on sψ:

− The root node r of sψ is an assertion by P of ψ, but it is neither
an attack or a defense, and it refers to no prior assertion. Change
r so that it is now an assertion by P of ψ, but it is now to be
understood as an attack against move 1 (which, in the tree sϕ→ψ
that we eventually define, will be O’s attacking assertion ϕ against
P’s assertion of ϕ→ ψ);

− Every non-root node of sψ refers to some previous assertion num-
ber k; change this to k + 2.

Call the result of this modification s′ψ. Let sϕ→ψ by the result of grafting

s′ψ to the end of c. Claim: sϕ→ψ is an N-winning strategy for P for
ϕ → ψ. That sϕ→ψ is a subtree of the full N-dialogue tree Tϕ→ψ with
the same root should be clear (the surgery we carried out on s was
intended to ensure that). The more interesting possibility that needs
to be ruled out is that in Tϕ→ψ, O can respond in more ways than
were possible in Tψ. But this cannot be: D13 is still in force, so that
O can attack P’s assertions at most once. This implies that O’s attack
against the initial assertion ϕ → ψ cannot be repeated, so that any
attack by O must be against some assertion by P made at some depth
≥ 2 in Tϕ→ψ; we need not consider defensive moves by O because of
Corollary 1. It remains only to show that every branch of sϕ→ψ is finite
and terminates with a P-move. But this is so because sψ has the same
property. 2

THEOREM 2 (Characterization of implication). If �N ϕ → ψ then
ϕ→ ψ satisfies one of the following three conditions:
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1. ϕ is atomic.

2. ϕ is negated.

3. �N ψ.
Proof. Case (3) is simply a restatement of Lemma 4. Suppose now

that ϕ is not atomic and ψ is not an N-validity. We have three cases:

− If ϕ is an implication α→ β, then the N-dialogue tree opens with
O attacking the initial statement by asserting α → β. In any N-
winning strategy for (α→ β)→ ψ, P cannot attack O’s assertion
of α → β, because this leaves open the possibility of a defense
by O, contradicting Corollary 1. Thus, any winning strategy s
must choose, for P’s response to O’s initial attack, to defend by
asserting the consequent ψ of the entire formula, and no branch of
s can attack the antecedent implication ϕ → ψ. By renumbering
the reference labels for nodes of s below the P’s assertion of ψ
in the obvious way (renumber k to k − 2), we obtain a winning
strategy for ψ, contradicting our assumption.

− Likewise, ϕ cannot be a disjunction, nor could it be a conjunction,
for similar reasons: In any N-winning strategy s for (α ∨ β) → ψ
(or for (α ∧ β)→ ψ), P never attacks α ∨ β (respectively, α ∧ β),
so we can recover from s a winning strategy for ψ, contradicting
our assumption.

The only remaining possibility is that ϕ is a negation. 2

Remark. To illustrate cases (1) and (2) of this classification of valid
implications, consider p → p and ¬p → ¬p. Illustrating (2), we have
the more interesting validities ¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ)→
(¬ϕ ∧ ¬ψ) (the only directions of De Morgan’s laws that are N-valid).

Remark. These conditions are not sufficient: The implicational ver-
sion of modus ponens, p → ((p → q) → q), has an atomic antecedent,
but is (surprisingly) N-invalid.

We can prove a positive solution to the composition problem for N
from the Characterization Theorem and a few simple lemmas:

LEMMA 5. No atomic formula is N-valid.
Proof. By Rule D10, the set of N-dialogue trees for an atomic for-

mula p is empty, and hence P has no winning strategy for any atomic
formula. 2
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Corollary 2. N is consistent (there is at least one formula ϕ such that
ϕ is not N-valid.)

Consistency is closely related to the composition problem; as Krabbe
points out:

If we assume that ⊥ is a statement for which P has no winning
strategy and that ¬A is dialogically equivalent to A →⊥, consis-
tency is a special case of a metatheorem to the effect that, for all
statements A and B, if P has winning strategies for both A → B
and for A, he has one for B [19, p. 685].

Thus, by Corollary 2, we know that the composition problem for N is
not trivially solved.

THEOREM 3. If �N ¬ϕ, then ϕ := ¬ψ for some ψ for which �N ψ.
Proof. By cases:

− ϕ cannot be atomic, since no negated atoms are N-valid, by D10
and the particle rule for negation.

− ϕ cannot be a disjunction α∨β because once O attacks the negated
disjunction by asserting α∨β, the only response for P is to attack
the disjunction; O can (indeed, must) defend by selecting either
the left or the right disjunct, so by Corollary 1 no winning strategy
exists from this unique initial segment of the N-dialogue tree for
¬(α ∨ β).

− Likewise, ϕ cannot be an implication or a conjunction.

Thus ϕ = ¬ψ for some formula ψ. A winning N-strategy sψ for P
for ψ can be obtained by from a winning strategy s¬¬ψ for ¬¬ψ and
noting that, by the particle rule for negation, the winning strategy for
¬¬ψ begins with a unique initial segment of length two, after which P
asserts ψ, attacking O’s assertion of ¬ψ. Simply remove the root and
its unique successor from s¬¬ψ, declare that P’s assertion at the new
root is neither an attack nor a response, and is a response to no move of
O; then renumber the reference labels k on all nodes of s¬¬ψ by k− 2.
This renumbering is coherent because neither P nor O can attack or
respond to moves 0 and 1, by the particle rule for negation and D13,
so all reference labels are at least 2. 2

THEOREM 4 (Composition). If �N ϕ and �N ϕ→ ψ, then �N ψ.
Proof. By the Characterization Theorem 2, given that �N ϕ→ ψ, it

follows that either

1. ϕ is atomic,
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2. ϕ is negated, or

3. ψ is N-valid.

Case (3) is the desired conclusion. Case (1) is impossible, in light of the
assumption that �N ϕ, by Lemma 5, so the desired conclusion follows
vacuously.

It remains to treat case (2). By Theorem 3, from �N ϕ, it follows
that ϕ = ¬¬χ for some formula χ. The beginning of Tϕ→ψ is as follows:

0 P ¬¬χ→ ψ (initial move)
1 O ¬¬χ [A, 0]

Since these are the first two steps of an N-winning strategy for P, the
game does not end here with O. If, in any branch of s, P chooses to
attack move 1 by asserting ¬χ as an attack on O’s assertion of ¬¬χ,
then the dialogue would proceed as follows:

...
...

...
...

k P ¬χ [A, 1]
k + 1 O χ [A, k]

Such a branch ends with O, so if there were an N-winning strategy
for P that begins in this way, then P must have a response. P cannot
attack O’s assertion of χ at any further point of any branch that begins
this way, by Corollary 1. Thus, P must eventually defend against the
attack of move 1 by asserting ψ. We can conclude that P must actually
possess a winning strategy for ψ that can be obtained from s by simply
removing all copies of the two-step piece where P attacks ¬¬χ. Note
that χ cannot be atomic, by Theorem 3, since we are assuming �N ¬¬χ.
Thus, deleting all these copies of the two-step exchange cannot affect
rule D10. Rule D13 is preserved because if O attacks a P-statement
in the diminished game then the same P-assertion would likewise be
attacked multiple times in the original game. 2

We have thus shown, via semantic means only—that is, our proof does
not have to detour through any proof theory; instead, it uses only
the semantic infrastructure provided by winning strategies in dialogue
games—a positive solution to the composition problem for N; this is,
to our knowledge, the only solution via purely dialogical means for a
composition problem to date.

