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ABSTRACT

The concept of causality is naturally defined in terms of conditional distribution, however almost

all the empirical works focus on causality in mean. This paper aims to propose a nonparametric

statistic to test the conditional independence and Granger non-causality between two variables

conditionally on another one. The test statistic is based on the comparison of conditional distribu-

tion functions using an L2 metric. We use Nadaraya-Watson method to estimate the conditional

distribution functions. We establish the asymptotic size and power properties of the test statistic

and we motivate the validity of the local bootstrap. We ran a simulation experiment to investigate

the finite sample properties of the test and we illustrate its practical relevance by examining the

Granger non-causality between S&P 500 Index returns and VIX volatility index. Contrary to the

conventional t-test which is based on a linear mean-regression, we find that VIX index predicts

excess returns both at short and long horizons.
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1 Introduction

This paper proposes a nonparametric test for conditional independence between two random vari-

ables of interest Y and Z conditionally on another variable X, based on comparison of conditional
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Mathematics and Statistics at Université de Montréal under the supervision of Professor Roch Roy. Special thanks to
Roch Roy who helped us a lot to write this paper. We also thank Mohamed Ouzineb for his programming assistance.
Financial support from the Natural Sciences and Engineering Research Council of Canada and from the Spanish
Ministry of Education through grants SEJ 2007-63098 are also acknowledged.
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cumulative distribution functions. Since the concept of causality can be viewed as a form of con-

ditional independence, see Florens and Mouchart (1982) and Florens and Fougère (1996), tests for

Granger non-causality between Y and Z conditionally on X can also be deduced from the proposed

conditional independence test.

The concept of causality introduced by Granger (1969) and Wiener (1956) is now a basic notion

when studying dynamic relationships between time series. This concept is defined in terms of

predictability at horizon one of a variable Y from its own past, the past of another variable Z, and

possibly a vector X of auxiliary variables. Following Granger (1969), the causality from Z to Y

one period ahead is defined as follows: Z causes Y if observations on Z up to time t− 1 can help

to predict Yt given the past of Y and X up to time t − 1. The theory of causality has generated

a considerable literature and for reviews see Pierce and Haugh (1977), Newbold (1982), Geweke

(1984), Lütkepohl (1991), Boudjellaba, Dufour, and Roy (1992), Boudjellaba, Dufour, and Roy

(1994), Gouriéroux and Monfort (1997, Chapter 10), Saidi and Roy (2008), Dufour and Renault

(1998), Dufour and Taamouti (2010) among others.

To test non-causality, early studies often focus on the conditional mean, however the concept of

causality is naturally defined in terms of conditional distribution; see Granger (1980) and Granger

and Newbold (1986). Causality in distribution has been less studied in practice, but empirical evi-

dence show that for many economic and financial variables, e.g . returns and output, the conditional

quantiles are predictable, but not the conditional mean. Lee and Yang (2012), using U.S. monthly

series on real personal income, output, and money, find that quantile forecasting for output growth,

particularly in tails, is significantly improved by accounting for money. However, money-income

causality in the conditional mean is quite weak and unstable. Cenesizoglu and Timmermann (2008),

use quantile regression models to study whether a range of economic state variables are helpful in

predicting different quantiles of stock returns. They find that many variables have an asymmetric

effect on the return distribution, affecting lower, central and upper quantiles very differently. The

upper quantiles of the return distribution can be predicted by means of economic state variables

although the center of the return distribution is more difficult to predict. Moreover, generally

speaking, it is possible to have situations where the causality in low moments (like mean) does

not exist, but it does exist in high moments. Consequently, non-causality tests should be de-

fined based on distribution functions. Further, since Granger non-causality is a form of conditional

independence—see Florens and Mouchart (1982) and Florens and Fougère (1996)—these tests can

be deduced from the conditional independence tests.

The literature on nonparametric conditional independence tests for continuous variables is quite

recent. These tests are generally constructed in the context of i.i.d. data, α-mixing data, or β-

mixing data. For i.i.d. data, Huang (2010) proposes tests for conditional independence using

maximal nonlinear conditional correlation. Su and Spindler (2013) build a nonparametric test

for asymmetric information based on the notion of conditional independence, which avoids the

problem of either functional or distributional misspecification. Huang, Sun, and White (2013) in-

troduce a nonparametric test for conditional independence based on an estimator of the topological

”distance” between restricted and unrestricted probability measures corresponding to conditional

independence or its absence, respectively. Linton and Gozalo (2014) develop a non-pivotal non-

parametric empirical distribution function based test of conditional independence, the asymptotic
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null distribution of which is a functional of a Gaussian process. Song (2009) proposes a Rosenblatt-

transform based test of conditional independence between two random variables given a real func-

tion of a random vector. The function is supposed known up to an unknown finite dimensional

parameter. Song (2009) suggests to use a wild bootstrap method in a spirit similar to Delgado

and González Manteiga (2001) to approximate the distribution function of his test statistics. The

latter three tests detect local alternatives to conditional independence that decay to zero at the

parametric rate. Bergsma (2011) uses the partial copula to test for the conditional independence

between random variables.

For α-mixing data, Su and White (2012) propose a nonparametric test for conditional inde-

pendence using local polynomial quantile regression. Their test achieves the T−1/2 convergence

rate, where T is the sample size. Su and White (2014) construct a class of smoothed empirical

likelihood-based tests for conditional independence, which are asymptotically normal under the

null hypothesis. They derive the asymptotic distributions of the tests under a sequence of local

alternatives, and they show that these tests possess a weak optimality property in large samples.

Finally, for β-mixing data, de Matos and Fernandes (2007) build a nonparametric test for testing

the Markov property using the concept of conditional independence. Wang and Hong (2013) provide

a characteristic function based test for conditional independence using a nonparametric regression

approach. Su and White (2007) propose a nonparametric test based on conditional characteristic

function. Their test statistic uses the squared Euclidean distance and requires to specify two

weighting functions. Su and White (2008) propose a nonparametric test based on density functions

and the weighted Hellinger distance. Their test statistic is consistent, asymptotically normal,

and has power against alternatives at distance T−1/2h−d/4, where h is the bandwidth parameter

and d is the dimension of the vector of all variables in the study. Bouezmarni, Rombouts, and

Taamouti (2012) introduce a nonparametric test for conditional independence based on comparison

of Bernstein copula densities using the Hellinger distance. Their test statistic is asymptotically

pivotal under the null hypothesis.

In this paper, we propose a nonparametric statistic to test for conditional independence and

Granger non-causality between two random variables. The test statistic compares the conditional

cumulative distribution functions based on an L2 metric. We use the Nadaraya-Watson (NW)

estimator to estimate the conditional distribution functions. We establish the asymptotic size and

power properties of the conditional independence test statistic and we motivate the validity of

the local bootstrap. Theoretically, we show that our conditional distribution-based test is more

powerful than Su and White’s (2008) test and it has the same asymptotic power compared to the

characteristic function-based test of Su and White (2007). Furthermore, our test is very simple

to implement compared to the test of Su and White (2007). We also ran a simulation study to

investigate the finite sample properties of the test. The simulation results show that the test

behaves quite well in terms of size and power properties.

We illustrate the practical relevance of our nonparametric test by considering an empirical

application where we examine the Granger non-causality between S&P 500 Index returns and VIX

volatility index. Contrary to the conventional t-test based on a linear mean-regression, we find

that VIX predicts excess returns both at short and long-run horizons. This presents evidence in

favor of the existence of nonlinear volatility feedback effect that explains the well known asymmetric
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relationship between returns and volatility.

The paper is organized as follows. In Section 2, we discuss the null hypotheses of conditional

independence, the alternative hypotheses and we define our test statistic. In Section 3, we establish

the asymptotic distribution and power properties of the proposed test statistic and we motivate

the validity of the local bootstrap. In Section 4, we use Monte Carlo simulations to investigate

the finite sample size and power properties. Section 5 contains an application using financial data.

Section 6 concludes. The proofs of the asymptotic results are presented in Section 7.

