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ABSTRACT

We propose a nonparametric estimation and inference for conditional density based Granger causality mea-

sures that quantify linear and nonlinear Granger causalities. We first show how to write the causality measures in

terms of copula densities. Thereafter, we suggest consistent estimators for these measures based on a consistent

nonparametric estimator of copula densities. Furthermore, we establish the asymptotic normality of these non-

parametric estimators and discuss the validity of a local smoothed bootstrap that we use in finite sample settings

to compute a bootstrap bias-corrected estimator and to perform statistical tests. A Monte Carlo simulation

study reveals that the bootstrap bias-corrected estimator behaves well and the corresponding test has quite good

finite sample size and power properties for a variety of typical data generating processes and different sample

sizes. Finally, two empirical applications are considered to illustrate the practical relevance of nonparametric

causality measures.
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1 Introduction

Much research has been devoted to building and applying tests of non-causality. However, once we have concluded

that a “causal relation” (in the sense of Granger) is present, it is usually important to assess the strength of

this relationship. Only few papers have been proposed to measure the causality between random variables.

Furthermore, although the concept of causality is naturally defined in terms of conditional distributions, the

estimation of the existing causality measures has been done using parametric mean regression models in which

the causal relations are linear. Consequently, one simply cannot use the existing measures to quantify the strength

of nonlinear causalities. The present paper aims to propose a nonparametric estimation and inference for Granger

causality measures. The proposed approach is model-free and allows us to quantify nonlinear causalities and the

causalities that show up in conditional quantiles as well as higher order conditional moments (such as volatilities,

skewness, kurtosis, etc).

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a basic notion for

studying dynamic relationships between time series. This concept is defined in terms of predictability at horizon

one of a (vector) variable Y from its own past, the past of another (vector) variable X, and possibly a vector Z of

auxiliary variables. The theory of Wiener-Granger causality has generated a considerable literature; for review

see Dufour and Taamouti (2010). Wiener-Granger analysis distinguishes between three basic types of causality:

from Y to X, from X to Y , and instantaneous causality. In practice, it is possible that all three causality

relations coexist, hence the importance of finding means to quantify their degree. Unfortunately, causality tests

fail to accomplish this task, because they only provide evidence on the presence or the absence of causality,

and statistical significance depends on the available data and test power. A large effect may not be statistically

significant (at a given level), and a statistically significant effect may not be “large” from an economic viewpoint

(or more generally from the viewpoint of the subject at hand) or relevant for decision making. Hence, it is

crucial to distinguish between the numerical value of a parameter and its statistical significance [see McCloskey

and Ziliak (1996)].

Thus, beyond accepting or rejecting non-causality hypotheses – which state that certain variables do not

help forecasting other variables – we wish to assess the magnitude of the forecast improvement, where the latter

is defined in terms of some loss function (Kullback distance). Even if the hypothesis of no improvement (non-

causality) cannot be rejected from looking at the available data (for example, because the sample size or the

structure of the process does allow for high test power), sizeable improvements may remain consistent with the

same data. Or, by contrast, a statistically significant improvement – which may easily be produced by a large

data set - may not be relevant from a practical viewpoint.

The topic of measuring the causality has attracted much less attention. Geweke (1982, 1984b) introduced

measures of causality based on mean-square forecast errors. Gouriéroux, Monfort, and Renault (1987) proposed

causality measures based on the Kullback information criterion and provided a parametric estimation for their

measures. Polasek (1994, 2002) showed how causality measures can be computed using the Akaike Information
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Criterion (AIC) and a Bayesian approach. Dufour and Taamouti (2010) proposed short and long run causality

measures based on vector autoregressive and moving average models. The estimation of most existing causality

measures has been done based on parametric mean regression models. However, the misspecification of parametric

model may affect the structure of the causality between the variables of interest. In addition, the dependence

in the mean-regression is only due to the mean dependence, and thus it ignores the dependence that show up

in conditional quantiles as well as higher order conditional moments. Finally, as shown in many theoretical

and empirical papers, several “causal relations” are nonlinear; see for example Gabaix, Gopikrishnan, Plerou,

and Stanley (2003), Bouezmarni, Rombouts, and Taamouti (2012) and Bouezmarni and Taamouti (2011), and

references therein. Hence, the existing estimation methods for causality measures can not be used to quantify

nonlinear causalities. An exception is the paper of Zheng, Shi, and Zhang (2012) who study linear and nonlinear

strength of dependence without making any parametric assumptions on the data. However, their approach only

focuses on the dependence in the mean, whereas our approach deals with any type of dependence.

We propose a nonparametric estimator for Granger causality measures that quantify nonlinear causalities

and causalities that show up in higher order conditional moments. The nonparametric estimator is model-free

and therefore it does not require the specification of the model linking the variables of interest. We write the

theoretical Granger causality measures in terms of copula densities. Copula is a tool that fully quantifies the

dependence among the variables of interest, and thus it can be used to characterize the conditional probability

density based Granger causality that we consider in this paper. So, it seems natural to define the measures

of Granger causality in distribution using copulas. An advantage of such an approach is that it allows us to

completely separate the marginal structure from the dependence structure. As noted by Chen and Fan (2006),

separate modeling of the temporal dependence and the marginal behavior is particularly important when the

dependence structure and the marginal properties of a time series are affected by different exogenous variables.

Thereafter, the causality measures are estimated by replacing the unknown copula densities by their nonpara-

metric estimates. The copula densities are estimated nonparametrically using Bernstein polynomials. For i.i.d.

data, Sancetta and Satchell (2004) show that, under some regularity conditions, any copula can be represented

by a Bernstein copula. Bouezmarni, Rombouts, and Taamouti (2010) provide the asymptotic properties of the

Bernstein copula density estimator for dependent data. The nonparametric Bernstein copula density estimates

are guaranteed to be non-negative. Since the causality measures are defined using the Kullback distance, the

non-negativity of the Bernstein estimators avoids having negative values inside the logarithmic function. Fur-

thermore, there is no boundary bias problem when we use the Bernstein estimator, because by smoothing with

beta densities the Bernstein copula density does not assign weights outside its support. Chen and Huang (2007)

propose a bivariate kernel copula estimator based on local linear kernels that also removes the boundary bias.

For the review of how to remove boundary bias in nonparametric estimation, see for example Brown and Chen

(1999) and Chen (2000).

We establish the asymptotic normality of the proposed nonparametric estimator. This result is used to build
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tests for the statistical significance of causality measures. The asymptotic normality is achieved by subtracting

some bias terms and then rescale the estimator by the proper variance. We also discuss the validity of local

smoothed bootstrap that we use in finite sample settings to compute a bootstrap bias-corrected estimator and

to perform statistical test for Granger causality measures. A Monte Carlo simulation study reveals that the

bootstrap bias-corrected estimator behaves well and that the test has good power for a variety of typical data

generating processes and different sample sizes.

Finally, the empirical importance of measuring nonlinear causalities is illustrated. In a first empirical appli-

cation we quantify the causality between S&P500 Index returns and many exchange rates (US/Canada, US/UK

and US/Japen exchange rates). We find that both exchange rates and stock prices could have a significant

impact on each other. We also find that the impact of stock returns on exchange rates is much stronger than

the impact of exchange rates on stock returns. In a second application we compare the predictive content of

dividend-price ratio, volatility index (VIX) and liquidity factor for stock market returns. The results show that

both dividend-price ratio and VIX help to predict stock market returns. The comparison of causality measure

estimates indicates that VIX has more predictive content than dividend-price ratio. We also find that liquidity

factor of Pastor and Stambaugh (2003) does not help to predict the time-series of stock returns.

The plan of the paper is as follows. Section 2 provides the motivation for considering a nonparametric causality

measures. Sections 3 and 4 present the theoretical framework which underlies the definitions of causality measures

using probability and copula density functions. In Section 5 we introduce a consistent nonparametric estimator

of causality measures based on Bernstein polynomial. We also establish the asymptotic distribution of our

estimator and discuss the asymptotic validity of a local bootstrap finite sample test. In Section 6 we extend our

results to the case where the random variables of interest are multivariate. In Section 7 we propose a bootstrap

bias-corrected estimator of causality measures and provide a simulation exercise to evaluate the bias-correction

and investigate the finite sample properties of local bootstrap-based test for causality measures. Section 8 is

devoted to two empirical applications and the conclusion relating to the results is given in Section 9. Proofs

appear in the Appendix 10.

2 Motivation

The causality measures that we consider here constitute a generalization of those developed by Geweke (1982,

1984b) and others. The existing measures quantify the effect of one variable Y on another variable X assuming

that the regression function linking the two variables of interest is known and linear. Furthermore, these measures

focus on quantifying the causality in mean and ignore the causalities that show up in conditional quantiles as

well as higher order conditional moments (such as volatilities, skewness, kurtosis, etc). Hence, the significance

of such measures is limited in the presence of unknown regression functions and in the presence of nonlinear and

high-order moment causalities.
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We propose measures of Granger causality between random variables based on copula densities. Such mea-

sures detect and quantify the causalities in quantiles as well as higher order conditional moments. To see the

importance of such causality measures, consider the following examples.