In order to conclude that N is a logic, we must show that there
exist non-trivial validity-preserving substitutions. We do so in the next
section, where we discuss properties of N.

n-forjpl.tex; 29/07/2015; 9:47; p.16



17

5. Properties of N

As with the dialogical connexive and relevance logics discussed above,
N is not closed under unrestricted uniform substitution.10 Consider, for
example, the N-validity p → ¬¬p under the substitution of p ∧ p for
p: The result of the substitution is N-invalid, because the implication
no longer meets any of the requirements in the Characterization The-
orem 2. The fact that uniform substitution of, e.g., p ∧ p for p in an
N-valid formula ϕ is not validity preserving points to a curious type
of “resource sensitivity” in the logic—what is valid with some minimal
amount of information may fail to remain valid when more informa-
tion are provided11—though it is not clear exactly how this should be
understood, it does show that N is a type of substructural logic [33].
The resource sensitivity exhibited by N differs from the “limited use”
resource sensitivity of linear logic. In linear logic, one is restricted by
the number of times a formula can be “used”, whereas N is sensitive to
the syntactic shape of the formula.

Another counterexample to uniform substitution is the failure of the
passage from the N-validity p ∨ ¬p to an instance (p ∧ p) ∨ ¬(p ∧ p).
The latter is N-invalid: After O’s initial attack, in all branches of the
N-dialogue tree P either refrains from asserting ¬(p ∧ p) or asserts it
at some move. Branches where P asserts ¬(p∧ p) do not lead to a win
for P because, after P’s assertion of the negation, O must defend by
asserting the conjunction. This leaves P with two options: To attack O’s
conjunction (and thus fail to win, by Corollary 1), and simply restart
the game by defending against the initial attack (so that our analysis of
the possible branches recurs, and P does not win). Branches in which P
refrains from asserting ¬(p∧p) are infinite because the atomic formula p
is never asserted by O, so the only way to play for P is to infinitely
repeat the initial defense against the initial attack, which of course does
not lead to a win for P.

Despite the failure of unrestricted uniform substitution for N, not
all is lost. Some types of substitution which are N-validity preserving:

LEMMA 6. (1) Alphabetic renaming of atoms, (2) negating atoms,
and (3) substituting N-validities for atoms are N-validity preserving.

Proof.

1. A substitution σ of atoms for atoms, suitably extended to formulas,
dialogue games, and dialogue trees, clearly sends a dialogue tree
TN,ϕ for a formula ϕ to an isomorphic dialogue tree TN,σ(ϕ), since
all the particle and structural rules are neutral with respect to
atoms (that is, they do not mention any particular atoms).
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2. We prove just the cases of (a) singly negating and (b) double negat-
ing atoms; higher numbers are provable in an analogous fashion.
Further, it suffices to consider singleton substitutions that simply
send one atom p to ¬ · · · ¬p; substitutions which map multiple
atoms p, q, . . . are handled simply by decomposing the substitutions
into “singleton” substitutions.

(a) Suppose that �N ϕ, and let s be an N-winning strategy for ϕ; we
shall construct a winning strategy s∗ for ϕ[p/¬p]. First, substitute
¬p for p everywhere in s; call the resulting tree s[p/¬p]. This tree is
isomorphic to s; let f be an isomorphism, which allows us to speak
of branch b in s and its corresponding branch f(b) in s[p/¬p]. The
tree s[p/¬p] is not, in general, an N-winning strategy for ϕ[p/¬p].
We shall modify it so that it becomes one.

There are two kinds of branches of s: those where p is asserted by
P, and those where P does not assert p. If P does not assert p in
branch b of s, then f(b) is an N-dialogue for ϕ[p/¬p] won by P.

Suppose P has asserted p in branch b of s; by D10 this atom was
asserted first by O. By Lemma 9, we know that P’s atomic assertion
is the leaf of b. In the corresponding branch f(b), O instead asserts
¬p, and f(b) terminates with P’s assertion of ¬p. The branch f(b)
is an N-dialogue, but it is not (yet) won by P, because there is
a legal continuation of the game: O can attack P’s assertion of
¬p by asserting p. Extend f(b) with this attack, and then let P
counterattack by asserting p. We see that f(b), extended by these
two moves, is an N-dialogue that has ended with a win for P.

It is clear that s∗ is an N-winning strategy for ϕ[p/¬p]: All new
moves for O that have become possible by our transformation are
accounted for with responses by P.

(b) To show that substitutions sending an atom p to its double
negation ¬¬p are also validity preserving we adapt the previous
argument. As before, there are two kinds of branches of s: those
where p is asserted by P, and those where P does not assert p. If
P does not assert p in branch b of s, then f(b) is an N-dialogue for
ϕ[p/¬p] won by P.

Suppose P has asserted p in branch b of s; by D10 this atom was
asserted first by O. By Lemma 9, we know that P’s atomic assertion
is the leaf of b. In the corresponding branch f(b), O instead asserts
¬¬p, and f(b) terminates with P’s assertion of ¬¬p. The branch
f(b) is an N-dialogue, but it is not (yet) won by P, because there
is a legal continuation of the game: O can attack P’s assertion
of ¬¬p by asserting ¬p. Extend f(b) with this attack. We cannot
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conclude that the game is over, because it may be that P cannot
yet assert p. Note, however, that in b, we find that O first asserted
p; in f(b), O has asserted ¬¬p. Extend f(b) with an attack by P
against O’s assertion of ¬¬p. O must respond immediately to this
attack, so O asserts p. P is now in a position to to respond to O’s
assertion of ¬p. We see that f(b), extended by these four moves, is
an N-dialogue that has ended with a win for P.

The arguments just given for the case p 7→ ¬p and p 7→ ¬¬p can
be adapted to deal with substitutions that send an atom to any
number of negations of itself. For the even case, we adapt the proof
above for p 7→ ¬¬p, and for the odd case we adapt the proof above
for p 7→ ¬p.

3. Let s be an N-winning strategy for ϕ, p be an atom in ϕ, α be an
N-validity, and t be an N-winning strategy for α. By Lemma 9, we
know that every branch b of s terminates with the first occurrence
by P of some atom, that is, b ends with a P-assertion of an atom,
and there is no atom that P asserts earlier in b. We shall construct
an N-winning strategy s∗ for ϕ[p/α].

First, substitute α for p everywhere in s; call the resulting tree
s[p/α]. This tree is isomorphic to s; let f be the isomorphism, which
allows us to speak of branch b in s and its corresponding branch
f(b) in s[p/α]. However, s[p/α] is not, in general, an N-winning
strategy for ϕ[p/α]. We shall modify it so that it becomes one.

As in the previous case, there are two kinds of branches of s: those
where p is asserted by P, and those where P does not assert p. If
P does not assert p in branch b of s, then f(b) = b. Suppose P has
asserted p in branch b of s. By Lemma 9, this atomic assertion is a
leaf in s. Branch f(b), however, is not maximal, since, by Lemma 5,
its leaf is a complex assertion by P. However, we can make f(b)
maximal by attaching the strategy t for α (with labels suitably
adjusted) to the end of f(b).12 Let s∗ be the result of this process.

Claim. This strategy s∗ is an N-winning strategy for ϕ[p/α].