2 Null hypothesis

Let VT = {Vt ≡ (Xt, Yt, Zt)}Tt=1 be a sample of weakly dependent random variables in R
d1 ×R

d2 ×
R
d3 , with joint distribution function F and density function f . For the reminder of the paper,

we assume that d2 = 1 which corresponds to the case of most practical interest. Suppose we are

interested in testing the conditional independence between the random variables of interest Y and

Z conditionally on X. The linear mean-regression model is widely used to capture and test the

dependence between random variables and the least squares estimator is optimal when the errors in

the regression model are normally distributed. However, in the mean regression the dependence is

only due to the mean dependence, thus we ignore the dependence described by high-order moments.

The use of conditional distribution functions will allow us to capture the dependence due to both

low and high-order moments.

Testing the conditional independence between Y and Z conditionally on X, corresponds to test

the null hypothesis

H0 : Pr {F (y | X,Z) = F (y | X)} = 1, ∀y ∈ R
d2 ,

against the alternative hypothesis

H1 : Pr {F (y | X,Z) = F (y | X)} < 1, for some y ∈ R
d2 . (1)

As pointed out by Su and White (2014), the nullH0 can be tested using the following null hypothesis

defined for each value y

H0(y) : Pr {F (y | X,Z) = F (y | X)} = 1

and integrating over y. The latter integration can be computed numerically, but the computation

can be time-consuming. Thus, instead of testing the above null hypothesis H0 and H0(y), we test

the following null hypothesis H ′
0, which is weaker than the null hypothesis H0, but practically is

more convenient,

H ′
0 : Pr {F (Y | X,Z) = F (Y | X)} = 1, (2)

against the alternative hypothesis

H ′
1 : Pr {F (Y | X,Z) = F (Y | X)} < 1. (3)

Independently of our work, the hypothesis testing problem defined by H ′
0 and H

′
1 is also considered

in the paper by Su and Spindler (2013) for testing the asymmetric information in the context of

i.i.d data. Since the conditional distribution functions F (y | X,Z) and F (y | X) are unknown, we

4



use a nonparametric approach to estimate them. The kernel method is simple to implement and it

is widely used to estimate nonparametric functional forms and distribution functions; for a review

see Troung and Stone (1992) and Boente and Fraiman (1995).

To estimate the conditional distribution function, we use the Nadaraya-Watson approach pro-

posed by Nadaraya (1964) and Watson (1964); for a review see Simonoff (1996), Li and Racine

(2007), Hall, Wolff, and Yao (1999), and Cai (2002). If we denote v = (x, y, z) ∈ R
d1 × R

d2 × R
d3 ,

V = (X,Z) and v̄ = (x, z), then the Nadaraya-Watson estimator of the conditional distribution

function of Y given X and Z is defined by

F̂h1(y|v̄) =
∑T

t=1Kh1(v̄ − Vt) IAYt
(y)

∑T
t=1Kh1(v̄ − Vt)

, (4)

where Kh1(.) = h
−(d1+d3)
1 K(./h), for K(.) a kernel function, h1 = h1,n is a bandwidth parameter,

and IAYt
(.) is an indicator function defined on the set AYt = [Yt,+∞). Similarly, the Nadaraya-

Watson estimator of the conditional distribution function of Y given only X is defined by:

F̂h2(y|x) =
∑T

t=1K
∗
h2
(x−Xt) IAYt

(y)
∑T

t=1K
∗
h2
(x−Xt)

, (5)

where K∗
h2
(.) = h−d12 K∗(./h), for K∗(.) a different kernel function, and h2 = h2,n is a different

bandwidth parameter. Notice that the Nadaraya-Watson estimator for the conditional distribution

is positive and monotone.

To test the null hypothesis (2) against the alternative hypothesis (3), we propose the following

test statistic which is based on the conditional distribution function estimators

Γ̂ =
1

T

T
∑

t=1

{

F̂h1(Yt|Vt)− F̂h2(Yt|Xt)
}2
w(Vt), (6)

where w(.) is a nonnegative weighting function of the data Vt, for 1 ≤ t ≤ T . In the simulation

and application sections, and because we standardized the data, we consider a bounded support

for the weight w(.). In the latter case we suggest to use a large bandwidth parameter for the

estimation of the conditional distribution function in the tails. The weighting function w(.) could

be useful for testing the causality in a specific range of data, for example to test Granger causality

from some economic variables (e.g. inflation; DGP) to positive income. Moreover, to overcome a

possible boundary bias in the estimation of the distribution function, we suggest to use the weighted

Nadaraya-Watson (WNW) estimator of the distribution function proposed by Hall, Wolff, and Yao

(1999) for β-mixing data and by Cai (2002) for α-mixing data. However, in these cases the test

will be valid only when d1 + d3 < 8. Finally, observe that the test statistic Γ̂ in (6) depends on the

sample size T and it is close to zero if conditionally on X, the variables Y and Z are independent,

and it diverges in the opposite case. Further, in the present paper we focus on the L2 distance,

however other distances like Hellinger distance, Kullback measure, and Lp distance, can also be

considered.
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3 Asymptotic distribution and power of the test statistic

In this section, we provide the asymptotic distribution of our test statistic Γ̂ under the null hy-

pothesis, and we derive its power function under local alternatives. We also establish the validity

of the bootstrapped version of the test statistic.

Since we are interested in time series data, an assumption about the nature of the dependence in

the individual time series is needed to derive the asymptotic distribution. We follow the literature

on U-statistics and assume β−mixing dependent variables; see Tenreiro (1997) and Fan and Li

(1999) among others. To recall the definition of a β−mixing process, let’s consider {Vt; t ∈ Z} a

strictly stationary stochastic process and denote F t
s the σ−algebra generated by the observations

(Vs, ..., Vt), for s ≤ t. The process {Vt} is called β-mixing or absolutely regular if

β(l) = sup
s∈N

E



 sup
A∈F+∞

s+l

∣

∣P (A|Fs
−∞)− P (A)

∣

∣



→ 0, as l → ∞.

For more details about mixing processes, the reader can consult Doukhan (1995). Other additional

assumptions are needed to show the asymptotic normality of our test statistic. We assume a set of

standard assumptions on the stochastic process and on the bandwidth parameter in the Nadaraya-

Watson estimators of the conditional distribution functions.

Assumption A.1 (Stochastic Process)

A1.1 The process
{

Vt = (Xt, Yt, Zt) ∈ R
d1 × R

d2 × R
d3 , t ∈ Z

}

is strictly stationary and absolutely

regular with mixing coefficients β(l), such that β(l) = O(νl), for some 0 < ν < 1.

A1.2 The conditional distribution functions F (y|X) and F (y|X,Z) are (r + 1) times continuously

differentiable with respect to X and (X,Z), respectively, for some integer r ≥ 2, and bounded

on R
d. The marginal densities of Xt and Vt = (Xt, Zt), denoted by g∗ and g respectively, are

twice differentiable and bounded away from zero on the compact support of w(.).

Assumption A.2 (Kernel, Bandwidth, and Weight Function)

A2.1 The kernels K and K∗ are the product of a univariate symmetric and bounded kernel k :

R → R, i.e. K(η1, ..., ηd1+d3) =
∏d1+d3
j=1 k(ηj) and K∗(η1, ..., ηd1) =

∏d1
j=1 k(ηj), such that

∫

R
k(ζ)dζ = 1 and

∫

R
ζ ik(ζ)dζ = 0 for 1 ≤ i ≤ r − 1 and

∫

R
ζrk(ζ)dζ <∞.

A2.2 As T → ∞, the bandwidth parameters h1 and h2 are such that h1, h2 → 0, h2 = o(h1) and

hd1+d31 = o(hd12 ). Further, as T → ∞, Th
2(d1+d3)
1 / ln(T ) → ∞ and Th

(d1+d3)/2+2r
1 → 0.

A2.3 The weight w(.) is a nonnegative function with compact support A ⊂ R
d1+d3 .

Assumption A1.1 is often considered in the literature and it is satisfied by many processes such as

ARMA, GARCH, ACD and stochastic volatility models; see Carrasco and Chen (2002) and Meitz

and Saikkonen (2008) among others. Assuming β-mixing data, our main results in sections 3.1-3.3

can be shown using the Central Limit Theorem (CLT) for the second order U-statistic in Tenreiro
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(1997). It can also be shown that these results continue to hold for α-mixing data. Dehling and

Wendler (2010) provide the Central Limit Theorem for U-statistics under strong mixing conditions.