Example 1 Assume that the joint process (X, Y )′ follows a stationary VAR(1) model: Xt+1

Yt+1

=
 0.5 0.0

0.4 0.35

 Xt

Yt

+

 εXt+1

εYt+1


︸ ︷︷ ︸

εt+1

, (1)

where

εt+1 | Xt, Yt ∼ N

 0

0

 ,

 σ2
X,t 0

0 σ2
y


with

σ2
X,t = 0.01 + 0.5Y 2

t + 0.25X2
t .

Since the coefficient of Yt in the first equation of (1) is zero, we can conclude that Y does not Granger cause X

in the mean. However, if consider the causality in the variance we get

V (Xt+1 | Xt, Yt) = 0.01 + 0.5Y 2
t + 0.25X2

t ,

where now Y Granger causes X in the variance. This example illustrates the case where the causality in the

variance does exist even if there is no causality in the mean. But, how can we measure the degree of the causality

in the variance? Existing measures do not answer this question.

Example 2 Suppose now X is given by the following process:

Xt+1 = µX + 0.5Xt + εXt+1,

where the error term εXt+1 follows Lévy skew stable probability distribution defined by the Fourier transform of its

characteristic function φ(u) :

εXt+1 | Xt, Yt ∼ f
(
εXt+1 | Xt, Yt

)
=

1

2π

+∞∫
−∞

φ(βt, u)e
−iuεXt+1du,

where φ(βt, u) = exp
[
− | u |

(
1 + i2βt sgn(u)

π log (u)
)]

, sgn(u) is the sign of u and βt is the time-varying skewness

that depends on Y :

βt = λ+ ρYt.

In this model, Y does not affect the mean and variance of X, but it does affect its skewness. Again, how can we

measure the degree of the causality in skewness? Existing measures do not answer this question.
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3 Granger causality measures

Let
{
(Xt, Yt) ∈ R× R ≡ R2, t = 0, ..., T

}
be a sample of stationary stochastic process in R2, with joint distribu-

tion function FXY and density function fXY . For simplicity of exposition, here we consider univariate Markov

processes of order one. Later, see Section 6, we will extend the results to the case where the variables of interest

X and Y can be multivariate Markov processes of order p, for p ≥ 1.

Following Gouriéroux, Monfort, and Renault (1987), we define the measure of Granger causality from X to

Y by1

C(X → Y ) = E

{
log

(
f (Yt | Yt−1, Xt−1)

f (Yt | Yt−1)

)}
, (2)

where the expected value is taken on the joint distribution of Xt−1, Yt−1 and Yt. Important properties of this

measure include: (1) is nonnegative, and (2) cancels only when there is no causality. The property (2) implies

that the null hypothesis of Granger non-causality from X to Y ,

Hx→y
0 : f(yt | xt−1, yt−1) = f(yt | yt−1), 1 ≤ t ≤ T, (3)

is equivalent to C(X → Y ) = 0. Thus, the measure C(X → Y ) defines a “distance” between the left and right

hand sides of the null Hx→y
0 . It quantifies the difference between the conditional densities f(yt | xt−1, yt−1)

and f(yt | yt−1). Hence, high values of measure C(X → Y ) will be interpreted as indicating “strong” causality

from X to Y . The measure of Granger causality from Y to X, C(Y → X), is defined similarly. Moreover, the

instantaneous Granger non-causality between X and Y can also be characterized in terms of probability density

functions using the equivalent null hypotheses:

Hx↔y
0 : f(yt | xt, xt−1, yt−1) = f(yt | xt−1, yt−1), 1 ≤ t ≤ T,

Hx↔y
0 : f(xt | yt, xt−1, yt−1) = f(xt | xt−1, yt−1), 1 ≤ t ≤ T, (4)

Hx↔y
0 : f(yt, xt | xt−1, yt−1) = f(yt | xt−1, yt−1)f(xt | xt−1, yt−1), 1 ≤ t ≤ T.

From the third null hypothesisHx↔y
0 , the instantaneous Granger non-causality betweenX and Y can be viewed as

the conditional independence between Xt and Yt conditional to the past Xt−1 and Yt−1. Thus, the instantaneous

causality between X and Y can be quantified using the following equivalent measures:

C(Y ←→ X) = E
{
log
(
f(Yt|Xt,Xt−1,Yt−1)
f(Yt|Xt−1,Yt−1)

)}

= E
{
log
(
f(Xt|Yt,Xt−1,Yt−1)
f(Xt|Xt−1,Yt−1)

)}

= E
{
log
(

f(Yt,Xt|Xt−1,Yt−1)
f(Yt|Xt−1,Yt−1)f(Xt|Xt−1,Yt−1)

)}
.

(5)

1Details of the derivation of Granger causality measure in (2) can be found in sections 4.b. and 4.c. of Gouriéroux, Monfort, and

Renault (1987).
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Finally, observe that:

C(X → Y ) + C(Y → X) + C(Y ←→ X) = C(Y, X) = E

{
log

(
f(Yt, Xt | Xt−1, Yt−1)

f (Xt | Xt−1) f (Yt | Yt−1)

)}
, (6)

where the right-hand side of Equation (6) defines a measure of dependence between X and Y, denoted by

C(Y, X). The measure of dependence C(Y, X) decomposes the dependence between X and Y to measures of

feedbacks (time-lagged causal effect) from X to Y (C(X → Y )) and from Y to X (C(Y → X)) and a measure

of instantaneous causality between X and Y (C(Y ←→ X)). This measure will enable one to check whether the

processes X and Y must be considered together or whether they can be treated separately.

4 Copula-based Granger causality measures

Here we show that the above Granger causality measures can be rewritten in terms of copula densities. This will

allow us to keep only the terms that involve the dependence among the random variables.

It is well known from Sklar (1959) that the distribution function of any joint process (U, V,W ) ∈ R×R× R

can be expressed via a copula

F (u, v, w) = C (FU (u), F V (v), FW (w)) , (7)

where FQ(.), forQ = U, V,W, is the marginal distribution function of the random variableQ, and C (FU (.), F V (.), FW (.))

is a copula function defined on [0, 1]3 which captures the dependence of (U, V,W ). If we differentiate Equation

(7) with respect to (u, v, w), we obtain the joint density function of (U, V,W ) :

f(u, v, w) = fU (u)× fV (v)× fW (w)× c (FU (u), F V (v), FW (w)) , (8)

where fQ(.), for Q = U, V,W, is the marginal density of random variable Q and c (FU (.), F V (.), FW (.)) is the

copula density of (U, V,W ) defined on [0, 1]3.

Using Equation (8), the measure of causality in (2) can be rewritten in terms of copula densities as follows:

C(X → Y ) = E

{
log

(
c
(
F Yt(Yt), F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
F Yt(Yt), F Yt−1(Yt−1)

))} , (9)

where c
(
F Yt(.), F Yt−1(.), FXt−1(.)

)
, c
(
F Yt−1(.), FXt−1(.)

)
and c

(
F Yt(.), F Yt−1(.)

)
are the copula densities of

(Yt, Yt−1, Xt−1), (Yt−1, Xt−1), and (Yt, Yt−1), respectively. The measure of causality from Y to X, C(Y →

X), can similarly defined in terms of copula densities c
(
FXt(.), FXt−1(.), F Yt−1(.)

)
, c
(
FXt−1(.), F Yt−1(.)

)
and

c
(
FXt(.), FXt−1(.)

)
.

Finally, the first measure in (5) of the instantaneous Granger causality between X and Y can be rewritten

in terms of copula densities as follows:

C(X ↔ Y ) = E

{
log

(
c
(
F Yt(Yt), FXt(Xt), F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
FXt(Xt), FXt−1(Xt−1), F Yt−1(Yt−1)

)
c
(
F Yt(Yt), FXt−1(Xt−1), F Yt−1(Yt−1)

))} , (10)
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where c
(
F Yt(Yt), FXt(Xt), F Yt−1(Yt−1), FXt−1(Xt−1)

)
, c
(
FXt(Xt), FXt−1(Xt−1), F Yt−1(Yt−1)

)
and c

(
F Yt(Yt), FXt−1(Xt−1), F Yt−1(Yt−1)

)
are the copula densities of (Yt,Xt,Yt−1,Xt−1), (Xt, Xt−1, Yt−1), and

(Yt, Xt−1, Yt−1), respectively. We can, in a similar way, rewrite the last two measures in (5) of the instantaneous

causality in terms of copula densities.

5 Estimation and inference

Since we are interested in time series data, we need to specify the dependence in the process of interest. In

what follows, we consider β-mixing dependent variables. The β-mixing condition is required to show the asymp-

totic normality of the nonparametric estimator of our causality measures. To establish the asymptotic nor-

mality, we also need to apply the results of Bouezmarni, Rombouts, and Taamouti (2010, 2012). Now let us

recall the definition of a β-mixing process (see e.g., Doukhan (1994); Fan and Yao (2003), among others). For{
Wt = (Xt, Yt)

′ ; t ≥ 0
}
a strictly stationary stochastic process and Fs

t a sigma algebra generated by (Ws, ...,Wt)

for s ≤ t, the process W is called β-mixing or absolutely regular, if

β (l) = sup
s∈N

E

 sup
A∈F+∞

s+l

∣∣P (A|Fs
−∞
)
− P (A)

∣∣→ 0, a.s. l→∞.

Although the β-mixing condition is required to show the asymptotic normality of our nonparametric estimator

[see Tenreiro (1997) and Fan and Li (1999)], the consistency of this estimator can be established under α-mixing

condition.