Proof. We have to show that:

a) Each branch of s∗ is an N-dialogue won by P.

Since we started with an N-winning strategy s, all branches b
in s are N-dialogues won by P. Thus, in a branch of s where
P does not assert p, the corresponding branch of s∗ is also a
N-dialogue won by P. In a branch where P has asserted p, the
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corresponding subtree of s∗ is such that P wins every branch,
since t was a winning strategy for α.

b) For every node u of s∗ corresponding to a move by P, the set of
immediate children of u is exactly the set of all N-permissible
moves for O.

This follows straightforwardly from the fact that s and t are
N-winning strategies.

2
2

A straightforward consequence of this, especially case (2), is the follow-
ing:

LEMMA 7. N-validity is preserved by double negating an arbitrary
subformula.

Proof. Suppose that s is an N-winning strategy for ϕ, and let ϕ∗ be
a replacement in ϕ of a subformula, ψ, by its double negation ¬¬ψ. We
shall describe an N-winning strategy s∗ for ϕ∗. If ψ never occurs in any
branch of s, then s = s∗. Otherwise, consider a branch b of s where ϕ
is in fact asserted. In s∗, the node corresponding to the assertion of ψ
is an assertion of ¬¬ψ; suppose this occurs at move k of b. Modify s
by inserting the following:

k P/O ¬¬ψ [A/D, x]
k + 1 O/P ¬ψ [A, k]
k + 2 P/O ψ [A, k + 1]

From k + 3, P can continue playing by s (with the move references
adjusted by 2, to account for the insertion of two new moves in b). The
result of this insertion is s∗, and it is a winning N-strategy for P since
we have considered all of the new possible moves of O. 2

Corollary 3. N-validity is preserved by negative translations that sim-
ply add double negations, such as Kolmogorov’s and Kuroda’s [39,
p. 58]13, and by negating arbitrary subformulas an even number of
times.

The fact that N validates some, but not all, types of uniform substitu-
tion raises a question concerning its substitution core.

Definition 14. The substitution core of a logic L is the set of schematic
validities of L.
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In logics which satisfy uniform substitution, the set of valid formulas
and the set of schematically valid formulas coincide; but when uniform
substitution is dropped, these two sets will diverge.

Question. What is the substitution core of N?

Having established that N is a logic, we next say something about
what type of logic it is, and how it fits into the scheme of known
propositional logics. In Theorem 2 we gave a characterization of N-
valid implications, and in Theorem 3 one of N-valid negations. We also
know by Lemma 5 that no atom is N-valid. We now give similar results
for the remaining connectives.

As in intuitionistic and classical logic, validity of a conjunction
transmits to the conjuncts:

THEOREM 5. �N ϕ ∧ ψ iff �N ϕ and �N ψ.
Proof. Straightforward. 2

Likewise, weakening by disjunction is valid:

THEOREM 6. If �N ϕ or �N ψ, then �N ϕ ∨ ψ.
Proof. Assume �N ϕ. Then P has a winning strategy for ϕ. We now

show that he also has a winning strategy for ϕ ∨ ψ. The N-dialogue
tree Tϕ∨ψ for ϕ ∨ ψ begins with P’s assertion of ϕ ∨ ψ followed by O’s
attack ? on ϕ∨ψ. In round three, let P defend this attack by asserting
ϕ. He is now able to use his winning strategy for ϕ; since O had no
other choice of move at round two, this constitutes a winning strategy
for ϕ ∨ ψ.

The case for �N ψ is symmetric. 2

In IL, the converse of Theorem 6 holds, but it does not hold in either
CL or N. For example, p∨¬p is valid in N, but neither p nor ¬p is. We
can, however, characterize N-valid disjunctions in a way similar to the
way CL-valid disjunctions can be characterized:

THEOREM 7. If �N ϕ ∨ ψ, then there is an instance of an atom that
does not appear in the antecedent of a conditional which is a subformula
of ϕ∨ψ, and there is either some instance of that atom in the antecedent
of a conditional with the same parity of negations or some instance of
that atom not in the antecedent of a conditional with the opposite parity
of negations.

We prove this with the help of the following lemmas:
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LEMMA 8. If an N-dialogue game ends with a win for P, then it ends
with P’s assertion of an atom.

Proof. If an N-dialogue d ends with a win for P, then P has made
the final assertion of the dialogue and there is no further legal move
that O could make. Suppose that d does not end with the assertion by
P of an atom. By the particle rules, there are two cases:

− If P’s final move is a defense, then, by the particle rules, P has
asserted a formula. By hypothesis, the formula is not an atom, and
hence O may attack this formula, contradicting the hypothesis that
O cannot legally continue the game.

− If P’s final move is an attack, there are two subcases:

• P asserts a formula. By assumption, the formula is a com-
plex assertion which has not yet been attacked, and hence O
may attack this formula, contradicting the hypothesis that O
cannot legally continue the game.

• P makes a symbolic attack. Contra assumption, O can legally
defend against this attack; indeed, O can always defend against
any symbolic attack by P.

2

Corollary 4. If P wins an N-dialogue, then there is an atom that P
asserts in the game.

LEMMA 9. Every branch of every N-winning strategy for ϕ terminates
with the first assertion by P of an atom.

Proof. By Corollary 1, O never defends in a branch b of a winning
strategy, so all his moves are attacks. By Lemma 3, O must immediately
attack P’s assertions. Thus, if P asserts an atom in b, there must be
some attack by O against this; but such a move is impossible, by the
particle rules. 2

Every assertion of a formula in an N-dialogue is, by the particle rules,
the assertion of a particular subformula of the initial formula of the
dialogue. Given the assertion of a formula at some step in a dialogue,
one can trace which particular subformula of the initial formula is
involved. It can happen that identical formulas are asserted in a game
(consider, for example, a game for p→ p), but have different “origins”
in virtue of being distinct subformulas of the initial formula.

LEMMA 10. In any N-dialogue for ϕ, P and O never assert the same
occurrence of the same subformulas of ϕ.
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The main idea of the proof is that the particle rules ensure that the
“ancestry” of every formula appearing in an N-dialogue is unique.

Proof. In any N-dialogue d for ϕ, it is the case that (1) only P asserts
ϕ, and (2) if there is an occurrence of a subformula α of ϕ asserted in
d by both P and O, then there is a (proper) superformula α∗ of α
such that both P and O assert this occurrence of α∗ in d. Together
these imply that there cannot be an occurrence of a subformula of ϕ
asserted by both P and O, because by repeated applications of (2)
we would find successively (proper) superformulas of this subformula,
leading eventually to the whole initial formula α; but by (1), we cannot
have both P and O asserting the initial formula.

To prove (1), note that every move of d after the first is an attack
or a defense; by the particle rules, either a symbolic attack is made, or
a proper subformula is asserted in attack or defense.

To prove (2), suppose that P and O both assert the same occurrence
of a proper subformula α of the initial formula ϕ. Since α is a proper
subformula of ϕ, there is a unique immediate superformula α∗ of α
that is also a (possibly improper) subformula of ϕ. There are several
possibilities, depending on the main connective of α∗, but all can be
treated in a similar way. We treat only the conjunction case.

Suppose that α is the left conjunct of a∗ := α ∧ α′. By the particle
rules, the only way for α to occur in the game is if α ∧ α′ also occurs.
Since players cannot respond to their own statements, it must be the
case that both P and O have asserted α∗. The case where α is the
right conjunct or where α∗ is a disjunction, negation, or implication
are treated similarly.