Assumption A1.2 is needed to derive the bias and variance of the Nadaraya-Watson estimators of

the conditional distribution functions. The integer r in assumptions A1.2 and A2.1 depends on

the dimension of the data, i.e., for example with d1 = d2 = d3 = 1, we can consider the Gaussian

kernel function (r = 2). But for a higher dimension, a higher order kernel function is required.

Assumption A2.2 implies that if the bandwidth parameters h1 = cst1 T
−1/ψ1 and h2 = cst2 T

−1/ψ2

are considered, then ψ1 and ψ2 must satisfy the conditions d1 + d3 < ψ1 < (d1 + d3)/2 + 2r and

ψ2 < ψ1 < ψ2(1+ d3/d1). Assumption A2.2 is similar to the one considered in Ait-Sahalia, Bickel,

and Stoke (2001) and is slightly different from Assumption A.2 (ii) in Su and White (2007). The

latter assume that Th
(d1+d3)/2
1 h2r2 = o(1) instead of Th

(d1+d3)/2+2r
1 = o(1). Hence, our Assumption

A2.2 implies Assumption A.2 (ii) in Su and White (2007). However, in their Monte Carlo study,

Su and White (2007) use the bandwidths h1 = O(T−1/(4+d1+d3)) and h2 = O(T−1/(4+d1)), for r = 4,

d2 = d3 = 1 and d1 = d ≤ 2, which satisfy our Assumption A2.2.

3.1 Asymptotic distribution of the test statistic

Before presenting the main results, we first define the following terms:

D1 = C1h
−(d1+d3)
1

∫

vt

w(v̄t)
g(vt)

(1− F (yt|v̄t))3f(vt)dvt,

D2 = h−d12 C2

∫

xt,yt

w∗(xt)
g∗(xt)

(1− F (yt|xt))3f(xt, yt)dxtdyt,

D3 = −2C3h
−d1
1

∫ w(v̄t)
g∗(xt)

(1− F (yt|v̄t))3f(vt)dvt,

D = (D1 +D2 +D3)/T ,

(7)

where

w∗(xt) =

∫

z
w(xt, z)g(z|xt)dz,

and

C1 =
1

3

∫

K2(x, z)dxdz, C2 =
1

3

∫

K∗2(x)dx and C3 =
1

3
K∗(0).

Further, we denote

σ2 = 2C

∫

v̄0

w2(v̄0)

[
∫

ỹ0

∫

y0

h2(ỹ0, y0, v̄0)f(ỹ0|v̄0)f(y0|v̄0)dỹ0dy0
]

g2(v̄0)dv̄0 (8)

for C =
∫

a1,a3

(

∫

b1,b3
K
(

b̄+ ā
)

K
(

b̄
)

db1db3

)2
da1da3 and

h(ỹ0, y0, v̄0) =
1

3
+

1

2

[

F 2(y0|v̄0) + F 2(ỹ0|v̄0)
]

− F (max(y0, ỹ0)|v̄0).

The following theorem establishes the asymptotic normality of the test statistic Γ̂ in (6) under

the null hypothesis. In the sequel, “
d→” stands for convergence in distribution.
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Theorem 1 (Asymptotic distribution) If Assumptions A.1 and A.2 hold, then under H0 we

have

Th
1
2
(d1+d3)

1 (Γ̂−D)
d→ N(0, σ2), as T → ∞,

where Γ̂ is defined in (6) and D and σ2 are defined in Equations (7) and (8), respectively.

Theorem 1 is valid only when d1+d3 < 4r. Hence, for small dimensions, for example d1 = d3 = 1,

we can use as a kernel the normal density function. However, if the test is for higher dimensions,

a higher order kernel is required. Further, notice that the term D3 in (7) is negligible for d3 > d1.

Finally, for h1 = cst1 T
−1/ψ1 and h2 = cst2 T

−1/ψ2 with ψ1 <
ψ2

2 (1 + d3/d2), the second bias term

D2 in (7) is also negligible.

The implementation of our test statistic requires the estimation of the variance term σ2 and

the bias terms D1,D2, and D3. We propose the following estimators

D̂1 = C1h
−(d1+d3)
1

1
T

∑T
t=1

w(V̄t)

ĝ(Vt)
(1− F̂ (Yt|V̄t))3,

D̂2 = h−d12 C2
1
T

∑T
t=1

ŵ∗(Xt)
ĝ∗(Xt)

(1− F̂ (Yt|Xt))
3,

D̂3 = −2C3h
−d1
1

1
T

∑T
t=1

w(V̄t)
ĝ∗(Xt)

(1− F̂ (Yt|V̄t))3,

D̂ = (D̂1 + D̂2 + D̂3)/T ,

(9)

where

ŵ∗(x) =
1

T

T
∑

t=1

w(x,Zt),

and F̂h1(Yt|Vt) (resp. F̂h2(Yt|Xt)) is the estimator of the conditional distribution function Fh1(Yt|Vt)
(resp. Fh2(Yt|Xt)) defined in (4) (resp. (5)), and ĝ(.) and ĝ∗(.) are the nonparametric kernel

estimators of g(.) and g∗(.). Similarly, an estimator of the variance σ2 is given by:

σ̂2 =
2C

T

T
∑

t=1

w2(V̄t)â(V̄t)g(V̄t), (10)

where

â(v̄) =
1

T 2

∑

t,t′=1

Th2(Ỹt, Yt′ , v̄)

and the process {Ỹt, t ≥ 1} is an independent copy of Yt, conditionally on V̄t. Note that we can

generate independently the data {Ỹ } using a kernel estimate of the conditional distribution of Yt

given V̄t.

Finally, we reject the null hypothesis when Th
1
2
(d1+d3)

1 (Γ̂−D̂)/σ̂ > zα, where zα is the (1− α)−quantile

of the N(0, 1) distribution.
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3.2 Power of the test statistic

Here, we study the consistency and the power of our nonparametric test statistic against fixed or

local alternatives. The following proposition states the consistency of the test for a fixed alternative.

Proposition 1 (Consistency) If Assumptions A.1 and A.2 hold, then the test based on Γ̂ in

(6) is consistent for any distributions F (y | x, z) and F (y | x) such that

∫

(F (y|x, z) − F (y|x))2w(x, z)dxdydz > 0.

Now, we examine the power of the above proposed test against local alternatives. We consider the

following sequence of local alternatives

H1(ξT ) : F [T ] (y | x, z) = F [T ] (y | x) [1 + ξT∆(x, y, z) + o(ξT )∆T (x, y, z)], (11)

where F [T ](y|x, z) (resp. F [T ](y|x)) is the conditional distribution of YT,t given XT,t and ZT,t (resp.

of YT,t given XT,t) and ξT → 0 as T → ∞. The notation “[T ]” in F [T ](y|x, z) and F [T ](y|x) is

to say that the difference between the latter distribution functions depends on the sample size

T . We suppose that ||f [T ] − f ||∞ = o(T−1h
−(d1+d3)/2
1 ). The ∆(x, y, z) and ∆T (x, y, z) are such

that 1 + ξT∆(x, y, z) + op(ξT )∆T (x, y, z) ≥ 0, for all (x, y, x) and T,
∫

∆(x, y, z)f(x, z)dz = 0,
∫

∆T (x, y, z)f(x, z)dz = 0,

∫

∆2(x, y, z)w(x, z)f(x, y, z)dxdydz = γ <∞, (12)

and that
∫

∆2
T (x, y, z)w(x, z)f(x, y, z)dxdydz <∞,

We assume the following assumptions on the stochastic process {(XT,t, YT,t, ZT,t)} that are similar

to the above assumptions A1.1 and A1.2:

A1.1∗ Let {(XT,t, YT,t, ZT,t), t = 1, .., T} be a strictly stationary β-mixing process with coefficients

β[T ](l) such that

sup
T
β[T ](l) = O(ν̄l), for some 0 < ν̄ < 1.