5.1 Estimation

We have shown in Section 4 that Granger causality measures can be rewritten in terms of copula densities. Thus,

these measures can be estimated by replacing the unknown copula densities by their nonparametric estimates

from a finite sample. Hereafter, we focus on the estimation of Granger causality measure from X to Y, C(X → Y ),

which is defined in (9). However, we can similarly propose estimators of measures of Granger causality from Y

to X and of the instantaneous causality between X and Y defined in (10).

To estimate C(X → Y ), we first need to estimate the copula densities c
(
F Yt(.), F Yt−1(.), FXt−1(.)

)
, c
(
F Yt−1(.), FXt−1(.)

)
and c

(
F Yt(.), FXt−1(.)

)
. This can be done using the Bernstein copula density estimators defined below and stud-

ied in Bouezmarni, Rombouts, and Taamouti (2010). We first set the following additional notations. We denote

by

Gt = (Gt1, Gt2, Gt3) = (F Yt(Yt), F Yt−1(Yt−1), FXt−1(Xt−1))

and its empirical analog

Ĝt = (Ĝt1, Ĝt2, Ĝt3) = (F Yt,T (Yt), F Yt−1,T (Yt−1), FXt−1,T (Xt−1)),
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where F Yt,T (.), F Yt−1,T (.), and FXt−1,T (.) with subscript T is to indicate the empirical analog of the dis-

tribution functions F Yt(.), F Yt−1(.), and FXt−1(.), respectively. The Bernstein copula density estimator of

c
(
F Yt(.), F Yt−1(.), FXt−1(.)

)
at a given value g = (g1, g2, g3) is defined by

ĉ(g1, g2, g3) = ĉ(g) =
1

T

T∑
t=1

Kk(g, Ĝt), (11)

where

Kk(g, Ĝt) = k3
k−1∑
k1=0

k−1∑
k2=0

k−1∑
k3=0

AĜt,k

3∏
j=1

pkj (gj),

the integer k represents the bandwidth parameter, pkj (gj) is the binomial distribution

pkj (gj) =

 k − 1

kj

 g
kj
j (1− gj)

k−kj−1, for kj = 0, · · · , k − 1,

and AĜt,k
is an indicator function

AĜt,k
= 1{Ĝt∈Bk}, with Bk =

[
k1
k
,
k1 + 1

k

]
×
[
k2
k
,
k2 + 1

k

]
×
[
k3
k
,
k3 + 1

k

]
.

The Bernstein estimators ĉ
(
F Yt−1(.), FXt−1(.)

)
and ĉ

(
F Yt(.), FXt−1(.)

)
of c

(
F Yt−1(.), FXt−1(.)

)
and c

(
F Yt(.), FXt−1(.)

)
,

respectively, are defined similarly. Observe that the kernel Kk(g, Ĝt) can be rewritten as

Kk(g, Ĝt) =

k−1∑
k1=0

k−1∑
k2=0

k−1∑
k3=0

AĜt,k

3∏
j=1

B(gj , kj + 1, k − kj),

where B(gj , kj + 1, k − kj) is a beta density with shape parameters kj + 1 and k − kj evaluated at gj . The

Bernstein copula density estimator in (11) is easy to implement, non-negative, integrates to one and is free from

the boundary bias problem which often occurs with conventional nonparametric kernel estimators; see Sancetta

and Satchell (2004) in the case of i.i.d. data and Bouezmarni, Rombouts, and Taamouti (2010) for α-mixing

data. Bouezmarni, Rombouts, and Taamouti (2010) establish the asymptotic bias, variance and the uniform

almost convergence of Bernstein copula density estimator for α-mixing data. These properties are needed to

prove the consistency and the asymptotic normality of the estimators of causality measures.

Based on the previous nonparametric estimators of copula densities, an estimator of Granger causality measure

C(X → Y ) is given by

Ĉ(X → Y ) =
1

T

T∑
t=1

{
log

(
ĉ
(
F Yt,T (Yt), F Yt−1,T (Yt−1), FXt−1,T (Xt−1)

)
ĉ
(
F Yt−1,T (Yt−1), FXt−1,T (Xt−1)

)
ĉ
(
F Yt,T (Yt), FXt−1,T (Xt−1)

))} . (12)

The most basic property that the above estimator should have is consistency. To prove consistency, some

regularity assumptions are needed. We consider a set of standard assumptions on the stochastic process and

bandwidth parameter of the Bernstein copula density estimator.

Assumptions on the stochastic process
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(A1.1)
{
(Yt, Xt) ∈ R× R ≡ R2, t ≥ 0

}
, is a strictly stationary β-mixing process with coefficient β (l) = O(ρl),

for some 0 < ρ < 1.

(A1.2) The copula density c
(
F Yt(.), F Yt−1(.), FXt−1(.)

)
is assumed to be twice continuously differentiable on

(0, 1)3 and bounded away from zero and bounded above.

Assumptions on the bandwidth parameter

(A1.3) We assume that for k →∞, T k−7/2 → 0 and T−1/2k3/4 ln(T )→ 0.

Assumption (A1.1) is satisfied by many processes such as ARMA and ARCH processes as documented for

example by Carrasco and Chen (2002) and Meitz and Saikkonen (2008). In Assumption (A1.2), the second

differentiability of c
(
F Yt(.), F Yt−1(.), FXt−1(.)

)
is required by Bouezmarni, Rombouts, and Taamouti (2010) in

order to calculate the bias of the Bernstein copula estimator. Assumption (A1.3) is needed to cancel out some

bias terms and for the almost sure convergence of the Bernstein copula estimator. Note that the bandwidth

parameter k plays the inverse role compared to that of the standard nonparametric kernel, that is a large value

of k reduces the bias but increases the variance. We now state the consistency of the nonparametric estimator

in (12) [see the proof of Proposition 1 in Appendix 10].

Proposition 1 Under Assumptions (A1.1)-(A1.3), the estimator Ĉ(X → Y ) defined in (12) converges in

probability to C(X → Y ).

5.2 Inference

The measures proposed in the previous sections can also be used to test for Granger non-causality between

random variables. Hereafter, the null hypothesis of interest is given by

H0 : C(X → Y ) = 0.

In this section, we provide the asymptotic normality of our nonparametric estimator in (12), and we establish

the consistency of the test statistic used for testing H0. Again, here we focus on the Granger causality measure

from X to Y , but similar results can be obtained for the measures of Granger causality from Y to X and of the

instantaneous causality between X and Y .

Theorem 1 Under Assumptions (A1.1)-(A1.3) and H0, we have

TBE = T k−3/2
(
2Ĉ(X → Y )− T−1 k3/2ξ

)
/σ

d→ N (0, 1),

where σ =
√
2 (π/4)3/2 and ξ = −π3/2

8 + π
2k

−1/2 − k−1(π1/2 − 1).

9



To prove the above Theorem [see the proof in Appendix 10], we follow the proof of Theorem 1 in Bouezmarni,

Rombouts, and Taamouti (2012). However, it is important to notice that the bias terms, B1, B2 and B3 in

Theorem 1 of Bouezmarni, Rombouts, and Taamouti (2012) are estimated, whereas in the present paper these

terms are calculated exactly. For a given significance level α, we reject the null hypothesis H0 when TBE > zα,

where zα is the critical value from the standard normal distribution.

The nonparametric estimator of Granger causality measure can be biased in small samples, and this may

arise from bias in copula density estimates. This bias can, in turn, affect the finite sample properties of the TBE

test statistic in Theorem 1. To correct the finite sample bias, we suggest to use the smooth bootstrap method

proposed by Paparoditis and Politis (2000). The details of the bootstrap procedure that we use are provided in

Section 7.1.1. The validity of smoothed bootstrap that corresponds to a test statistic which is similar to ours is

established in Bouezmarni, Rombouts, and Taamouti (2012) [see Proposition 3 of Bouezmarni, Rombouts, and

Taamouti (2012)]. Under some regular assumptions on the bootstrap kernel and the bandwidth parameter, one

can show that TBE∗ d→ N (0, 1), where TBE∗ is the smoothed bootstrap version of TBE.

Notice that the derivation of Theorem 1 requires the boundedness of the copula density in Assumption A1.2.

It is true that many common families of copula are unbounded at the corners, Clayton, Gumbel, Gaussian and

Student copulas being important examples. However, following Bouezmarni, Rombouts, and Taamouti (2012),

we can show that the result in Theorem 1 is still valid for unbounded copula densities, if the following condition

is fulfilled:

c(g1, g2, g3) = O

 1√∏3
j=1 gj(1− gj)

 , (13)

where c(g1, g2, g3) is the copula density function of (Yt, Yt−1, Xt−1). Condition (13) is satisfied by many common

copula densities, see for example Omelka, Gijbels, and Veraverbek (2009).

Finally, the following proposition establishes the consistency of the TBE test in Theorem 1 [see the proof of

Proposition 2 in Appendix 10].

Proposition 2 Under Assumptions (A1.1)-(A1.3), the test defined in Theorem 1 is consistent if∫
log

{
c(u, v, w)

c(u, v)c(u,w)

}
dC(u, v, w) > 0,

where c (u, v, w) , c (u, v) and c (u,w) are the copula densities of (Yt, Yt−1, Xt−1), (Yt−1, Xt−1), and (Yt, Xt−1),

respectively, and C(u, v, w) is the copula distribution function of (Yt, Yt−1, Xt−1).