Since at no point in this proof did we appeal to anything specific
about N, the following corollary is immediate:

Corollary 5. For any ruleset S, in any S-dialogue for ϕ, P and O
never assert the same occurrence of the same subformulas of ϕ.

We are now in a position to prove Theorem 7.

Proof. Assume �N ϕ ∨ ψ. Let s be a winning N-strategy for ϕ ∨ ψ,
and b a branch in s. By Lemma 9, b ends with the assertion by P of an
atom, call it p. By Lemma 10, we know that p occurs more than once
in ϕ∨ψ. By D10, P will only assert p if O has already asserted it. Since
s is a winning strategy, by Corollary 1, O will only assert an atom as
an attack on some formula, and not as a defense, since O makes no
defensive moves in b, and the formula being attacked must be either
an implication or a negation. Thus, either the occurrence of p that O
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Table II. Some N-validities

p ∨ ¬p ¬p ∨ ¬¬p
(p→ q) ∨ (p→ ¬q) (p→ q) ∨ (q → p)

¬¬p→ p p→ ¬¬p
p→ (p ∨ q) p→ (p ∧ p)
¬p→ (p→ q) ¬(p ∨ ¬p)→ q

asserts is a subformula of a negated atom with an opposite number of
negations to the occurrence that P asserts, or p is in the antecedent of a
conditional. In the first case, we are done. In the second, we must show
that P’s assertion of p is also not in the antecedent of a conditional.
But if p is in the antecedent of a conditional, either it is a subformula
of the antecedent or it is identical to the antecedent. In either case, P
will only assert p in the course of an attack on the conditional, either
by asserting a complex antecedent containing p or by asserting p itself,
and such a move can be defended by O, violating Corollary 1, and the
assumption that b is a branch in a winning strategy. 2

We give examples of N-valid formulas in Table II. More generally,
we know that

THEOREM 8. N ⊂ CL.
Proof. Every D10 + D13-strategy is also a D10 + D13 + E-strategy,

by Lemma 3. That the inclusion is strict follows from the fact that
6�N (((p→ q)→ p)→ p) (Peirce’s law), which is classically valid. 2

As a corollary, N is not a connexive logic. We also know that:

LEMMA 11. N * IL and IL * N.
Proof. For the first claim, �N p∨¬p. For the second claim, �IL (¬p∨

¬q)→ ¬(p∧q), which, by Theorem 2 is not N-valid, since 6�N ¬(p∧q). 2

Since N is neither sub-intuitionistic nor super-intuitionistic, but is sub-
classical, it lies in an interesting and as yet under-investigated part of
the lattice of propositional logics.

N shares many characteristics with known sub-classical propositional
logics, though it does not completely align with any of them. It turns
out that although �N ϕ ∧ ψ iff �N ϕ and �N ψ, and �N ϕ→ ψ implies
�N ¬ψ → ¬ϕ, these results and others like them do not hold when
formulated as object-language implications. For example, conjunction
elimination, considered as a formula—p ∧ q → p—is not N-valid, and,
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even more surprisingly, given that N is closed under modus ponens,
neither the conjunctive ((p ∧ (p → q)) → q) nor the implicational
(p → ((p → q) → q)) versions of modus ponens is N-valid. Thus, the
fact that double negation introduction and elimination are both valid
is noteworthy.

Although N does not validate unrestricted uniform substitution, it
is nevertheless consistent with it.

Definition 15. Let N∗ be the smallest set of formulas extending N
that is closed under unrestricted uniform substitution.

THEOREM 9. N∗ is consistent.

The proof exploits the fact that N is subclassical.
Proof. Suppose that there were a formula ϕ such that both ϕ ∈ N∗

and ¬ϕ ∈ N∗. Because N is consistent, we know that it’s not the case
that ϕ,¬ϕ ∈ N. Thus, there are formulas α and β in N such that ϕ is
obtained by an application of uniform substitution from α and likewise
¬ϕ is obtained by an application of uniform substitution from β. Since
α ∈ N, by Theorem 8, α is a classical tautology; and since classical
logic CL is closed under uniform substitution, ϕ is a classical tautology,
too. Likewise, ¬ϕ is a classical tautology. But both ϕ and ¬ϕ can’t be
tautologies, because CL is consistent.14 2

6. A tableau system for N

N, which is characterized by winning strategies under a set of dialogue
rules, does not have natural semantics or proof theory. In this section,
we give a set of tableau rules which allow us to make a first step at
giving an alternate, non-dialogical characterization of the logic.

Tableaux are an efficient proof procedure for propositional and pred-
icate logics, and have a natural connection to dialogues via extensive
games [5, 30]. The tableaux we construct for N are adapted from the
standard analytic CL-tableaux for signed formulas [7, 35].15

Definition 16. If ϕ is an unsigned formula, then Pϕ and Oϕ are
signed formulas.

Definition 17. An N-tableau for Xϕ is defined inductively (following
[7, Def. 6, p. 51]):

1. Xϕ is an N-tableau for Xϕ.
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Table III. Tableau rules for N.

O¬ϕ
O¬

Pϕ

P¬ϕ
P¬

Oϕ

P(ϕ ∧ ψ)
P∧

Pϕ |Pψ

P(ϕ ∨ ψ)
P∨L

Pϕ

P(ϕ ∨ ψ)
P∨R

Pψ

P(ϕ→ ψ)
O→

Oϕ

P(ϕ→ ψ)
P→

Pψ

2. If T is an N-tableau for Xϕ, and R is one of the rules in Table III,
then the extension of T to R(T ) by this rule is an N-tableau for Xϕ.

3. Nothing else is an N-tableau for Xϕ.

Thus, tableaux are labeled rooted trees. A tableau is called proper if
no rule is applied more than once in a branch. In what follows, we will
only consider proper tableaux.

For any of the tableau rules in Table III, we call the formula above
the line the premise of the rule, and any formula below the line a
conclusion of the rule. Note that these rules are to be understood as
rule schemes. Thus, strictly speaking, there are not eight rules, but
countably infinitely many, one for every combination of formulas in the
language. For example, for ϕ 6= ψ,

O¬ϕ
(1)

Pϕ

and

O¬ψ
(1)

Pψ

are, despite the identity of the label (1) in the two figures, applica-
tions of two different rules, not two applications of the same rule. We
should, properly, index each of the rules above to the formulas ϕ and
ψ appearing in them, but we omit doing so for simplicity’s sake.
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P¬(a ∧ b)→ (¬a ∨ ¬b)
O¬(a ∧ b)
P(a ∧ b)

Pa

P¬a ∨ ¬b
P¬a
Oa

Pb

P¬a ∨ ¬b
P¬b
Ob

Figure 1. A simple, O-preferring tableau for P¬(a ∨ b)→ (¬a ∨ ¬b)

Definition 18. (Closure (atomic)) A branch of an N-tableau is said
to be closed if there is an atom p such that the branch contains both
Pp and Op. An N-tableau is said to be closed iff every branch of the
tableau is closed.

If a branch is closed because of p, we call p a closure atom. Note that a
branch need not have a unique closure atom. Without loss of generality
we can assume that in the construction of a tableau, all branches close
as soon as they can; that is, as soon as we have Op and Pp in the
branch, we no longer expand that branch.