A1.2∗ The conditional distribution functions F [T ](y|X) and F [T ](y|X,Z) are (r + 1) times contin-

uously differentiable, for some integer r ≥ 2, and bounded on R
d. The marginal densities of

XT,t and V T,t = (XT,t, ZT,t), denoted by g∗[T ] and g[T ] respectively, are twice differentiable

and bounded away from zero on the compact support of w(.).

The following proposition establishes the asymptotic local power property of the test statistic

Γ̂ under the local alternatives in (11).
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Proposition 2 (Asymptotic local power properties) Under Assumptions A1.1∗, A1.2∗ and

A.2 and under the local alternative H1(ξT ) with ξT = T−1/2h
−(d1+d3)/4
1 , we have

Th
1
2
(d1+d3)

1 (Γ̂−D)
d→ N(γ, σ2), as T → ∞,

where D, σ2, and γ are defined in (7), (8), and (12), respectively.

Notice that our test has power against alternatives at distance T−1/2h
−(d1+d3)/4
1 compared to the

power of the tests of Su and White (2008) and Bouezmarni, Rombouts, and Taamouti (2012),

which have power only against alternatives at distance T−1/2h
−(d1+d2+d3)/4
1 . Further, our test has

an asymptotic power at the same distance as the characteristic function-based test of Su and White

(2007) and Su and White (2014).

3.3 Local bootstrap

In finite samples, the asymptotic normal distribution does not generally provide a satisfactory

approximation for the exact distribution of nonparametric test statistic. To improve the finite

sample properties of our test, we propose the use of a bootstrap method. In our context, in order

to generate data under the null hypothesis, that is under the conditional independence, the local

smoothed bootstrap suggested by Paparoditis and Politis (2000) seems appropriate.

In the sequel, X ∼ fX means that the random variable X is generated from the density function

fX . Consider L1, L2 and L3 three product kernels that satisfy Assumption A2.1 and a bandwidth

kernel h satisfying Assumption A.3 below. The local smoothed bootstrap method is easy to

implement in the following five steps:

(1) We draw a bootstrap sample {(X∗
t , Y

∗
t , Z

∗
t ), t = 1, ..., T} as follows

X∗
t ∼ T−1h−d1

T
∑

s=1

L1(Xs − x)/h;

and conditionally on X∗
t ,

Y ∗
t ∼ h−d2

T
∑

s=1

L1 ((Xs −X∗
t )/h)L2 ((Ys − y)/h) /

n
∑

s=1

L1 ((Xs −X∗
t )/h)

and

Z∗
t ∼ h−d3

T
∑

s=1

L1 ((Xs −X∗
t )/h)L3 ((Zs − z)/h) /

T
∑

s=1

L1 ((Xs −X∗
t )/h) ;

(2) based on the bootstrap sample, we compute the bootstrap test statistic Γ∗ = Th
1
2
(d1+d3)

1 (Γ̂∗ −
D̂∗)/σ̂∗, where Γ̂∗, D̂∗, and σ̂∗ are analogously defined as Γ̂, D̂, and σ̂, and computed using the

bootstrap data (X∗
t , Y

∗
t , Z

∗
t );

(3) we repeat the steps (1)-(2) B times so that we obtain Γ∗
j , for j = 1, ..., B;

(4) we compute the bootstrap p-value and for a given significance level α, we reject the null

hypothesis if p∗ < α.
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Here we take the same bandwidth parameter h, however different bandwidths could also be con-

sidered. An additional assumption concerning the bandwidth parameter h is required to validate

the local bootstrap.

Assumption A.3 (Bootstrap Bandwidth)

A3.1 As T → ∞, h→ 0 and Thd+2r/(ln T )γ → C > 0, for some γ > 0 and d = d1 + d2 + d3

The following proposition establishes the consistency of the local bootstrap for the conditional

independence test.

Proposition 3 (Smoothed local bootstrap) Suppose that Assumptions A.1, A.2 and A.3

are satisfied. Then, conditionally on the observations VT = {Vt ≡ (Xt, Yt, Zt)}Tt=1, we have

Γ∗ d→ N(0, 1), as T → ∞.

The proofs are presented in the Appendix. The finite-sample properties of our nonparametric test

are investigated in the next section.

Table 1: Data generating processes used in the simulation study.

DGP Xt Yt Zt
DGP1 ε1t ε2t ε3t
DGP2 Yt−1 Yt = 0.5Yt−1 + ε1t Zt = 0.5Zt−1 + ε2t
DGP3 Yt−1 Yt = (0.01 + 0.5Y 2

t−1)
0.5ε1t Zt = 0.5Zt−1 + ε2t

DGP4 Yt−1 Yt =
√

h1,tε1t Zt =
√

h2,tε2t
h1,t = 0.01 + 0.9h1,t−1 + 0.05Y 2

t−1 h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2
t−1

DGP5 Yt−1 Yt = 0.5Yt−1 + 0.5Zt−1 + ε1t Zt = 0.5Zt−1 + ε2t
DGP6 Yt−1 Yt = 0.5Yt−1 + 0.5Z2

t−1 + ε1t Zt = 0.5Zt−1 + ε2t
DGP7 Yt−1 Yt = 0.5Yt−1Zt−1 + ε1t Zt = 0.5Zt−1 + ε2t
DGP8 Yt−1 Yt = 0.5Yt−1 + 0.5Zt−1ε1t Zt = 0.5Zt−1 + ε2t
DGP9 Yt−1 Yt =

√

h1,tε1t Zt = 0.5Zt−1 + ε2t
h1,t = 0.01 + 0.5Y 2

t−1 + 0.25Z2
t−1

4 Monte Carlo simulations: size and power

Here, we present the results of a Monte Carlo experiment to illustrate the size and power of the

proposed test using reasonable sample sizes. We have limited our study to two groups of data

generating processes (DGPs) that represent different linear and nonlinear regression models with
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different forms of heteroscedasticity. These DGPs are described in Table 1. The first four DGPs

were used to evaluate the empirical size. In these DGPs, Y and Z are, by construction, independent

conditional on X. In the last five DGPs , Y and Z are, by construction, dependent conditional

on X and have served to evaluate the power. We have considered three different sample sizes,

T = 200, T = 300, and T = 800. For each DGP and for each sample size, we have generated 500

independent realizations and for each realization, 500 bootstrapped samples were obtained. For

estimating the conditional distribution functions, we have used the normal density function, which

is a second-order kernel, hence C1 = 1/2π,C2 = 1/
√
2π,C3 = 1/

√
π, and C = 1/4π. Because the

data are standardized, the weighting function in the test statistic Γ̂ in (6) is given by the indicator

function defined on the set A = {(x, z),−2 ≤ x, z ≤ 2}. Finally, for generating the bootstrap

replications, we have used the normal kernel with a different bandwidth which is provided by the

rule of thumb proposed in Silverman (1986).

In addition to the Silverman’s rule of thumb used in this paper, at least three other ways

can be used to choose the bandwidth in practice. The first one is the cross-validation bandwidth

proposed by Li, Lin, and Racine (2013). The rate of the cross-validation bandwidth satisfies

our Assumption A2.2 since it is of order T−1/(d1+d3). However, strictly speaking, since the cross-

validated bandwidth is random, the asymptotic theory can be justified with this random bandwidth

only through certain stochastic equicontinuity argument.1 The cross-validation technique is used

in Li, Maasoumi, and Racine (2009) for testing the equality of two unconditional and conditional

functions in the context of mixed categorical and continuous data. However, this approach, which

is optimal for the estimation, loses the optimality for nonparametric kernel testing. The second way

is given by an adaptive-rate-optimal rule proposed by Horowitz and Spokoiny (2001) for testing

a parametric model for conditional mean function against a nonparametric alternative. The third

way for selecting a practical bandwidth is introduced by Gao and Gijbels (2008). Gao and Gijbels

(2008) propose, using the Edgeworth expansion of the asymptotic distribution of the test, to choose

the bandwidth such that the power function of the test is maximized while the size function is

controlled. The above three approaches will be investigated in future research. In this paper, we

take h1 = c1T
−1/4.75 and h2 = c2T

−1/4.25 for various values of c1 and c2, which correspond to the

most practical case. These values are selected in order to satisfy our Assumption A2.2.