6 Measuring causality between high dimensional variables

Let
{
(Xt, Yt) ∈ Rd1 × Rd2≡ Rd, t = 0, ..., T

}
be a sample of stationary stochastic process in Rd, where d = d1+d2,

for d1, d2 ≥ 1, with joint distribution function FXY and density function fXY . For (Xt, Yt) a Markov process of

order p, the null hypothesis of Granger non-causality from vector X to vector Y is given by

HX→Y
0 : f(yt | x

¯t−1, y
¯t−1

) = f(yt | y
¯t−1

), 1 ≤ t ≤ T, (14)
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where x
¯
t−1 = {xt−s, 1 ≤ s ≤ p} , y

¯
t−1 = {yt−s, 1 ≤ s ≤ p} , with yt = (y1,t, . . . , yd2,t) and xt = (x1,t, . . . , xd1,t).

Similarly, the null hypothesis of Granger non-causality from vector Y to vector X is given by

HY→X
0 : f(xt | y

¯t−1
, x
¯t−1) = f(xt | x

¯t−1), 1 ≤ t ≤ T, (15)

where y
¯
t−1 and x

¯
t−1 are defined above.

Moreover, the instantaneous non-causality between X and Y is characterized by the following equivalent null

hypotheses:

HY↔X
0 : f(yt | x

¯t
, y
¯t−1

) = f(yt | x
¯t−1, y

¯t−1
), 1 ≤ t ≤ T,

HY↔X
0 : f(xt | x

¯t−1, y
¯t
) = f(xt | x

¯t−1, y
¯t−1

), 1 ≤ t ≤ T, (16)

HY↔X
0 : f(yt, xt | x

¯t−1, y
¯t−1

) = f(yt | x
¯t−1, y

¯t−1
)f(xt | x

¯t−1, y
¯t−1

), 1 ≤ t ≤ T,

where x
¯
t = {xt−s, 0 ≤ s ≤ p} and y

¯
t = {yt−s, 0 ≤ s ≤ p} .

As in Section 4, we define the following copula-based measure of Granger causality from vector X to vector

Y :

C(X → Y ) = E

{
log

(
c
(
F̄Y(Yt), F̄Y

¯
(Y
¯ t−1), F̄X

¯
(X
¯ t−1)

)
c
(
F̄Y

¯
(Y
¯ t−1)

)
c
(
F̄Y

¯
(Y
¯ t−1), F̄X

¯
(X
¯ t−1)

)
c
(
F̄Y(Yt), F̄Y

¯
(Y
¯ t−1)

))} ,

where, for simplicity of notation, we denote F̄Y
¯
(Y
¯
t−1) ≡ (FY1(Y1,t−1), ..., FYd2

(Yd2,t−1), ...., FY1(Y1,t−p), ..., FYd2
(Yd2,t−p)),

F̄Y(Yt) ≡ (FY1(Y1,t), ..., FYd2
(Yd2,t)) and F̄X

¯
(X
¯
t−1) ≡ (FX1(X1,t−1), ..., FXd1

(Xd1,t−1), ..., FX1(X1,t−p), ..., FXd1
(Xd1,t−p)),

with FQi(.) for Q = X,Y, is the marginal distribution function of the i-th element of the random vector Q, and

c
(
F̄Y(.), F̄Y

¯
(.), F̄X

¯
(.)
)
, c
(
F̄Y

¯
(.), F̄X

¯
(.)
)
, c
(
F̄Y(.), F̄Y

¯
(.)
)
, and c

(
F̄Y

¯
(.)
)
are the copula densities of (Yt, Y

¯
t−1,

X
¯
t−1), (Y

¯
t−1, X

¯
t−1), and (Yt, Y

¯
t−1), Y

¯
t−1, respectively. The copula-based measure of Granger causality from

vector Y to vector X can be defined in a similar way.

Now, the copula-based measure of the instantaneous Granger causality between vectors X and Y is give by:

C(X ↔ Y ) = E

{
log

(
c
(
F̄ Y (Yt), F̄X(Xt), F̄X

¯
(X
¯ t−1), F̄Y

¯
(Y
¯ t−1)

)
c
(
F̄X

¯
(X
¯ t−1), F̄Y

¯
(Y
¯ t−1)

)
c
(
F̄ Y (Yt), F̄X

¯
(X
¯ t−1), F̄Y

¯
(Y
¯ t−1)

)
c
(
F̄X(Yt), F̄X

¯
(X
¯ t−1), F̄Y

¯
(Y
¯ t−1)

) )} ,

where F̄X(Xt) = (FX1(X1,t), ..., FXd1
(Xd1,t)), and F̄ Y (Yt), F̄Y

¯
(Y
¯
t−1), and F̄X

¯
(X
¯
t−1) are defined as above,

c
(
F̄ Y (.), F̄X(.), F̄X

¯
(.), F̄Y

¯
(.)
)
, c
(
F̄ Y (.), F̄X

¯
(.), F̄Y

¯
(.)
)
, c
(
F̄X(.), F̄X

¯
(.), F̄Y

¯
(.)
)
, and c

(
F̄X

¯
(.), F̄Y

¯
(.)
)
are the cop-

ula densities of (Yt, Xt,X
¯
t−1,Y

¯
t−1), (Yt,X

¯
t−1,Y

¯
t−1), (Xt,X

¯
t−1,Y

¯
t−1) and (X

¯
t−1,Y

¯
t−1), respectively.

Following Section 5.1, an estimator of Granger causality measure from vector X to vector Y is given by

Ĉ(X → Y ) =
1

T

T∑
t=1

log

 ĉ
(
F̄Y,T(yt), F̄Y

¯
,T(y

¯t−1
), F̄X

¯
,T(x

¯t−1)
)
ĉ
(
F̄Y

¯
,T(y

¯t−1
)
)

ĉ
(
F̄Y

¯
,T(y

¯t−1
), F̄X

¯
,T(x

¯t−1)
)
ĉ
(
F̄Y,T(yt), F̄Y

¯
,T(y

¯t−1
)
)
 , (17)

where F̄Y,T(yt), F̄Y
¯
,T(y

¯
t−1), and F̄X

¯
,T(x

¯
t−1) with subscript T is to indicate the empirical analog of the terms

F̄Y(yt), F̄Y
¯
(y
¯
t−1), and F̄X

¯
(x
¯
t−1) defined above, and ĉ

(
F̄Y,T(yt), F̄Y

¯
,T(y

¯t−1
), F̄X

¯
,T(x

¯t−1)
)
, ĉ
(
F̄Y

¯
,T(y

¯t−1
), F̄X

¯
,T(x

¯t−1)
)
,

ĉ
(
F̄Y,T(yt), F̄Y

¯
,T(y

¯t−1
)
)
, and ĉ

(
F̄Y

¯
,T(y

¯t−1
)
)
are the Bernstein copula density estimators of

c
(
F̄Y(yt), F̄Y

¯
(y
¯t−1

), F̄X
¯
(x
¯t−1)

)
, c
(
F̄Y

¯
(y
¯t−1

), F̄X
¯
(x
¯t−1)

)
, c
(
F̄Y(yt), F̄Y

¯
(y
¯t−1

)
)
, and c

(
F̄Y

¯
(y
¯t−1

)
)
. To prove
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the consistency of the estimator in (17), similar assumptions to the ones in Section 5.1 are required. We consider

a set of standard assumptions on the stochastic process and bandwidth parameter of the Bernstein copula density

estimator.

Assumptions on the stochastic process

(A2.1)
{
(Xt, Yt) ∈ Rd1 × Rd2 ≡ Rd, t ≥ 0

}
is a strictly stationary β-mixing process with coefficient β (l) =

O(ρl), for some 0 < ρ < 1.

(A2.2) The copula density c
(
F̄Y(.), F̄Y

¯
(.), F̄X

¯
(.)
)
is assumed to be twice continuously differentiable on (0, 1)d2+pd

and bounded away from zero and bounded above.

Assumptions on the bandwidth parameter

(A2.3) We assume that for k →∞, T k−((d2+pd)/2)−2 → 0 and T−1/2k(d2+pd)/4 ln(T )→ 0.

We now state the consistency of the nonparametric estimator in (17). The proof of Proposition 3 below is

similar to the one of Proposition 1, thus we decided to do not include it in the paper.

Proposition 3 Under Assumptions (A.2.1)-(A.2.3), the estimator Ĉ(X → Y ) defined in (17) converges almost

surely to the true causality measure C(X → Y ).

We wish now to test the following null hypothesis:

H0 : C(X → Y ) = 0.

Under the conditions (A2.1)-(A2.3), the following theorem provides the asymptotic normality of the estimator

in (17) under the null H0 [see the proof of Theorem 2 in Appendix 10].

Theorem 2 Under Assumptions (A2.1)-(A2.3) and H0, we have

TBE = T k−(d2+pd)/2
(
2Ĉ(X → Y )− T−1 k(d2+pd)/2 ξ

)
/σ

d→ N (0, 1),

where σ =
√
2 (π/4)(d2+pd)/2 and

ξ = −2−(d2+pd)π(d2+pd)/2 + 2−(pd2+d2)π(pd2+d2)/2k−(pd1)/2 + 2−pdπpd/2k−d2/2 + 2(2−pd2 − 1)πpd2/2k−(pd1+d2)/2.