Definition 19. A branch B in a tableau is saturated if every rule that
can be applied in B has been. In other words, for every node u in B, if
a rule R can be applied to u, then there is some descendant of u in B
that is obtained by applying R to u.

Definition 20. A tableau T is complete if every branch is either closed
or saturated.

Since we are dealing here only with proper tableaux, any branch in a
complete tableaux which does not close will have exactly one applica-
tion of every rule that it’s possible to apply.

Definition 21. A tableau T is simple if each node is generated by an
application of a rule to the formula of least complexity in the branch,
where the complexity of a formula is the number of connectives it has.

Definition 22. A tableau T is O-preferring if for all branches B of T
and all nodes u of B whose label is a P-signed implication, the O →
rule is applied to u in B before the P→ rule.

An example of a simple, O-preferring closed tableau is given in Figure 1.

Definition 23. A tableau T is left-preferring if for all branches B of
T and all nodes u of B, if the label of u is a P-signed disjunction, then
P∨L rule is applied to u in B before the P∨R rule.
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N-tableaux differ from CL-tableaux in three ways. First, we reinterpret
(and hence relabel) the signed formulas. Since the origin of N is fully
dialogical, we do not have semantical notions of truth and falsity at our
disposal. Therefore instead of signing our formulas with truth values,
we sign them with players in the dialogue game, mapping O to T and
P to F. Thus, a tableau which corresponds to a winning strategy for
P in a dialogue game for ϕ will have Pϕ as its root, corresponding to
an initial assertion of ϕ by P.

Second, the defining characteristic of N is that any branch where O
is allowed to defend is infinite (cf. Lemma 1), and hence no winning
strategy for P will contain any such branch. There are two ways that
we can modify the tableaux rules for CL to reflect this property of N.
One, we can simply remove the rules that would correspond to defensive
moves by O; the rules modified in this way are given in Table III. Two,
we could retain the defensive rules for O, but change them so that
any defense could be repeated. This is done by copying the defended
formula into the defenses, thus ensuring that any time a defensive move
by O is made, it will still be possible to repeat that move. The tableaux
generated by the first set of rules are simpler, and hence these are the
rules that we use.

Third, the tableau rules for CL are generally stated in a multiple
consequent form. Whereas we have separated out the rule for disjunc-
tion into two rules P∨L and P∨R, the corresponding rule in CL is a
single rule which extends the tree by two nodes.

7. Winning strategies and N-tableaux

Our goal in this section is to prove the following:

THEOREM 10. The following are equivalent:

1. ϕ is N-valid.

2. P has a winning strategy in an N-dialogue for ϕ.

3. Every N-tableau for Pϕ is closed.
Proof.

− (1) ⇒ (2) and (2) ⇒ (1) are trivial; the notion of N-validity is
defined in terms of the existence of P-winning N-strategies for ϕ.

− (2) ⇒ (3): This is Corollary 7.

− (3) ⇒ (2): This is Lemma 15.
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2

We show that (2) implies (3) by showing that if there is a closed
N-tableau for a formula ϕ, then every N-tableau for ϕ is closed. We
then define an algorithm that maps winning N-strategies to closed N-
tableaux. For showing that (3) implies (2), we give a simple algorithm
which converts a closed, simple, O-preferring tableau for Pϕ into a
P-winning N-strategy for ϕ.

7.1. Canonical N-tableaux

Definition 24. Given a formula ϕ, we call the unique simple, O-
preferring, left-preferring N-tableau T for Pϕ the canonical N-tableau
for Pϕ, denoted C(ϕ).

The existence of a canonical tableau for Pϕ is obvious. We now justify
uniqueness. Since the root of C(ϕ) is a single formula, in the construc-
tion of a simple tableau from Pϕ, there is always a unique formula of
least complexity that still has rules that can be applied to it. Whenever
there is a choice of rules to be applied, since C(ϕ) is both O-preferring
and left-preferring, O→ is applied before P→, and P∨L before P∨R.
Hence, at any stage in the construction of C(ϕ), there is a unique
formula to be apply a rule to, and a unique rule to be applied. Thus,
there is only one way that C(ϕ) can be constructed. (Recall here that
we are only dealing with proper tableaux, hence no rule will be applied
more than once.)

We now define a reduction relation for N-tableaux, and show that
every N-tableau for Pϕ can be reduced to the canonical N-tableau
for Pϕ.

Definition 25. (Reduction relation for N-tableaux) We say that T →
T ′ if T ′ is obtained from T in the following way: Given a node u of T ,
let B be the branch of T to which u belongs, and let Xϕ be the signed
formula belonging to B such that ϕ is of minimal complexity among
all formulas appearing in u above B. If (the formula labeling the node)
u is not the premise of an application of an N-tableau rule R to Xϕ,
then rewrite T as follows:

(a) If X = P and ϕ is a conjunction, then make u the premise of an
application of P∧. If there are applications below u of P∧ to u,
they are to be deleted. Rewrite the tree as follows:

− Let vl be an application of P∧ to u below u in the left-hand
branch of the new subtree rooted at u, let vr be the corre-
sponding application of P∧ to u below u in the right-hand
branch of the new subtree rooted at u.
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− Let vl1 and vl2 be the left and right children, respectively, of
the application of P∧ to vl, and likewise let vr1 and vr2 be
the children of the application of P∧ to vr.

− Delete the application of P∧ at vl; join vl1 to the parent of
vl. Delete the subtree rooted at vl2 entirely.

− Likewise, delete the application of P∧ at vr; join vl2 to the
parent of vr. Delete the subtree rooted at vl1 entirely.

(b) If X = P and ϕ is a disjunction, then make u the premise of an
application of P∨L. If there are any applications of P∨L below u,
delete them.

(c) If X = P and ϕ is an implication, then make u the premise of an
application of O→. If there are any applications of O→ below u,
delete them.

(d) If X = P and ϕ is a negation, then make u the premise of an
application of P¬. If there are any applications of P¬ below u,
delete them.

(e) If X = O and ϕ is a negation, then make u the premise of an
application of O¬. If there are any applications of O¬ below u,
delete them.

Each of these transformations produces an N-tableau. The last step of
each transformation—deleting any duplicate applications of rules just
introduced—ensures that the result is a proper N-tableau. Each step
“repairs” one node of T that violates our notion of canonical N-tableau,
but though it specifies a way to repair one node, it doesn’t say which
node to repair. (Note that if T is the canonical N-tableau for ϕ, then
none of the above operations apply.)

We define � as the reflexive transitive closure of →. The following
guarantees that there is at least one way to go from an arbitrary N-
tableau for ϕ to C(ϕ) by taking steps along the → relation.

Proposition 1. For every formula ϕ and every N-tableau T for Pϕ,
T � C(ϕ).

Proof. We show this by showing the existence of a finite reduction
sequence T := T0 → T1 → · · · → Tn−1 → Tn = C(ϕ). Initially, set
T0 := T . Given Tk, start at its root and check whether any of the
transformations specified in Definition 25 apply there. If so, there is a
unique case that applies; apply it, let the result be Tk+1, and continue
the process with Tk+1. If none of the transformation rules applies at
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the root of Tk, proceed down to the child (or children) of the root of Tk
and check whether any of the transformation rules applies. (If there are
two children of the node of Tk that we are inspecting, look first at the
left child, then at the right.) If a transformation rule applies, then there
is a unique one that does apply; apply it, let the result be Tk+1, and
restart the process there. Otherwise, continue moving down Tk, always
looking for the shallowest node where one of the transformation rules
applies. If none of the rules apply, then we are done.