For a given DGP, the 500 independent realizations of length T were obtained as follows:

(1) We generate T + 200 independent and identically distributed noise values (ε1t, ε2t, ε3t)
′ ∼

N(0, I3);

(2) Each noise sequence was plugged into the DGP equation to generate (Xt, Yt, Zt−1)
′, t =

1, . . . , T + 200. The initial values were set to zero (resp. to one) for Xt, Yt and Zt (resp. for

h1,t and h2,t). To attenuate the impact of the initial values, the first 200 observations were dis-

carded.

Our test is valid for testing both linear and nonlinear Granger causalities and we have compared

it with the commonly used t-test for linear causality. In the linear causality analysis, we have

examined if the variable Zt−1 explains Yt in the presence of Yt−1, using the following linear mean

1We thank an Anonymous Referee for his/her remark with respect to the randomness of the cross-validation
bandwidth and the importance of using certain stochastic equicontinuity argument to justify the asymptotic theory.
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regression:

Yt = µ+ βYt−1 + αZt−1 + εt.

The null hypothesis of Granger non-causality is given by H0 : α = 0 against the alternative

hypothesis H1 : α 6= 0. To test H0, the t-statistic is given by tα̂ = α̂
σ̂α̂
, where α̂ is the least

squares estimator of α and σ̂α̂ is the estimator of its standard error σα̂. In the presence of possibly

dependent errors, σ̂α̂ was computed using the commonly used heteroscedasticity autocorrelation

consistent (HAC) estimator suggested by Newey and West (1987).

Table 2: Empirical size of the bootstraped nonparametric test of conditional independence.

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

T = 200, α = 5% T = 200, α = 10%
LIN 0.047 0.051 0.041 0.053 0.091 0.092 0.098 0.092
BT, c1=1, c2=1 0.050 0.056 0.044 0.038 0.096 0.104 0.098 0.098
BT, c1=0.85, c2=0.7 0.048 0.044 0.064 0.056 0.104 0.128 0.132 0.100
BT, c1=0.75, c2=0.6 0.036 0.048 0.052 0.052 0.096 0.088 0.120 0.088

T = 300, α = 5% T = 300, α = 10%
LIN 0.051 0.060 0.051 0.048 0.095 0.104 0.108 0.110
BT, c1=1, c2=1 0.053 0.043 0.068 0.040 0.120 0.097 0.110 0.100
BT, c1=0.85, c2=0.7 0.060 0.036 0.068 0.060 0.120 0.084 0.108 0.130
BT, c1=0.75, c2=0.6 0.044 0.032 0.060 0.056 0.108 0.076 0.096 0.112

T = 800, α = 5% T = 800, α = 10%
LIN 0.049 0.052 0.050 0.050 0.100 0.102 0.099 0.103
BT, c1=1, c2=1 0.049 0.051 0.056 0.047 0.105 0.099 0.100 0.103
BT, c1=0.85, c2=0.7 0.056 0.046 0.056 0.054 0.108 0.092 0.103 0.114
BT, c1=0.75, c2=0.6 0.045 0.042 0.056 0.052 0.100 0.089 0.092 0.103

Empirical sizes are based on 500 replications. LIN refers to the linear test and BT to our test.
c1 and c2 refer to the constants in the bandwidth parameters.

The empirical sizes of the linear causality test (LIN test) and of the distribution-based test (BT

test) for different values of the constants c1 and c2 in the bandwidth parameters are given in Table

2. Based on 500 replications, the standard error of the rejection frequencies is 0.0097 at the nominal

level α = 5% and 0.0134 at α = 10%. Globally, the sizes of both tests are fairly well controlled even

with series of length T = 200. For T = 800, the empirical sizes are very close to the nominal levels

α = 5% and α = 10%, respectively. Thus, in large samples the empirical size is well controlled.

For LIN test, all rejection frequencies are within 2 standard errors from the nominal levels 5% and

10%. For BT test, at 5%, all rejection frequencies are also within 2 standard errors. However, at

10%, three rejection frequencies are between 2 and 3 standard errors (two at T = 200 and one at

T = 300). There is no strong evidence of overrejection or underrejection. Finally, for BT test the

empirical sizes seem slightly closer to the corresponding nominal sizes when c1 = c2 = 1.
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Table 3: Empirical power of the bootstraped nonparametric test of conditional independence.

DGP5 DGP6 DGP7 DGP8 DGP9

α = 5% T = 200
LIN 0.994 0.401 0.184 0.137 0.151
BT, c1=1, c2=1 0.996 0.812 0.852 1.000 0.936
BT, c1=0.85, c2=0.7 0.988 0.728 0.792 1.000 0.908
BT, c1=0.75, c2=0.6 0.976 0.719 0.808 1.000 0.896

T = 300
LIN 1.000 0.412 0.204 0.142 0.171
BT, c1=1, c2=1 1.000 0.976 0.966 1.000 1.000
BT, c1=0.85, c2=0.7 1.000 0.884 0.908 1.000 0.984
BT, c1=0.75, c2=0.6 1.000 0.784 0.868 1.000 0.960

T = 800
LIN 1.000 0.422 0.216 0.151 0.183
BT, c1=1, c2=1 1.000 1.000 1.000 1.000 1.000
BT, c1=0.85, c2=0.7 1.000 0.997 1.000 1.000 1.000
BT, c1=0.75, c2=0.6 1.000 0.978 0.995 1.000 1.000

α = 10% T = 200
LIN 1.000 0.410 0.211 0.134 0.161
BT, c1=1, c2=1 0.992 0.916 0.916 0.984 0.980
BT, c1=0.85, c2=0.7 0.996 0.844 0.868 1.000 0.960
BT, c1=0.75, c2=0.6 0.984 0.831 0.854 1.000 0.964

T = 300
LIN 1.000 0.432 0.224 0.159 0.187
BT, c1=1, c2=1 1.000 1.000 0.951 1.000 1.000
BT, c1=0.85, c2=0.7 1.000 0.948 0.964 1.000 1.000
BT, c1=0.75, c2=0.6 1.000 0.912 0.924 1.000 0.984

T = 800
LIN 1.000 0.456 0.253 0.178 0.212
BT, c1=1, c2=1 1.000 1.000 1.000 1.000 1.000
BT, c1=0.85, c2=0.7 1.000 0.984 0.980 1.000 1.000
BT, c1=0.75, c2=0.6 1.000 0.954 0.993 1.000 1.000

Empirical powers are based on 500 replications. LIN refers to the linear test
and BT to our test. c1 and c2 refer to the constants in the bandwidth param-
eters.
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The empirical powers of LIN and BT tests are reported in Table 3. As expected, with the

linear DGP5, LIN test performs extremely well but the nonparametric BT test performs almost

as well, especially when T = 800. With the four nonlinear models under consideration, BT test

clearly outperforms LIN test. In most cases, BT test produces the greatest power when c1 = c2 = 1.

Finally, at both levels 5% and 10%, the powers increase considerably with DGP6, DGP7 and DGP9,

when T goes from 200 to 800.

5 Empirical application

We use real data to illustrate the practical importance of the proposed nonparametric test. We show

that using tests based on linear mean regressions may lead to wrong conclusions about the existence

of a relationship between financial variables. In particular, we examine the linear and nonlinear

causalities between stock market excess return and volatility index (VIX). We test whether stock

market excess returns can be predictable at short and long-run horizons using the VIX index. We

compare the results using the conventional t-test and the new nonparametric test.

5.1 Stock return predictability using volatility index

Many empirical studies have investigated whether stock excess returns can be predictable; see

Fama and French (1988), Campbell and Shiller (1988), Kothari and Shanken (1997), Lewellen

(2004), Bollerslev, Tauchen, and Zhou (2009) among many others. In most of these studies, the

econometric method used is the conventional t-test based on the ordinary least squares regression

of stock returns onto the past of some financial variables.2 Here we examine the short and long-

run stock return predictability using VIX in a broader framework that allows us to leave free the

specification of the underlying model. Nonparametric tests are well suited for that since they do not

impose any restriction on the model linking the dependent variable to the independent variables.

Recent works use VIX to predict stock excess returns. Bollerslev, Tauchen, and Zhou (2009)

show that the difference between VIX and realized variation, called variance risk premium, is able

to explain a non-trivial fraction of the time series variation in post 1990 aggregate stock market

returns, with high (low) premia predicting high (low) future returns. In what follows, we use

VIX together with nonparametric test to check whether the excess returns on S&P 500 Index are

predictable. We compare our results to those obtained using the standard t-test.