The proof of Theorem 2 is similar to the one of Theorem 1, thus in Appendix 10 we only computed the bias

terms. For a given significance level α, we reject the null hypothesis H0 when TBE > zα, where zα is the critical

value from the standard normal distribution. To perform the test and make our decision, we can also use the

smoothed bootstrap technique as in the bivariate case [see Section 5.2].
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7 Monte Carlo simulations

Here we examine the finite sample bias in the nonparametric estimation of Granger causality measures and we

suggest a bootstrap bias-corrected estimator. We also investigate the finite sample properties (size and power)

of the TBE test in Theorem 1.

7.1 Bootstrap bias-corrected estimator of Granger causality measures

7.1.1 Bootstrap bias-correction

We first use bootstrap to compute the small sample bias in the nonparametric estimator of Granger causality

measure. Thereafter, we subtract the bias term to obtain a bootstrap bias-corrected estimate. Since a simple

resampling from the empirical distribution will not conserve the conditional dependence structure in the data, see

for example Remark 2.1 in Singh (1981), we suggest to use the local smoothed bootstrap proposed by Paparoditis

and Politis (2000).

Hereafter, we discuss the implementation of local smoothed bootstrap. For simplicity of exposition, we

consider the case of univariate Markov processes of order one. The method is easy to implement in the following

five steps:

(1) We draw the sample of Y ∗
t−1 using the sum

Y ∗
t−1 = Y +

t−1 + hηt−1,

where h is a bandwidth parameter and the random variables Y +
t−1 and ηt−1 are drawn from the empirical

distribution of Yt−1 and a kernel density, L, respectively. In our simulations, L is given by a univariate normal

density and h is computed using the standard rule of thumbs. Similar approach is used to simulate X∗
t−1;

(2) Conditional to Y ∗
t−1, we draw Y ∗

t andX∗
t−1 independently. The sample ofX∗

t−1 conditional to Y
∗
t−1 is generated

from the kernel estimator given by formula (2.5) of Paparoditis and Politis (2000). Similar approach is used to

draw X∗
t and Y ∗

t−1 independently conditional to X∗
t−1;

(3) Based on the bootstrap sample, we compute the bootstrap Granger causality measure Ĉ∗(X → Y );

(4) We repeat the steps (1)-(3) B times so that we obtain Ĉ∗
j (X → Y ), for j = 1, ..., B.

(5) We approximate the bias term Bias =E[Ĉ(X → Y ) − C(X → Y )] by the corresponding bootstrap bias

Bias∗ =E∗[Ĉ∗(X → Y ) − Ĉ(X → Y )], where E∗ is the expectation based on the bootstrap distribution of

Ĉ∗(X → Y ), and Ĉ(X → Y ) is the estimate of C(X → Y ) using the original sample. This suggests the bias

estimate

B̂ias
∗
=

1

B

B∑
j=1

Ĉ∗
j (X → Y )− Ĉ(X → Y ).

Hence, a bootstrap bias-corrected estimator of measure of Granger causality from X to Y is given by

Ĉ∗
BC(X → Y ) = Ĉ(X → Y )− B̂ias

∗
. (18)
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In practice and especially when the true value of causality measure is zero or close to zero, it is possible that

for some bootstrap samples the quantity Ĉ∗
BC(X → Y ) becomes negative. In this case we follow Dufour and

Taamouti (2010) and suggest to impose the following non-negativity truncation:

Ĉ∗
BC(X → Y ) = max

{
Ĉ∗
BC(X → Y ), 0

}
. (19)

We can similarly define the bootstrap bias-corrected estimators for measures of Granger causality from Y to X

and of the instantaneous causality between X and Y .

To achieve the validity of the above local smoothed bootstrap, we need the following additional assumptions

on the kernel L and bandwidth h [see Paparoditis and Politis (2000)]:

Assumptions on bootstrap kernel and bandwidth

(A3.1) The kernel L is a product kernel of a bounded symmetric kernel density l.

(A3.2) l is r times continuously differentiable such that
∫
ujl(r)(u)du = 0 for j = 0, ..., r−1 and

∫
url(r)(u)du <

∞, where l(r) is the rth-derivative of l.

(A3.3) As T →∞, h→ 0, and Th3+2r/(lnT )γ → C > 0, for some γ > 0.

7.1.2 Simulation study

We run a Monte Carlo experiment to investigate possible bias and bias-correction in the nonparametric estimation

of Granger causality measures. We consider two groups of data generating processes (DGPs) that represent linear

and nonlinear regression models with different forms of heteroskedasticity. Table 1 presents the DGPs used in our

simulation study and its last column summarizes the directions of causality and non-causality in these DGPs.

The first three DGPs of Y, DGP1 to DGP8 of X, and DGP9 of (X,Y ) are used to evaluate the bias in the

nonparametric estimation. In these DGPs the true values of causality measures are known (equal to zero) or can

be easily computed. For example, in the first three DGPs of X and Y, we have X and Y are by construction

independent: Y does not cause X and X does not cause Y . Thus, we expect that the true measures of causality

in these DGPs will be equal to zero. However, the causality from X to Y exists in DGP4 to DGP9 of Y , thus

the true measures of causality from X to Y in these DGPs will not be equal to zero.

The nonparametric estimators of causality measures depend on the bandwidth parameter k, which is needed

to estimate the copula densities. Here we take k equal to the integer part of T 1/2, but in Section 7.2 we

consider various values of k to evaluate the sensitivity of the TBE test. To keep the computing time in our

simulations reasonable, we consider two sample sizes T = 200, 300. We perform 250 bootstrap replications

and 500 simulations to compute the bias terms and the average values of the bootstrap bias-corrected causality

measures. Finally, in the simulations the data are rescaled such that the variables have zero mean and variance

equal to one.
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Table 1: Data-generating processes (DGPs) used in the simulations

DGPs Variables of Interest Direction of Causality in the DGP

Yt Xt

DGP1 ε1t white noise ε2t white noise X 9 Y, Y 9 X

DGP2 Yt = 0.5Yt−1 + ε1t Xt = 0.5Xt−1 + ε2t X 9 Y, Y 9 X

DGP3 Yt = (0.01 + 0.5Y 2
t−1)

0.5ε1t Xt = 0.5Xt−1 + ε2t X 9 Y, Y 9 X

DGP4 Yt = 0.5Yt−1 + 0.5Xt−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y, Y 9 X

DGP5 Yt = 0.5Yt−1 + 0.5X2
t−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y, Y 9 X

DGP6 Yt = 0.5Yt−1Xt−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y, Y 9 X

DGP7 Yt = 0.5Yt−1 + 0.5Xt−1ε1t Xt = 0.5Xt−1 + ε2t X → Y, Y 9 X

DGP8 Yt =
√
h1,tε1t Xt = 0.5Xt−1 + ε2t X → Y, Y 9 X

h1,t = 0.01 + 0.5Y 2
t−1 + 0.25X2

t−1

DGP9

 Yt

Xt

 =

 0.2

0.3

 +

 0.1 0.8

0.7 0.15

 Yt−1

Xt−1


+

 εYt

εXt

 , with εYt

εXt

 ∼ N

 0

0

 ,

 1 0.2

0.2 1


X → Y, Y → X, Y ←→ X

Note: This table summarizes the data generating processes that we consider in the simulation study to investigate the

bias in the nonparametric estimation of Granger causality measures and to examine the finite sample properties (size and

power) of nonparametric test for these causality measures. We simulate (Yt, Xt), for t = 1, . . . , T, under the assumption

that (ε1t, ε2t)
′ are i.i.d from N(0, I2). The last column of the table summarizes the directions of causality and non-causality

in each DGP. The symbols “→” and “9” refer to Granger causality and Granger non-causality, respectively.
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Table 2: Bootstrap bias-corrected estimation of Granger causality measures

Measure DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

Sample Size: T = 200

Y → X No No No No No No No No Yes

True C(Y → X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4702

Bias-Corrected Ĉ∗
BC(Y → X) 0.0000

(0.0147)
0.0000
(0.0146)

0.0000
(0.0147)

0.0000
(0.0143)

0.0000
(0.0140)

0.0000
(0.0144)

0.0002
(0.0146)

0.0000
(0.0140)

0.2253
(0.0139)

X → Y No No No Yes Yes Yes Yes Yes Yes

True C(X → Y ) 0.0000 0.0000 0.0000 — — — — — 0.3819

Bias-Corrected Ĉ∗
BC(X → Y ) 0.0016

(0.0147)
0.0000
(0.0130)

0.0002
(0.0201)

0.0957
(0.0142)

0.1818
(0.0143)

0.1024
(0.0149)

0.0984
(0.0145)

0.0580
(0.0150)

0.2528
(0.0139)

X ←→ Y — — — — — — — — Yes

True C(X ←→ Y ) — — — — — — — — 0.0408

Bias-Corrected Ĉ∗
BC(X ←→ Y ) — — — — — — — — 0.056

(0.012)

Sample Size: T = 300

Y → X No No No No No No No No Yes

True C(Y → X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4702

Bias-Corrected Ĉ∗
BC(Y → X) 0.0012

(0.0085)
0.0000
(0.0078)

0.0000
(0.0081)

0.0000
(0.0076)

0.0000
(0.0083)

0.0000
(0.0078)

0.0000
(0.0061)

0.0000
(0.0078)

0.2447
(0.0076)

X → Y No No No Yes Yes Yes Yes Yes Yes

True C(X → Y ) 0.0000 0.0000 0.0000 — — — — — 0.3819

Bias-Corrected Ĉ∗
BC(X → Y ) 0.0009

(0.0087)
0.0000
(0.0040)