The reduction sequence is finite because at each stage we always
move down at least one level of the tree, and the transformations of
Definition 25 cannot grow the N-tableau to which they are applied more
than the number of subformulas of ϕ. 2

Proposition 2. If T → T ′, then T is closed iff T ′ is closed.

Proof. Immediate from the definition of →: the branches of T ′ are
introduced by copying branches from T , so if every branch of T is
closed, then so is every branch of T ′, and vice versa. 2

Corollary 6. If T � T ′, then T is closed iff T ′ is closed.

LEMMA 12. If there is a closed N-tableau for ϕ, then every N-tableau
for ϕ is closed.

Proof. Let T be a closed N-tableau for ϕ, and let T ′ be an N-tableau
for ϕ. We need to show that T ′ is closed. First, we have that T � C(ϕ)
by Proposition 1. Since T is closed, we have by Corollary 6 that C(ϕ)
is likewise closed. Furthermore, T ′ � C(ϕ), again by Proposition 1.
Corollary 6 then tells us that T ′ is closed, as desired. 2

7.2. Mapping strategies to tableaux

We now turn to the problem of showing that winning N-strategies can
be mapped to (closed) N-tableaux. To show this, we need the following:

LEMMA 13. Every branching node u of every winning N-strategy s is
a P-node whose label is an O-signed conjunction Oϕ ∧ ψ with exactly
two children whose labels are the two attacks ∧L and ∧R against the
immediately prior assertion ϕ ∧ ψ.

Proof. Suppose that u is a branching node of a winning N-strategy.
Such a node must be a P-node, since children of O-nodes have exactly
one child, by the definition of winning strategy. If there are multiple
children of u representing attacks by O, then they must be against the
immediately prior assertion of P, by Lemma 3. And by the particle
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rules the only way there can be multiple ways for O to attack the
immediately prior statement by P is if P has asserted a conjunction
and O can choose to attack this with either ∧L or ∧R. 2

LEMMA 14. Any P-winning N-strategy for a formula ϕ can be trans-
formed into a closed N-tableau for Pϕ.

Proof. We give an algorithm for constructing a tableau from a win-
ning strategy. The algorithm takes as input as strategy s, and the
output will be a tree T which we will prove to be a tableau. In the
algorithm we will refer to “the current tableau node” of T and “the
current strategy node” as the node of s that we are operating on. We
will indicate how the output tree is constructed, and indicate how to
assign tableau rules to the nodes.

Initially, we are given the root of s; this is the current strategy node.
The current tableau node is not yet assigned. The root of s is a P-node
and contains the assertion ϕ. Make a new node u whose label is Pϕ;
this is the root node of T . Set the current tableau node to be u. Proceed
down s as follows:

1. The current strategy node has no children: We are done.

2. The current strategy node has an assertive child: We know that this
child is unique; call it c. Make a new child v of the current tableau
node; assign the label Xϕ to v where X is the player of c and ϕ
is the formula asserted at this node. Update the current strategy
node to c, and update the current tableau node to v. The tableau
rule that will label the edge from the current tableau node to the
new tableau node v is determined by the player and the stance of
the current strategy node c, as well as the formula being attacked
or defended. It is determined as follows:

a) If c is a P-node attacking a negation, then the label is P¬.

b) If c is an O-node attacking a negation, then the label is O¬.

c) If c is a P-node defending against an attack on a disjunction,
then the label is P∨L or P∨R depending on whether P defends
by asserting the left disjunct or the right.

d) If c is a P-node defending against an attack on a conjunction,
then the label is P∧.

e) If c is an O-node attacking an implication, then the label is
O→;

f) If c is a P-node defending against an attack on an implication,
then the label is P→.
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Reinitiate the algorithm with c.

3. The current strategy node has a non-assertive child: We know that
the child node is an O-node, because in a winning N-strategy, P will
never make any symbolic attacks (by Corollary 1). Furthermore,
since s is a winning strategy, any O-node will have exactly one P-
node as successor, and it will be an assertive move. There are two
cases:

a) The current strategy node has a unique child c, which itself has
a unique child c′: Set the new current strategy node to be c′.
Create a new tableau node and label it with Pϕ where ϕ is the
formula asserted by P at c′; make this node the current tableau
node. The tableau rule that will label the edge from the current
tableau node to the new tableau node is determined as above.

b) The current strategy node has two children c1 and c2, each of
which has a unique child c′1 or c′2: Set the new current strategy
node to be c′1, and continue as in the previous step. When the
algorithm terminates, set c′2 to be the new current strategy
node, reset the current tableau node to whatever the current
tableau was when c′1 was the current strategy node and continue
as in the previous step.

Claim. The output of the algorithm is a tableau T for Pϕ.

Proof. T is a tableau because of the direct correspondence between
the particle rules of dialogue games and the rules for constructing N-
tableaux of Table III. Note that the algorithm ensures that if we add one
branch of the rule P∧, we will always add the other eventually, since the
only time that there is a node in the strategy where P defends against
an attack on a conjunction is when O has attacked a conjunction, and
hence the strategy branches.

We give an illustration of this correspondence here. Consider a frag-
ment of an N-dialogue game such that at some step O attacks a formula
of the form ϕ→ ψ (previously granted by P) by asserting ϕ and at the
next step P defends against this attack by asserting ψ. Applying the
algorithm to this fragment of the game, we get the following branch:

.

.

.
P(ϕ→ ψ)

O→
Oϕ

P→
Pψ
.
.
.
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It is not difficult to see that this is in fact a fragment of a branch of
a tableau. 2

Claim. The tableau T is closed.

Proof. T is a closed tableau because of the direct correspondence
between P’s winning conditions for N-dialogues and the definition of
N-tableaux closure. P wins a dialogue if it is O’s turn but no legal
move can be made; thus, whenever we have a P-winning strategy, we
know that in all of its branches O has exhausted his legal moves. Now
suppose we have a winning N-strategy s. Consider an arbitrary branch
B of s. In B, P has answered to all attacks of O on non-atomic formulas
asserted by P. Whatever is the complexity of ϕ, at one point in B, O
must have made an attack on some non-atomic assertion ψ made by P
such that ψ is a subformula of ϕ and ψ has only atoms (or an atom) as
its immediate subformula(s). Otherwise, O would still have a move to
make and s would not be a winning strategy. However, we know that
P has answered this move by asserting some atomic formula p, and by
Rule D10, this can be only in case if p has been previously asserted
by O. Thus, executing our algorithm will generate a tableau branch b′

such that both Op and Pp appear on it, which means that this branch
b′ is closed. The same holds of all other branches of s, so we know that
the tableau corresponding to s must be closed. 2

2

Corollary 7. If ϕ is N-valid, then every N-tableau for Pϕ is closed.

Proof. Follows from Lemmas 12 and 14. 2

7.3. Mapping tableaux to strategies.

We now turn to the direction from tableaux to strategies, and give
a simple algorithm. We illustrate the algorithm with the example in
Figure 1.

LEMMA 15. If every N-tableau for Pϕ closes, then P has a winning
N-strategy for ϕ.