5.2 Data description

We consider monthly aggregate S&P 500 composite index over the period January 1996 to Septem-

ber 2008 (153 trading months). Our empirical analysis is based on the logarithmic return on the

S&P 500 in excess of the 3-month T-bill rate. The excess returns are annualized. We also consider

monthly data for VIX. The latter is an indication of the expected volatility of the S&P 500 stock

index for the next thirty days. The VIX is provided by the Chicago Board Options Exchange

(CBOE) in the US, and is calculated using the near term S&P 500 options markets. It is based on

2Previous studies have also considered testing return predictability from past returns, for a review see Lo and
MacKinlay (1988), French and Roll (1986), Shiller (1984), Summers (1986) among others.
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the highly liquid S& P500 index options along with the “model-free” approach. The VIX index time

series also covers the period from January 1996 to September 2008 for a total of 153 observations.

Finally, we performed an Augmented Dickey-Fuller test for nonstationarity of the stock return and

VIX and the stationarity hypothesis was not rejected.

5.3 Causality tests

To test the linear causality between S&P 500 excess return and VIX, we consider the following

linear mean regression

exrt+τ = µτ + βτ exrt + ατ V IXt + εt+τ ,

where exrt+τ is the excess return τ months ahead and V IXt represents VIX at time t. In the

empirical application, we take τ = 1, 2, 3, 6, and 9 months. VIX does not linearly Granger cause

the excess return τ periods ahead if H0 : ατ = 0. We use the standard t-statistic to test the null

hypothesis H0. To avoid the impact of the dependence in the error terms on our inference, the

t-statistic is based on the commonly used HAC robust variance estimator. The results of linear

causality (predictability) tests between stock excess returns and VIX are presented in Table 4; see

the second row LIN in Table 4. At 5% significance level, we find convincing evidence that excess

return can not be predicted at both short and long-run horizons using VIX.

Now, to test for the presence of nonlinear causality (predictability) we consider the following

null hypothesis:

H0 : Pr {F (exrt+τ | exrt, V IXt) = F (exrt+τ | exrt)} = 1

that we test against the alternative hypothesis

H1 : Pr {F (exrt+τ | exrt, V IXt) = F (exrt+τ | exrt)} < 1.

Table 4: P-values for linear and nonlinear causality tests between Return at different horizons and
Volatility Index (VIX).

Test statistic / Horizon Return 1 Month 2 Months 3 Months 6 Months 9 Months

LIN 0.433 0.133 0.888 0.954 0.995

BT c1 = c2 = 1.5 0.000 0.000 0.010 0.000 0.000
BT c1 = c2 = 1.2 0.000 0.000 0.015 0.000 0.000
BT c1 = c2 = 1 0.000 0.005 0.025 0.010 0.000
BT c1 = 0.85, c2 = 0.7 0.000 0.010 0.035 0.036 0.000
BT c1 = 0.75, c2 = 0.6 0.000 0.045 0.085 0.061 0.005

LIN and BT correspond to linear test and our nonparametric test, respectively. c1 and c2 refer
to the constants in the bandwidth parameters.

The results of nonlinear causality (predictability) tests between stock excess return and VIX

are also presented in Table 4; see the rows BT of Table 4. Before we start discussing our results, we
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have to mention that the data are standardized and the weighting function w(.) is the same like the

one used in the simulation study; see Section 4. Further, five different combinations for the values

of c1 and c2 are considered. We have seen in the simulation study that our nonparametric test has

generally good properties (size and power) when c1 = c2 = 1. Therefore, our decision rule will be

typically based on the results corresponding to c1 = c2 = 1. At 5% and even 1% significance levels,

our nonparametric test show that VIX predicts stock excess returns both at short and long-run

horizons.3

6 Conclusion

We propose a new statistic to test the conditional independence and Granger non-causality be-

tween two random variables. Our approach is based on the comparison of conditional distribution

functions and the test statistic is defined using an L2 metric. We use the Nadaraya-Watson ap-

proach to estimate the conditional distribution functions. We establish the asymptotic size and

power properties of the new test and we motivate the validity of the local bootstrap. Our test is

easy to implement, has power against alternatives at distance T−1/2h−(d1+d3)/4 compared to the

test of Su and White (2008), which has power only for alternatives at distance T−1/2h−d/4, where

d = d1 + d2 + d3. It also has the same performance as the one of the tests of Su and White (2007)

and Bouezmarni, Rombouts, and Taamouti (2012). We ran a simulation study to investigate the

finite sample properties and the results show that the test behaves quite well in terms of size and

power.

We illustrate the practical relevance of our nonparametric test by considering an empirical

application where we examine Granger non-causality between S&P500 Index returns and volatility

index (VIX). Contrary to the linear causality analysis which is based on the conventional t-test, we

find that VIX predicts stock excess returns both at short and long-run horizons.

Finally, our test can be extended to data with mixed variables, i.e., continuous and discrete

variables, by using the estimator proposed by Li and Racine (2008). Also, a practical bandwidth

choice for the conditional test and an extensive comparison with the existing tests need further

study.

7 Appendix

We provide the proofs of the theoretical results described in Section 3. The main tool in the proof

of Theorem 1 and Propositions 1 and 2 is the asymptotic normality of U-statistics. To prove

Theorem 1 and Proposition 2, we use Theorem 1 of Tenreiro (1997). To show the validity of the

local smoothed bootstrap in Proposition 3, we use Theorem 1 of Hall (1984). The proofs are in

general inspired from the ones in Ait-Sahalia, Bickel, and Stoke (2001) and Tenreiro (1997), of

course with adapted calculations for our test.

3Other results about testing stock return predictability using variance risk premium are available from the authors
upon request. The variance risk premium is measured by the difference between risk-neutral and physical (historical)
variances. The results using our nonparametric test show that the variance risk premium helps to predict excess
returns at long horizons, but not a short horizons.
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Now, we establish the asymptotic normality of the test statistic Γ̂ defined in (6). This test statistic

can be rewritten as follows

Γ̂ =

∫

{

F̂h1(y|x, z) − F̂h2(y|x)
}2
w(x, z) dFT (v),

where FT is the empirical distribution function of the random vector Vt. Let us define the following

pseudo-statistic

Γ̃ =

∫

{

F̂h1(y|x, z) − F̂h2(y|x)
}2
w(x, z) dF (v), (13)

where the empirical distribution function FT (v) in Γ̂ is replaced by the true distribution function

F (v).We show, see Lemma 5, that replacing FT (v) by F (v) will not affect the asymptotic normality

of the test statistics Γ̂. We begin by studying the asymptotic distribution of Γ̃. To do so, we consider

the following term:

Ψ(t) =

∫

φ2(t, v)w(x, z) dF (v),

where

φ(t, v) =
F (y|x, z)g(x, z) + tµ1(x, y, z)

g(x, z) + tg1(x, z)
− F (y|x)g∗(x) + tµ∗1(x, y)

g∗(x) + tg∗1(x)
.

Using Taylor’s expansion, we have

Ψ(t) = Ψ(0) + tΨ′(0) +
t2

2
Ψ′′(0) +

t2

6
Ψ′′′(t∗),

where 0 ≤ t∗ ≤ t. UnderH0, we have φ(0, v) = 0. Then, Ψ(0) = 0 and Ψ′(0) = 0. As in Ait-Sahalia,

Bickel, and Stoke (2001), we can show that

Ψ′′′(t∗) = O(||g1(x, z)||3 + ||g∗1 ||3).

Therefore, at t = 1, we obtain

Ψ(1) =

∫
(

dφ(0, v)

dt

)2

w(x, z) dF (v) +O
(

||g(x, z)||3 + ||g∗1 ||3
)

. (14)

Now, consider the terms:

µ1(x, y, z) =
T
∑

t=1

Kh1(v̄−Vt) IAYt
(y)−F (y|x, z)g(x, z), µ∗1(x, y) =

T
∑

t=1

K∗
h2(x−Xt) IAYt

(y)−F (y|x)g∗(x)

and

g1(x, z) = ĝ(x, y) − g(x, z), g∗1(x) = ĝ∗(x)− g∗(x).