0.0003
(0.0097)

0.0993
(0.0077)

0.2069
(0.0078)

0.1094
(0.0089)

0.1150
(0.0082)

0.0637
(0.0087)

0.2769
(0.0077)

X ←→ Y — — — — — — — — Yes

True C(X ←→ Y ) — — — — — — — — 0.0408

Bias-Corrected Ĉ∗
BC(X ←→ Y ) — — — — — — — — 0.054

(0.0093)

Note: This table shows the average values of bootstrap bias-corrected (Ĉ∗
BC(Y → X), Ĉ∗

BC(X → Y )) estimates of causality

measures from Y to X (C(Y → X)) and from X to Y (Ĉ(X → Y )). “True” indicates the true value of causality measure,

“Bias-Corrected” indicates the average value of the estimate of causality measure after bootstrap bias correction, and “—”

means that the true value of causality measure is unknown. Equation (18) is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal to 500

and 250, respectively. ”No” indicates non-causality in the true DGP (given in the first row of the table) and ”Yes” means

that there is causality in the true GDP. The data generating processes (DGPs) in the first row of the table are described

in detail in Table 1. In parenthesis is the standard deviation of the estimated values.
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The simulation results are presented in Table 2. From this, we see that the nonparametric estimators of

measures are biased, possibly due to the finite sample bias in the nonparametric estimators of Bernstein copula

densities. Interestingly, we find that there is a big improvement when one uses the bootstrap bias-corrected

estimators.

7.2 Empirical size and power of TBE test

We study the finite sample performance of nonparametric test proposed in Theorem 1. We examine its size and

power properties using the data generating processes (DGPs) introduced in Section 7.1.2 [see Table 1]. The first

three DGPs of Y and DGP1 to DGP8 of X are used to investigate the size property, since in these DGPs the null

hypothesis of non-causality is satisfied. However, in DGP4 to DGP9 of Y and GDP9 of X the null hypothesis is

not satisfied, and therefore these GDPs serve to illustrate the power of the test.

Recall that Theorem 1 is valid only asymptotically. For finite samples and in order to improve the size and

power of the proposed nonparametric test, bootstrap is used to compute the test statistics and p-values. As we

mentioned in Section 7.1.2, a simple bootstrap, i.e. resampling from the empirical distribution, will not conserve

the conditional dependence structure in the data, and hence sampling under the null hypothesis is not guaranteed.

To prevent this from occurring, we use the local smoothed bootstrap of Paparoditis and Politis (2000). From

the bootstrap causality measure Ĉ∗
j (X → Y ), as defined in Section 7.1.1, we compute the bootstrap test statistic

TBE∗
j , for j = 1, ..., B. The bootstrap p-value is computed as p∗ = B−1

∑B
j=1 1{TBE∗

j>TBE}. Then, for given

significance level α, we reject the null hypothesis if p∗ < α.

TBE test depends on the bandwidth parameter k, which is used to estimate the copula densities. In the

simulation study we take k equal to the integer part of δT 1/2, for δ = 1, 1.5, 2. To keep the computing time in

the simulations reasonable, we consider two sample sizes T = 200, 300 and B = 250 bootstrap replications with

resampling bandwidths chosen by the standard rule of thumb. Finally, we use 500 simulations to compute the

empirical size and power of the test.

The empirical size and power for the sample sizes 200 and 300 are given in Tables 3 and 4, respectively. For

5% and 10% significance levels and for both T = 200 and T = 300, we see that the TBE∗ test controls quite

well its size and has good power. For DGP1 the test tends to be slightly oversized and is conservative for DGP3,

DGP5 and DGP6. In most cases, the power is quite good and close to 100%.

8 Empirical applications

8.1 Stock market returns and exchange rates

The causal relationship between exchange rates and stock prices have been the focus of most economic literature

for quite some time. In the literature, there is no academic consensus about this relationship and the results

are somewhat mixed as to whether stock indexes lead exchange rates or vise versa. To examine those causal
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Table 3: Size and Power properties for sample size T = 200.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

T = 200, α = 5%

Y → X Size Size Size Size Size Size Size Size Power

c = 1 5.20 6.40 5.60 5.20 5.60 4.00 4.40 4.40 100

c = 1.5 6.00 6.00 4.00 4.80 3.20 3.60 4.00 3.20 100

c = 2 6.88 4.80 2.40 3.60 4.40 4.00 4.00 4.00 100

X → Y Size Size Size Power Power Power Power Power Power

c = 1 6.66 4.80 5.20 100 100 100 100 99.2 100

c = 1.5 6.40 4.80 5.60 100 100 98.8 100 99.2 100

c = 2 6.95 5.20 5.60 99.2 100 98.0 100 99.6 100

T = 200, α = 10%

Y → X Size Size Size Size Size Size Size Size Power

c = 1 8.00 10.00 10.80 8.80 8.40 5.60 10.00 10.40 100

c = 1.5 11.20 8.40 8.40 6.00 8.40 6.00 6.80 8.80 100

c = 2 13.20 8.00 7.60 6.40 7.60 6.40 9.20 10.00 100

X → Y Size Size Size Power Power Power Power Power Power

c = 1 10.80 10.80 9.60 100 100 100 100 99.6 100

c = 1.5 12.00 9.60 10.00 100 100 100 100 100 100

c = 2 13.40 8.80 9.60 100 100 99.2 100 99.6 100

Empirical size and power at the α level based on 500 replications. The sample size is

T=200 and the number of bootstrap resamples is B=250. The bandwidth k is the integer

part of cT 1/2.
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Table 4: Size and Power properties for sample size T = 300.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

T = 300, α = 5%

Y → X Size Size Size Size Size Size Size Size Power

c = 1 6.80 3.60 2.40 5.20 4.40 4.40 3.60 5.600 100

c = 1.5 7.20 3.60 2.40 6.00 2.00 2.40 3.20 5.600 100

c = 2 5.80 3.80 2.60 5.60 3.40 2.60 4.40 4.50 100

X → Y Size Size Size Power Power Power Power Power Power

c = 1 6.40 6.20 6.00 100 100 100 100 100 100

c = 1.5 7.60 3.60 6.80 100 100 100 100 100 100

c = 2 5.10 4.50 5.80 100 100 100 100 100 100

T = 300, α = 10%

Y → X Size Size Size Size Size Size Size Size Power

c = 1 12.40 5.20 6.00 9.20 7.20 8.40 6.80 10.40 100

c = 1.5 11.60 6.80 6.40 9.60 5.20 5.60 9.20 10.40 100

c = 2 10.90 7.40 6.90 10.20 6.30 7.50 10.10 9.80 100

X → Y Size Size Size Power Power Power Power Power Power

c = 1 10.80 10.40 11.60 100 100 100 100 100 100

c = 1.5 11.60 8.80 11.20 100 100 100 100 100 100

c = 2 10.50 10.20 11.20 100 100 100 100 100 100

Empirical size and power at the α level based on 500 replications. The sample size is

T=300 and the number of bootstrap resamples is B=250. The bandwidth k is the integer

part of cT 1/2.
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links, early studies were using simple correlations. Aggarwal (1981), using monthly data from 1974 to 1978,

found that there is a positive and significant correlation between US stock prices and the trade-weighted US

dollar that is equal to the average value of the U.S. dollar weighted by U.S. trade with its 46 largest trading

partners.2 Moreover, using monthly data from 1980 to 1986 on the US stock prices and the effective exchange

rate of the US dollar weighted against 15 other major currencies, Soenen and Henniga (1981) found that the

correlation is negative and statistically significant.3 Finally, Soenen and Aggarwal (1989) found mixed results

among industrialized countries.

Many recent studies have used more sophisticated econometric techniques to study stock prices-exchange

rates relationships. Bahmani-Oskooee and Sohrabian (1992) using cointegration models along with Granger

causality tests, found that there is bidirectional causality between stock prices measured by S&P 500 index and

the effective exchange rate of the dollar, at least in the short-run. Since Bahmani-Oskooee and Sohrabian (1992)

several papers have examined different directions of causality between stock prices and exchange rates using

these econometric technique and data from both industrial and developing countries. The direction of causality,

similar to earlier correlation studies, appears mixed. Mok (1993), using ARIMA approach and Granger causality

tests, found that the Hong Kong market efficiently incorporated much of exchange rate information in its price

changes both at daily market close and open. Abdalla and Murinde (1997) found out that the results for India,

Korea and Pakistan suggest that exchange rates Granger cause stock prices, which is consistent with earlier study

by Aggarwal (1981). But, for the Philippines, they found that the stock prices lead the exchange rates. Granger,

Huang, and Yang (2000), using unit root and cointegration models, found that data from South Korea are in

agreement with the traditional approach. That is, exchange rates lead stock prices. On the other hand, using

data of the Philippines, they found that stock prices lead exchange rates with negative correlation. Further,

they found that the data from Hong Kong, Malaysia, Singapore, Thailand, and Taiwan indicate strong feedback

relations, whereas that of Indonesia and Japan fail to reveal any recognizable pattern. Finally, Nieh and Lee

(2001), first found that there is no long-run significant relationship between stock prices and exchange rates in

the G-7 countries. This result interfaces with Bahmani-Oskooee and Sohrabian’s (1992) finding, but contrasts

with the studies that suggest that there is a significant relationship between these two financial variables. Second,

they found that the short-run significant relationship has only been found for one day in certain G-7 countries.