Proof. Since there is no restriction on the order of application of the
rules, it follows that if there is a closed tableau for Pϕ, there is a closed,
simple, O-preferring tableau. We give an algorithm that will convert
any closed, simple, O-preferring tableau for Pϕ T into a P-winning
N-strategy for ϕ.
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1. Identify the closure atom in each branch; since the branches of
the tableau close as soon as they can, we know the closure atom
is unique.

2. Move the P-assertion of the closure atom so it is immediately after
the O-assertion of the same atom. (See Figure 2.)

P¬(a ∧ b)→ (¬a ∨ ¬b)
O¬(a ∧ b)
P(a ∧ b)

P¬a ∨ ¬b
P¬a
Oa

Pa

P¬a ∨ ¬b
P¬b
Ob

Pb

Figure 2. After step 2 has been applied.

3. Delete any P-assertions of non-closure atoms, if there are any.

4. Any time there are two P-nodes in a row, add a symbolic attack:
The attack is ‘?’ after nodes of the form P(ϕ ∨ ψ), ∧L at the
beginning of any left tableau branch, and ∧R at the beginning of
any right tableau branch. (See Figure 3.)

P¬(a ∧ b)→ (¬a ∨ ¬b)
O¬(a ∧ b)
P(a ∧ b)

∧L
P¬a ∨ ¬b

?

P¬a
Oa

Pa

∧R
P¬a ∨ ¬b

?

P¬b
Ob

Pb

Figure 3. After step 4 has been applied.

5. Label all nodes with P-signed formulas as moves made by P; drop
the P before these formulas.

6. Label all the remaining nodes as moves made by O; drop the O
before the remaining signed formulas.

7. Number the nodes linearly in each branch, starting with 0; these
numbers indicate the round where the move is made.
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8. Assign stances and references as follows (see Figure 4):

0 P ¬(a ∧ b)→ (¬a ∨ ¬b) (initial move)
1 O ¬(a ∧ b) [A, 0]
2 P (a ∧ b) [A, 1]

3 O ∧L [A, 2]
4 P ¬a ∨ ¬b [D, 1]
5 O ? [A, 4]
6 P ¬a [D, 5]
7 O a [A, 6]
8 P a [D, 3]

3 O ∧R [A, 2]
4 P ¬a ∨ ¬b [D, 1]
5 O ? [A, 4]
6 P ¬b [D, 5]
7 O b [A, 6]
8 P b [D, 3]

Figure 4. After step 8 has been applied.

a) The first node has stance “assert”, and no reference.

b) If the node of the strategy was generated by an application
of P¬, O¬, or O → in the tableau, the stance is “attack”
and the reference is n where n is the label of the node in the
strategy corresponding to the premise of the rule application in
the tableau.

c) If the node of the strategy was generated by an application of
P→ in the tableau, the stance is “defense” and the reference is
n where n is the label of the node in the strategy corresponding
to the application of O→ to the same premise in the tableau.

d) If the node of the strategy was generated by an application
of P∧, P∨L, or P∨R in the tableau, then in the strategy, the
node is preceded by a symbolic attack; let n be the label of this
symbolic attack. Label these nodes with the stance “defend”
with reference n.

e) If the node is a symbolic attack, the stance is “attack”, and the
reference is the label of the previous node in the strategy.

Claim. The output of the algorithm is a winning N-strategy s for
formula ϕ.

Proof. We must show (1) that s is an N-strategy; (2) that every
branch ends with a P-node, and (3) there are no legal O moves by
which any branches in s can be extended.

(1) The result is clearly an N-strategy; the second step assures that
D10 is satisfied. D13 follows from the fact that any rule is only ever
applied once, and hence O does not attack a P-formula more than once.
The strategy begins with a P-move, and the moves are alternating
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because we always apply Rule O → before Rule P →, and we have
added symbolic attacks (moves by O) between any two successive P-
nodes.

(2) Every branch ends with a P-move, because in the tableau, either
the branch closed when there was an O-signed atom after the same
atom P-signed, and hence by step two of the algorithm, the branch of
the strategy ends with a P move; or the branch of the tableau closed
when a P-signed atom occurred after the same atom O-signed had
already occurred, and so this P-assertion is the leaf.

(3) Towards a contradiction, suppose that one of s’s branches could
be legally extended by an O-move, either an attack or a defense.

1. O’s move is a defense. There are two possibilities:

a) It is a defensive move against a symbolic attack. This means
that there must be a symbolic P move somewhere in s. How-
ever, s was acquired from a tableau and the above algorithm
does not introduce any symbolic attacks on P’s part. Hence we
know that there are no symbolic P-moves in s. So we have a
contradiction.

b) It is a defensive move against an attack on implication. This
means that at some node n in s O has asserted a formula of
the form ψ → χ and at another node m > n P has attacked
it by asserting ψ. Since s has been generated from a tableau
by the above algorithm, we know that there are corresponding
nodes n′ and m′ in the initial tableau such that at n′ a formula
of the form O(ψ → χ) is introduced and at node m′ a formula
of the form Pψ is introduced using O(ψ → χ) as a premise.
However, there is no rule in Table III of this kind which means
that s was not transformed from an N-tableau. Thus we have
a contradiction.

2. O’s move is an attack. There are five possibilities:

a) It is an attack on a negation. This means there is a node n
in s where P has asserted a formula of the form ¬ψ. Since
s was generated from an N-tableau by the above algorithm,
we know that there is a corresponding node n′ in the tableau
whose label is P¬ψ. We know that there is no node m below
n in s such that O asserts ψ there, since by Rule D13 O can
only attack each move of P once, and thus if he has already
attacked P’s assertion of ¬ψ, then it is not legal for him to
attack it again, contra assumption. Since there is no such node
in s, we know there is no node m′ in T that is labeled Oψ, for
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if there was, then by our algorithm, this would generate a node
m in s labeled with O’s assertion of ψ. But this contradicts our
assumption that T is simple, because if there is a node of the
form P¬ψ in T , then the immediate next node will be Oψ.

b) It is an attack on an implication. This means that at some node
n of s, P has asserted a formula of the form ψ → χ and it has
not been attacked by O. Given that s was transformed from
an N-tableau, we can be sure that there is corresponding node
n′ whose label is P(ψ → χ). We know that there is no node m
below n in s such that O asserts ψ there, since by Rule D13 O
can only attack each move of P once, and thus if he has already
attacked P’s assertion of ψ → χ, then it is not legal for him to
attack it again, contra assumption. Since there is no such node
in s, we know there is no node m′ in T that is labeled Oψ, for
if there was, then by our algorithm, this would generate a node
m in s labeled with O’s assertion of ψ. But this contradicts our
assumption that T is simple, because if there is a node whose
label has the form P(ψ → χ) in T , then the immediate next
node will be labeled by Oψ.

c) It is an attack on a disjunction, that is, the symbolic attack
“?”. This means that there is some node n in s such that P
has asserted a disjunction ψ ∨ χ at n and O has not attacked
it. However, our algorithm insures that each P-assertion of a
disjunction in s is followed by an attack on this disjunction on
O’s part. Thus we know that O has attacked ψ ∨ χ at node
n+ 1. Contradiction.

d) It is an attack, asserting ∧L. This case is analogous to (c).

e) It is an attack, asserting ∧R. This case is also analogous to (c).