Hence, using these notations and (14) we obtain

Γ̃ =

∫

(

1

n

n
∑

i=1

J(vt, v)

)2

w(x, z) dF (v) +O
(

||ĝ(x, y) − g(x, z)||3 + ||ĝ∗(x)− g ∗ (x)||3
)

,
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where

J(Vt, v) = Kh1(v̄ − Vt)

[

1

g(x, y)

(

IAYt
(y)− F (y|x, z)

)

]

− 1

g∗(x)
K∗
h2(x̄−Xt)

[(

IAYt
(y)− F (y|x)

)]

.

Under Assumption A.2, the term O
(

||ĝ(x, y)− g(x, z)||3 + ||ĝ∗(x)− g∗(x)||3
)

is negligible. Let

us denote,

J∗(Vt, v) = J(Vt, v)− E(J(Vt, v)).

If we ignore the negligible term, the pseudo-statistic Γ can be written as follows

Γ̃ ≈ 1

T 2

∫

(

T
∑

t=1

J(Vt, v)

)2

w(x, z)dF (v)

=
2

T 2

T
∑

t<s

∫

J(Vt, v)J(Vs, v)w(x, z)dF (v) +
1

T 2

{

T
∑

t=1

∫

J2(Vt, v)w(x, z)dF (v)

}

=
2

T 2

T
∑

t<s

∫

J∗(Vt, v)J
∗(Vs, v)w(x, z)dF (v) +

2

T 2

{

(T − 1)
T
∑

t=1

∫

J∗(Vt, v)E(J(V1, v))w(x, z)dF (v)

}

+
1

T 2

{

T (T − 1)

∫

E
2(J(V1, v))w(x, z)dF (v)

}

+
1

T 2

{

T
∑

t=1

∫

J2(Vt, v)w(x, z)dF (v)

}

= 2T−1h
−

(d1+d3)
2

1

{

T−1
T
∑

t<s

HT (Vt, Vs)

}

+ 2T−1/2(1− T−1)hr1

{

T−1/2
T
∑

t=1

GT (Vt)

}

+ T−1BT +NT

≡ 2T−1h
−

(d1+d3)
2

1 T11 + 2T−1/2(1− T−1)hr1T12 + T−1BT +NT (15)

where

BT = 1
T

{

∑T
t=1

∫

J2(Vt, v)w(x, z)dF (v)
}

, NT = 1
T 2

{

T (T − 1)
∫

E
2(J(V1, v))w(x, z)dF (v)

}

T11 = T−1
∑

1≤t<s≤T HT (Vt, Vs), T12 = T−1/2
∑T

t=1GT (Vt),

(16)

with

HT (a, b) = h
(d1+d3)

2
1

∫

J∗(a, v)J∗(b, v)w(x, z)dF (v) and GT (a) = h−r1

∫

J∗(a, v)E(J(V1, v))w(x, z)dF (v).

Notice that the term T11 is a degenerate U-statistic such that H(a, b) = H(b, a) and E(H(Vt, b)) = 0.

The central limit theorem for U-statistics is developed in Yoshihara (1976), Denker and Keller

(1983), Tenreiro (1997), and Fan and Li (1999) among others. We apply Theorem 1 of Ten-

reiro (1997) to show that the term T11 is asymptotically normal. The variance of T11 is σ̃2 =

1
2E

[

HT (V0, Ṽ0)
]2
, for {Ṽt, t ≥ 0} an i.i.d. sequence where Ṽt is an independent copy of Vt. We

also show that under Assumption A.2.2, T12 is negligible. Further, the term BT represents the

bias term in the test statistic and it is very important in finite samples, when bootstrap is used to

calculate the p-values. The term NT is deterministic and negligible. To sum up, the test statistic

is normal with mean and variance given by BT and σ2 respectively.

Now, let us show the asymptotic normality of T11. To do so, we need to check the conditions

of Theorem 1 in Tenreiro (1997).
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Lemma 1 Under Assumptions A.1-A.2 and H0, we have

T11
d→ N

(

0, σ̃2
)

,

where

σ̃2 =
C

2

∫

v̄0

w2(v̄0)

[
∫

ỹ0

∫

y0

h2(ỹ0, y0, v̄0)f(ỹ0|v̄0)f(y0|v̄0)dỹ0dy0
]

g2(v̄0)dv̄0

with C =
∫

a1,a3

(

∫

b1,b3
K
(

b̄+ ā
)

K
(

b̄
)

db1db3

)2
da1da3 and

h(ỹ0, y0, v̄0) =

∫

(

I{y0≤y} − F (y|v̄0)
) (

I{ỹ0≤y0} − F (y0|v̄0)
)

f(y|v̄0)dy.

Proof. Now, let us check the conditions (iii)-(vi) in Theorem 1 of Tenreiro (1997), which are

(iii) uT (4 + δ0) = O(T γ0); (iv) vT (2) = o(1); (v) wT (2 + δ0/2) = o(T 1/2); (vi) zT (2)T
γ1 = O(1),

for some δ0, γ1 > 0 and γ0 < 1/2 and where

uT (p) ≡ max{max1≤t≤T ||hT (Vt, V0)||p, ||hT (Vt, Ṽ0)||p},

vT (p) ≡ max{max1≤t≤T ||GT0(Vt, V0)||p, ||GT0(V0, Ṽ0)||p},

wT (p) ≡ ||GT0(V0, V0)||p,

zT (p) ≡ max
1≤t1≤T
1≤t2≤T

max{||GTt2(Vt1 , V0)||p, ||GTt2(V0, Vt1)||p, ||GTt2(V0, Ṽ0)||p,

withGTt(u1, u2) ≡ E [hT (Vt, u1)hT (V0, u2)] and ||.||p ≡ {E|.|p}1/p. In addition, in Tenreiro (1997) E[hT (V0, Ṽ0)]
2 =

2σ̃2 + o(1).

To check these conditions, we first need to calculate ||HT (Vt, V0)||p = E
1/p|HT (Vt, V0)|p and

||GT (Vt, V0)||p, where GT (u, v) = E(HT (V0, u)HT (V0, v)). We have,

E(|HT (Vt, V0)|p) ≈ h
p(d1+d3)

2
1

∫ ∫
∣

∣

∣

∣

∫

1

g2(v̄)
Kh1(v̄ − v̄t)Kh1(v̄ − v̄0)

(

I{yt≤y} − F (y|v̄)
)

(

I{y0≤y} − F (y|v̄)
)

w(x, z)dF (v)
∣

∣

p
f(vt, v0)dvt dv0

= h
−p(d1+d3)

2
1

∫ ∫
∣

∣

∣

∣

∫

1

g2(v̄)
K((v̄ − v̄t)/h1)K((v̄ − v̄0)/h1)

(

I{yt≤y} − F (y|v̄)
)

(

I{y0≤y} − F (y|v̄)
)

w(x, z)dF (v)|p f(vt, v0)dvt dv0.

By change of variables, as for E

[

HT (V0, Ṽ0)
]2

given below, we can show that |HT (Vt, V0)|p =

O
(

h
(d1+d3)(1−p/2)
1

)

. Thus, ||HT (Vt, V0)||p = O
(

h
(d1+d3)(1/p−1/2)
1

)

. Using the same argument, we

can show that ||HT (V0, Ṽ0)||p = O
(

h
(d1+d3)(1/p−1/2)
1

)

. Hence, condition (iii) is fulfilled.
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Let us now calculate the term GT (u, v),

GT (u, v) = E(HT (V0, u)HT (V0, v))

≈ h
(d1+d3)
1 E

(
∫ ∫

Kh1(ξ̄ − V̄0)
(

I{Y0≤ξ2} − F (ξ2|ξ̄)
)

Kh1(ξ̄ − ū)
(

I{u2≤ξ2} − F (ξ2|ξ̄)
)

Kh1(
¯̃
ξ − V̄0)

(

I{Y0≤ξ̃2} − F (ξ̃2| ¯̃ξ)
)

Kh1(
¯̃
ξ − v̄)

(

I{v2≤ξ̃2} − F (ξ̃2| ¯̃ξ)
)

αū(ξ)αv̄(ξ̃)d ξ d ξ̃
)

≤ Ch
−3(d1+d3)
1

∫ ∫ ∫

K((ξ̄ − ξ̄0)/h1)K((ξ̄ − ū)/h1)K((
¯̃
ξ − ξ̄0)/h1)

K((ξ̃+ − v+)/h1)d ξ d ξ̃d ξ0,

where αū(ξ) = w(ξ)f(ξ)
g2(ξ̄)

and αv̄(ξ̃) = w(ξ̃)f(ξ̃)

g2(ξ̃)
. By the change of variables, ξ = ξ0 + h1τ , ξ̃ =

ξ0 + h1(τ + τ̃) and ξ0 = u+ h1(τ0 − τ), we obtain

GT (u, v) ≤ C

∫ ∫ ∫

K(τ+)K(τ+ + τ̃+)K

(

τ+0 )K(τ+0 + τ̃+ +
u− v

h1

)

d τ d τ̃d τ0 + o(hd1+d31 ).