Most of the conclusions on the relationship between exchange rates and stock prices were obtained using

linear mean regression-based tests. Although such tests have high power in uncovering linear causal relations,

their power against nonlinear causal relations can be very low [see Bouezmarni, Rombouts, and Taamouti (2012)

and Bouezmarni and Taamouti (2011), and references therein]. Hence, traditional Granger causality tests might

2In Aggarwal’s study stock prices are given by the prices of New York Exchange Index (NYSE), the Standard and Poor’s 500 Stock

Index (S&P 500), and the Department of Commerce Index of 500 Stocks (DC 500). Furthermore, the weights used to compute the

variable trade-weighted US dollar represent each country’s share of the total trade (measured by the sum of imports plus exports).
3In Soenen and Henniga’s study stock prices are given by the prices of New York Exchange Index (NYSE) and the Standard and

Poor’s 500 Stock Index (S&P 500).
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overlook a significant nonlinear relation between stock prices and exchange rates. In this section, we apply our

nonparametric Granger causality measures to reexamine and quantify the causal relationship between the two

financial variables in a broader framework that allows us to leave free the specification of the underlying model.

8.1.1 Data description

The data sets consist of monthly observations on S&P 500 Index and US/Canada, US/UK and US/Japen

exchange rates and come from St. Louis Fed (S&P 500 Index) and Yahoo Finance (exchange rates). The sample

runs from January 1990 to January 2011 for a total of 253 observations, see Figure 1 for the series in growth

rates. We perform Augmented Dickey-Fuller tests (hereafter ADF-tests) for nonstationarity of the logarithmic
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Figure 1: S&P 500 stock returns and growth rates of us/canada, us/uk, and us/japan exchange rates. The sample runs

from January 1990 to January 2011 for a total of 253 observations.

price and exchange rates and their first differences. Using ADF -tests with only an intercept and with both a
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trend and an intercept, the results show that all variables in logarithmic form are nonstationary. However, their

first differences are stationary. The test statistics with both a trend and an intercept for the first differences of

log price and log US/Canada, US/UK and US/Japen exchange rates are −14.666, −12.164, −11.390, −11.666,

respectively, and the corresponding 5% critical value is −3.427. Using ADF -tests with only intercept leads to

the same conclusions. Thus, based on the above stationarity tests we model the first difference of logarithmic

price and exchange rates rather than their level. Consequently, the causality relations have to be interpreted in

terms of growth rates.

8.1.2 Results and comments

We have applied the nonparametric estimator and TBE test of copula-based Granger causality measures to

quantify the causality between stock market return, say r, and us/canada, us/uk and us/japan exchange rates.

The empirical results are reported in Table 5 where the zero-values (0.0000) of the causality measure estimates

are due to the non-negative truncation given by Equation (19).

In Panel A of table 5 we see that the estimates of measures of Granger causality from us/canada and us/uk

exchange rates to stock market returns are equal to zero. This indicates that the causal effects from us/canada

and us/uk exchange rates to stock returns are economically weak. These effects are also statistically insignificant

at 5% significance level. Furthermore, we find that there is a causal effect from us/japan exchange rate to stock

market returns. This effect is statistically significant at 5% significance level.

Panel B of table 5 shows that the causal effects of stock market returns on us/uk and us/japan exchange

rates are economically weak and statistically insignificant at 5% significance level. We also find that there is

a causal effect from stock market returns to us/canada exchange rate, which is statistically significant at 5%

significance level. Finally, it seems that the impact of stock market returns on exchange rates is more apparent

than the impact of exchange rates on stock market returns.

8.2 Comparing stock return predictability using Dividend-Price Ratio, VIX and Liquidity

Many empirical studies have investigated whether stock excess returns can be predictable. The econometric

method used in this context is an ordinary least squares regression of stock returns onto the past of some

financial variables. Fama and French (1988) argue that using the lagged dividend-price ratio as a predictor

variable has a significant effect on stock returns. Campbell and Shiller (1988) find that the lagged dividend-price

ratio together with the lagged dividend growth rate have a significant predictive power on stock returns. Since the

publication of Fama and French (1988) and Campbell and Shiller (1988), the question of whether stock returns

are predictable or not has attracted much more attention from economists; for review see Lewellen (2004). The

finding of Campbell and Shiller (1988) and Fama and French (1988) was confirmed by subsequent studies and

considered to be a new stylized fact by Cochrane (1999) and Campbell (1999).

In this section, we use the nonparametric-based Granger causality measures to quantify and compare the
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Table 5: Measures of Causality between Exchange Rates to Stock Returns

Direction of Causality Bandwidth k = δT 1/2 Bias-Corrected Estimate of Measure p-values (TBE test)

Panel A

us/canada→ r

δ = 1 0.0019 0.5562

δ = 1.5 0.0000 0.6370

δ = 2 0.0000 0.7600

us/uk→ r

δ = 1 0.0000 0.9601

δ = 1.5 0.0000 0.9245

δ = 2 0.0000 0.7101

us/japan→ r

δ = 1 0.0293 0.0025

δ = 1.5 0.0345 0.0051

δ = 2 0.0347 0.0226

Panel B

r→ us/canada

δ = 1 0.0357 0.0004

δ = 1.5 0.0330 0.0090

δ = 2 0.0284 0.0501

r→ us/uk

δ = 1 0.0105 0.2353

δ = 1.5 0.0095 0.3000

δ = 2 0.0097 0.3640

r→ us/japan

δ = 1 0.0083 0.2700

δ = 1.5 0.0071 0.4130

δ = 2 0.0082 0.4480

Note: This table reports the results of the bootstrap bias-corrected estimation and p-values from TBE test for measures

of Granger causality from exchange rates (us/canada, us/uk and us/japan) to stock returns (Panel A) and from stock

returns to exchange rates (Panel B).
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predictive power of three financial variables (dividend-price ratio, VIX and liquidity factor) for stock market

returns. The nonparametric approach doesn’t impose any restriction on the model linking the dependent variable

(here stock return) to the independent variables (dividend-price ratio, VIX or liquidity factor). In addition to

dividend-price ratio, we use VIX and liquidity factor of Pastor and Stambaugh (2003) to predict stock returns.

Bollerslev, Tauchen and Zhou (2009) show that the difference between VIX and realized variation, called variance

risk premium, is able to explain a non-trivial fraction of the time series variation in post 1990 aggregate stock

market returns, with high (low) premia predicting high (low) future returns. Further, Pastor and Stambaugh

(2003) find that expected stock returns are related cross-sectionally to the sensitivities of returns to fluctuations

in aggregate liquidity. They find that over a 34-year period, the average return on stocks with high sensitivities

to liquidity exceeds that for stocks with low sensitivities by 7.5% annually, adjusted for exposures to the market

return as well as size, value, and momentum factors.

8.2.1 Data description

We consider monthly aggregate S&P 500 composite index over the period January 1996 to September 2008 (153

trading months). Our empirical analysis is based on the logarithmic return on the S&P 500 in excess of the 3-

month T-bill rate. The excess returns are annualized. We also consider the following monthly financial variables:

dividend-price ratio, VIX and liquidity factors of Pastor and Stambaugh (2003). The monthly dividend-price

ratio is computed from the Center for Research in Security Prices (CRSP) indices for the S&P 500 universe

which contains monthly index files with value-weighted returns, with and without dividends. We also consider

monthly data for VIX index. The VIX volatility index is an indication of the expected volatility of the S&P 500

stock index for the next thirty days. The VIX is provided by the Chicago Board Options Exchange (CBOE)

in the US, and is calculated using the near term S&P 500 options markets. It is based on the highly liquid S&

P500 index options along with the “model-free” approach. Finally, we consider the liquidity factor of Pastor and

Stambaugh (2003). This factor can be downloaded from Stambaugh’s website.

8.2.2 Results and comments

Table 6 reports the estimates and the corresponding p-values from TBE test of measures of Granger causality

from dividend-price ratio, VIX and liquidity factor to stock market returns. The results show that both dividend-

price ratio and VIX help to predict stock market returns. The estimates of Granger causality from dividend-price

ratio to stock returns and from VIX to stock returns are statistically significant at the conventional levels of

significance. The comparison of Granger causality measures estimates indicates that VIX has more predictive

content than the dividend-price ratio. Similarly, we can say that the impact of VIX on stock returns is “much”

stronger than the impact of dividend-price ratio on stock returns. Finally, it seems that the liquidity factor

of Pastor and Stambaugh (2003) can not help to predict stock returns. Its predictive content is weak and is

statistically insignificance. Hence, using this liquidity factor will not help to predict the time series of stock
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Table 6: Measures of Causality between stock return and dividend-price Ratio, VIX and liquidity

Direction of Causality Bandwidth k = δT 1/2 Bias-Corrected Estimate of Measure p-values (TBE test)

Dividend-Price Ratio → r

δ = 1 0.0236 0.0735

δ = 1.5 0.0355 0.0560

δ = 2 0.0401 0.0320

Volatility Index → r

δ = 1 0.0504 0.0001

δ = 1.5 0.0516 0.0012

δ = 2 0.0501 0.0095

Liquidity→ r

δ = 1 0.0000 0.7230

δ = 1.5 0.0108 0.4320

c = 2 0.0184 0.2317

Note: This table reports the results of the bootstrap bias-corrected estimation and p-values from TBE test for measures

of Granger causality from dividend-price ratio, VIX and liquidity factor to stock market returns.

market returns. Using cross-section data, Pastor and Stambaugh (2003) argue that this liquidity factor helps to

explain the cross-section of individual stock returns: they find that over a 34-year period, the average return

on stocks with high sensitivities to liquidity exceeds that for stocks with low sensitivities by 7.5% annually. To

conclude, liquidity factors explains the variation in the cross-section of individual stock returns, but not the

variation in the market stock returns (S&P 500).