Since in each case we have arrived at a contradiction, we can be sure
that there is no move O can make after the last P-node. Thus we have
proven (2), and we know that s is a winning N-strategy. 2

2

8. Conclusion

By making a simple and intuitive modification of the usual rules for
classical dialogue games in the Felscher tradition, we obtained a set N
of dialogically valid formulas. We formulated the composition problem
for a logic and related it to the question of what it means for a set of
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formulas to be a logic. We resolved the composition problem for N in
the affirmative, allowing us to call N a logic. Our positive solution to the
composition problem was proved directly through semantic methods;
that is, we worked solely with dialogue trees and strategies and did
not need to follow the usual detour through cut-free sequent calculi
or semantic tableaux. We have also provided a sound and complete
tableaux system which gives a non-dialogical characterization of N. We
leave the problem of providing an independent axiomatization for N,
and questions of decidability and recursive axiomatizability, as future
work.

The logic N has a number of curious features, including a lack of
unrestricted uniform substitution, and a failure to validate the implica-
tional and conjunctive versions of modus ponens at the object-language
level—despite the positive solution to its composition problem—which
arise from the fact that if O can defend once, he can always repeat
this defense. As a result, N privileges implications whose antecedents
are atoms or negations, formulas which either can’t be attacked or
whose attacks cannot be defended against. The logic lies below CL,
but neither above nor below IL, and is of interest because it is neither
connexive nor relevant, i.e., it does not belong to either of the two
families of well-known non-classical propositional logics which are not
superintuitionistic.

It might be objected that if N is a logic, it is a rather silly one.16 We
do not dispute this; as it stands, there is no dialogically-independent
reason to study N, though this is not to say that some future applica-
tion might not be found. Nevertheless, N does illustrate how difficult
the problems of providing justification and foundations for dialogical
systems can be. If antecedent appeal to the resulting logic cannot be the
primary motivation for combining a particular set of rules, then failing
to obtain a serious logic cannot be an argument against the motivation
for that combination. The set of rules generating N is no less justified
than the justification offered for N+E, which gives classical logic. Hence
some kind of justification ought to be given for E or for any set of rules
containing E, and this justification must be something other than “it
gives us a nice logic”.

The results of our investigation are therefore significant in at least
two respects. First, one of the important results in dialogical logic is
the redundancy of the E in the set of structural rules generating IL.
In this paper we investigated the role of E in CL, and showed that it
is not similarly redundant. While we can safely drop E from a ruleset
known to capture intuitionistic logic, we cannot do so when working
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with a ruleset CL known to capture classical logic, because we obtain
N rather than CL.

This result should not be taken as a general statement about the
necessity of E for classical dialogue semantics. Instead, it is better
understood as analogous to results in the axiomatization of a certain
class C of structures where one finds that a certain axiom A must be
included; this does not preclude the possibility that a slight adjustment
of the class C of structures could render the axiom A dispensable.
Indeed, Felscher himself envisaged dialogues characterizing classical
logic without the E rule (in [10, §3.10] he briefly considers so-called C-
dialogues in which the E rule is not available). Recent results show that
E need not be assumed for the purpose of characterizing classical logic
using dialogues [6, 40]. In [6], Clerbout uses a slightly different notion
of dialogues (in effect, he works with a different class of structures) in
which the notion of rank—numeric bounds on the number of repetitions
the players are permitted—ensures that all dialogues whatsoever are
finite, whereas Uckelman in [40] shows that, for Felscher dialogues, all
that is necessary to obtain classical logic is to limit the number of
repetitions that Opponent may make.

Second, our work highlights the importance of the composition prob-
lem in the dialogical setting, especially its relationship to the definition
of ‘logic’ and the question of uniform substitution. Is it acceptable to
drop unrestricted uniform substitution from a logic when there is no
semantic (i.e., model-theoretic) motivations for doing so? Such ques-
tions when considered in the dialogical approach gain new relevance,
showing the fruitfulness of the dialogical approach for philosophy of
logic.
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Notes

1 For more on the history of dialogical logic, see [19, 22].
2 Two of the current authors have discussed some of these matters further in [3].

The subject is also touched on in [29].
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3 Note that it is not the case that every D-dialogue is an E-dialogue; an IL theorem
that displays the divergence of the two is ¬¬(((ϕ→ ψ)→ γ)→ (((ψ → ϕ)→ γ)→
γ)).

4 Note that these two questions are not, strictly speaking, the same. In [40] a
ruleset which generates CL but which does not have E is given.

5 See also the modal logics, mostly dynamic, in [15, fn. 1].
6 One can think of logics which do not satisfy unrestricted uniform substitution

as being propositional theories, where the interpretation of the atomic variables is
fixed in advance.

7 In many logics, it doesn’t make sense to distinguish a schematic/substitutional
notion of consequence from a non-substitutional one. However some logics, such as
provability logics, do make such a distinction.

8 Thanks to one of the anonymous referees on a previous version of this paper for
pointing this out to us.

9 This illustrates nicely Krabbe’s point about the importance of structural rules
regulating repetitive behavior (“the bugbear of dialogue theory”) of the players [17,
pp. 296, 303].
10 Another reason why N is not a relevance logic is because such formulas as
¬(p∨¬p)→ q are valid. However, N could be considered a relevance logic in Rückert’s
sense of P-relevance logic, in which P must make all possible attacks and defenses.
See [34, ch. 5].
11 A similar thing happens in linear logic [8, §§2.1,6]; for a dialogical characteriza-

tion of linear logic, see [4].
12 More precisely, we attach to the end of f(b) the result of cutting off the root

of t, because the root of t and the leaf of b represent assertions by P of identical
formulas.
13 Recall that the Gödel-Gentzen negative translation, however, does not pre-

serve N-validity; see the proof of Lemma 11. This translation does not merely add
negations, but also changes the shape of the formula.
14 Benedikt Löwe suggested this elegant solution.
15 We do not follow Felscher’s developments of tableaux for intuitionistic logic,

which are idiosyncractic for reasons related to his precise proof method.
16 Such an objection was raised by one of the anonymous referees.
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(eds.): Advances in Modal Logic, Vol. 9. pp. 348–367.

16. Keiff, L.: 2009, ‘Dialogical Logic’. In: E. N. Zalta (ed.): Stanford Encyclopedia
of Philosophy. CSLI Publications, Summer edition. http://plato.stanford.

edu/archives/sum2009/entries/logic-dialogical/.
17. Krabbe, E. C. W.: 1985, ‘Formal Systems of Dialogue Rules’. Synthese 63,

295–328.
18. Krabbe, E. C. W.: 2001, ‘Dialogue Foundations: Dialogue Logic Revisited [sic]’.

The Aristotelian Society Supplement 75, 33–49.
19. Krabbe, E. C. W.: 2006, ‘Dialogue Logic’. In: D. M. Gabbay and J. Woods

(eds.): Handbook of the History of Logic, Vol. 7. Eslevier, pp. 665–704.
20. Lorenz, K.: 1961, ‘Arithmetik und Logik als Spiele’. Ph.D. thesis, Universität

Kiel.
21. Lorenz, K.: 1968, ‘Dialogspiele als semantische Grundlage von Logikkalkulen’.

Archiv Math. Logik Grundlagenforsch. 11, 32–55, 73–100.
22. Lorenz, K.: 2001, ‘Basic Objectives of Dialogue Logic in Historical Perspective’.

Synthese 127, 255–263.
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