9 Conclusion

We proposed a nonparametric estimator and a nonparametric test for conditional density based Granger causality

measures that quantify linear and nonlinear causality between random variables. We first showed that the

Granger causality measures can be rewritten in terms of copula densities. Thereafter, we proposed consistent

nonparametric estimators for these Granger causality measures based on consistent nonparametric estimators

of copula densities. We proved that the nonparametric estimators of the measures are asymptotically normally

distributed and we discussed the validity of a local smoothed bootstrap that can be used in finite sample settings

to compute bootstrap bias-corrected estimators and build tests for Granger causality measures. A simulation

study revealed that the bootstrap bias-corrected estimator of causality measures behaves well and that the test

has quite good finite sample properties for a variety of typical data generating processes and different sample sizes.

Finally, we illustrated the practical relevance of nonparametric causality measures by quantifying the Granger

25



causality between S&P500 Index returns and many exchange rates: US/Canada, US/UK and US/Japen exchange

rates. We also compared the predictive content of dividend-price ratio, VIX and liquidity factor for stock market

returns.

10 Appendix: Proofs

This Appendix provides the proofs of the theoretical results developed in Sections 5-6. Except for the proof

of Proposition 1, most of the rest of the proofs here are inspired from the paper Bouezmarni, Rombouts, and

Taamouti (2012).

Proof of Proposition 1:

Put ξt =
(
F Yt(yt), F Yt−1(yt−1), FXt−1(xt−1)

)
and ξt,T =

(
F Yt,T (yt), F Yt−1,T (yt−1), FXt−1,T (xt−1)

)
. Using Taylor

expansion and the fact that |ξt,T − ξt| = OP (T
−1/2) uniformly, we obtain

log(ĉ(ξt,T )) = log(ĉ(ξt)) +OP (T
−1/2). (20)

Second, using Taylor again and the fact that |ĉ(ξt)− c(ξt)| = OP (k
−1 + T−1/2k3/4 ln(T )) uniformly [see Bouez-

marni, Rombouts, and Taamouti (2010)], we have

log(ĉ(ξt)) = log(ĉ(ξt)) +OP (k
−1 + T−1/2k3/4 ln(T )). (21)

From (20) and (21), we obtain

Ĉc(X → Y ) =
1

T

T∑
t=1

{
log

(
c
(
F Yt(Yt), F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
F Yt−1(Yt−1), FXt−1(Xt−1)

)
c
(
F Yt(Yt), FXt−1(Xt−1)

))}+OP (η(k, T )),

where η(k, T ) = T−1/2+ k−1+T−1/2k3/4 ln(T ). Hence, the results of Proposition 1 can be deduced from the law

of large numbers.

Proof of Theorem 1: In what follows, F̄ζ(.) (F̄ζ,T (.)) denote the distribution function of ζ (resp. the empirical

distribution function of ζ ), with ζ is either Y , Y
¯

or X
¯
. Also, put Gt = (F̄Y (Yt), F̄Y

¯ t
(Y
¯
t−1), F̄X

¯
(X
¯
t−1)), Ut =

(F̄Y (Yt), F̄Y
¯
(Y
¯
t−1)), and Vt = (F̄Y

¯
(Y
¯
t−1), F̄X

¯
(X
¯
t−1)). Since

ĉ(F̄Y,T (y), F̄Y
¯
,T (y

¯
), F̄X

¯
,T (x

¯
)) = ĉ(F̄Y (y), F̄Y

¯
(y
¯
), F̄X

¯
(x
¯
)) +OP (T

−1),

uniform in (0, 1)d, studding the asymptotic distribution of Ĉc(X → Y ) reduces to the study of

H(ĉ, Ĉ) :=
1

T

T∑
t=1

log

{
ĉ(Gt)

ĉ(Ut)ĉ(Vt)

}
.

Let first consider H(ĉ, C) :=
∫
log
{

ĉ(u,v,w)
ĉ(u,v)ĉ(u,w)

}
dC(u, v, w). Using Taylor expansion, we obtain

H(ĉ, C) ≈
∫ (

ĉ(u, v, w)

ĉ(u, v)ĉ(u,w)
− 1

)
dC(u, v, w)− 1

2

∫ (
ĉ(u, v, w)

ĉ(u, v)ĉ(u,w)
− 1

)2

dC(u, v, w)

+
1

6

∫ (
ĉ(u, v, w)

ĉ(u, v)ĉ(u,w)
− 1

)3

dC(u, v, w)

= I1 + I2 + I3 ::: (say).
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Define ϕ(α) = ϕ3(α)
ϕ1(α)ϕ2(α)

− 1, where

ϕ1(α) = c(u, v) + αc∗(u, v), ϕ2(α) = c(u,w) + αc∗(u,w), andϕ3(α) = c(u, v, w) + αc∗(u, v, w),

with c∗(u, v, w), c∗(u, v) and c∗(u,w) being functions in Γi, for i = 1, 2 and 3 ,respectively, and Γi is a set defined

as

Γi =

{
γ : [0, 1]qi → R, γ is bounded,

∫
γ = 0

}
, : with : q1 = 3, : and : q2 = q3 = 2.

Using Taylor’s expansion, we have that, for any α ≥ 0,

ϕ(α) = ϕ(0) + αϕ′(0) +
1

2
α2ϕ′′(α∗), for α∗ ∈ [0, α].

One can check that,

ϕ′(α) =
c∗(u, v, w)ϕ1(α)ϕ2(α)− c∗(u, v)ϕ2(α)ϕ3(α)− c∗(u,w)ϕ1(α)ϕ3(α)

ϕ2
1(α)ϕ

2
2(α)

,

and

ϕ′′(α) = O(||c∗(u, v)c∗(u, v, w)||∞ + ||c∗(u,w)c∗(u, v, w)||∞).

Next, we consider α = 1, c∗(u, v, w) = ĉ(u, v, w)− c(u, v, w), c∗(u, v) = ĉ(u, v)− c(u, v), and c∗(u,w) = ĉ(u,w)−

c(u,w). Using the results of Bouezmarni, Rombouts, and Taamouti (2010), we get

ϕ′′(α) = Op (ζ(k, T )) ,

where ζ(k, T ) = T−1k5/4 ln2(T ) + k−2. Under H0, we have ϕ(0) = 0 and

ϕ′(0) =
ĉ∗(u, v, w)

c(u, v, w)
− ĉ(u, v)

c(u, v)
− ĉ(u,w)

c(u,w)
+ 1.

Hence, we have

I1 =

∫ (
ĉ(u, v, w)

c(u, v, w)
− ĉ(u, v)

c(u, v)
− ĉ(u,w)

c(u,w)
+ 1

)
dC(u, v, w) +Op (ζ(k, T ))

= 2−
∫

ĉ(u, v)

c(u, v)
c(u, v, w)dudvdw −

∫
ĉ(u,w)

c(u,w)
c(u, v, w)dudvdw +Op (ζ(k, T ))

= Op (ζ(k, T )) .

Similarly, one can show that I3 = Op (ζ(k, T )) . Hence, the asymptotic distribution of H(ĉ, C) follows from the

fact that, see Bouezmarni, Rombouts, and Taamouti (2012),

T k−3/2

σ

(
2I2 − C1T

−1k3/2 −B1T
−1k −B2T

−1k −B3T
−1k1/2

)
→ N (0, 1),

where C1 = −2−3π3/2, B1 = B2 =
π
4 and B3 = 1− π1/2k1/2, and σ =

√
2 (π/4)3/2 and the fact that

Tk−3/2
(
H(ĉ, Ĉ)−H(ĉ, C)

)
= op(1). :::
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Proof of Proposition 2: The proof of Proposition 2 can be deduced from the proof of Theorem 1 by observing

that

ϕ(0) =
c(u, v, w)

c(u, v)c(u,w)
− 1 ≈ log

(
c(u, v, w)

c(u, v)c(u,w)

)
> 0.

So, in such a case, our test statistic TBE converges to infinity.

Proof of Theorem 2: The proof of the asymptotic normality for the high dimensional case is similar to the proof

of Theorem 1 given above. The key ingredient is the fact that

T k−l/2

σ

(
2I2 − C1T

−1kl/2 −B1T
−1k(l1+l2)/2 −B2T

−1k(l1+l3)/2 −B3T
−1kl1/2

)
d→ N (0, 1),

where l1 = pd2, l2 = d2, l3 = pd1, l = l1 + l2 + l3, C1 = −2−lπl/2, σ =
√
2 (π/4)l/2 , B1 = 2−(l1+l2)π(l1+l2)/2,

B2 = 2−(l1+l3)π(l1+l3)/2, and B3 = −(2−2−l1+1)πl1/2kl1/2; see the technical Appendix of Bouezmarni, Rombouts,

and Taamouti (2012)) for more details.
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