Thus,

||GT (Vt, V0)||p = O
(

h(d1+d3)/p
)

and ||GT (Ṽ0, V0)||p = O
(

h(d1+d3)/p
)

.

Hence, vT (p) = O(hd/p). Following the same steps, we can show that wT (p) is bounded and

zT (p) ≤ Chd1+d31 . Therefore, conditions (iv), (v) and (vi) are fulfilled.

Now, to calculate the variance, observe that the product J(Vt, v)× J(Vs, v) is composed of four

terms and that the dominant one is

1

g2(v)
Kh1(v − Vt) ×Kh1(v − Vs)

(

IAYt
(y)− F (y|v̄)

)

(

IAYs
(y)− F (y|v̄)

)

.

Thus, we have

E

[

HT (V0, Ṽ0)
]2

= h
−3(d1+d3)
1

∫

v0,ṽ0

{
∫

v
K

(

v − v0
h1

)

K

(

v − ṽ0
h1

)

(

I{y0≤y} − F (y|v̄)
) (

I{ỹ0≤y} − F (y|v̄)
)

ϕ(v̄)f(v)dv}2 f(v0)f(ṽ0)dv0 dṽ0 + o(1),

where ϕ(v̄) = w(v̄)/g2(v). Two changes of variables are needed. The first one is ¯̃v0 = (x̃0, z̃0) =

v̄0 + h1 ā, (dṽ0 = hd1+d31 da) with a = (a1, a2, a3) and a2 = ỹ0. The second one is v̄ = v̄0 + h1(b̄ +

ā), (dv = hd1+d31 db) with b = (b1, b2, b3) and b2 = y). Using Taylor expansion, we obtain

2σ2 ≡ E

[

HT (V0, Ṽ0)
]2

= C

∫

v0

w2(v̄0)

∫

ỹ0

h2(ỹ0, y0, v̄0)f(x0, ỹ0, z0)f(v0)dỹ0dy0dv̄0 + o(1),

where

h(ỹ0, y0, v̄0) =

∫

(

I{y0≤y} − F (y|v̄0)
) (

I{ỹ0≤y0} − F (y0|v̄0)
)

f(y|v̄0)dy

=

∫ ∞

max(y0,ỹ0)
f(y|v̄0)dy −

∫ ∞

y0

F (y|v̄0)f(y|v̄0)dy
∫ ∞

ỹ0

F (y|v̄0)f(y|v̄0)dy +
∫

F 2(y|v̄0)f(y|v̄0)dy

=
1

3
+

1

2

[

F 2(y0|v̄0) + F 2(ỹ0|v̄0)
]

− F (max(y0, ỹ0)|v̄0).
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The following lemma provides the asymptotic bias of the pseudo-statistic Γ̃.

Lemma 2 Under assumptions A.1-A.2 and H0, we have

Th
d1+d3

2
1

(

T−1BT −D
)

= op(1),

where the terms D and BT are defined in (7) and (16), respectively.

Proof. We start with the calculation of the expectation of BT . We have

E(BT ) =

∫

E

(

Kh1(v − Vt) (IAt(y)− F (y|v̄))
g(v)

−
K∗
h2
(x−Xt) (IAt(y)− F (y|x))

g∗(x)

)2

w(v̄)f(v)dv

=

∫

E

(

Kh1(v − Vt) (IAt(y)− F (y|v̄)))
g(v)

)2

w(v̄)f(v)dv

+

∫

IE

(

K∗
h2
(x−Xt) (IAt(y)− F (y|x))

g∗(x)

)2

w(v̄)f(v)dv

− 2

∫

IE

(

Kh1(v − Vt) (IAt(y)− F (y|v̄))
g(v)

)(

K∗
h2
(x−Xt) (IAt(y)− F (y|x))

g∗(x)

)

w(v̄)f(v)dv

= D1 +D2 +D3.

First, from the change of variables, v̄′ = (v̄ − v̄t)/h1 and v′ = (v′1, v
′
2, v

′
3), with v

′
2 = y, and using

Taylor expansion, we obtain

D1 = h
−(d1+d3)
1

∫ ∫

K2(v̄′) {IAt(v
′
2)− F (v′2|v̄t)}

g(vt)2

2

w(v̄t)f(xt, v
′
2, zt)f(vt) dvt dv

′ + o(1)

= h
−(d1+d3)
1

∫

K2(v̄′)dv̄′
∫

vt

w(v̄t)f(vt)

g(vt)2

∫

v′2

{

IAt(v
′
2)− F (v′2|v̄t)

}2
f(xt, v

′
2, zt)dv

′
2 dvt.

Since
∫

v′2

{

IAt(v
′
2)− F (v′2|v̄t)

}2
f(xt, v

′
2, zt)dv

′
2 = g(v̄t)

∫

v′2≥yt

{

1− F (v′2|v̄t)
}2
f(v′2|v̄t)dv′2

=
1

3
g(v̄t)(1− F (yt|v̄t))3,

we get

D1 = C1h
−(d1+d3)
1

∫

vt

w(v̄t)

g(vt)
(1− F (yt|v̄t))3f(vt)dvt,

where C1 =
1
3

∫

K2(v̄′)dv̄′.

Second, by the change of variable (x− xt)/h2 = x′ and using Taylor expansion, we have

D2 = h−d12

∫

x′,y,z

∫

xt,yt

1

(g∗(xt))2
K∗2(x′) {IAt(y)− F (y|x)}2 w(x, z)f(xt, y, z)f(xt, yt)dx′dydzdxtdyt.

Under H0, we get
∫

y
f(xt, y, z)(IAt(y)− F (y|xt)) dy =

1

3
(1− F (yt|xt))3g(xt, z),
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and hence

D2 = h−d12 C2

∫

xt,yt

w∗(xt)

g∗(xt)
(1− F (yt|xt))3f(xt, yt)dxtdyt,

for C2 =
1
3

∫

K∗2(x)dx and w∗(xt) =
∫

w(xt, z)g(z|xt)dz.
Finally, using the following change of variables x = xt+h2x

′ and z = zt+h1z
′, under H0, we obtain

−1

2
D3 =

∫ ∫
{

Kh1(v − vt) {IAt(y)− F (y|v̄)}
g(v)

×
K∗
h2
(x− xt) {IAt(y)− F (y|x)}

g∗(x)

}

w(v̄)f(v)f(vt)dvdvt

= h−d11

∫ ∫

K(h2h1x
′, z′)K∗(x′) {IAt(y)− F (y|vt)}2

g(vt)g∗(xt)
w(v̄t)f(xt, y, zt)f(vt)dvt dx

′dz′dy.

Since h2 = o(h1) and
∫

y {IAt(y)− F (y|v̄t)}2 f(xt, y, zt) = 1
3 (1− F (yt|v̄t))3g(v̄t), we obtain

D3 = −2

3
C3h

−d1
1

∫

w(v̄t)

g∗(xt)
(1− F (yt|v̄t))3f(vt)dvt,

where C3 = K(0). Also, using similar argument to the one above, we can show that

V ar

(

Th
d1+d3

2
1 (T−1BT −D)

)

≡ 1

T 2

T
∑

t=1

∫

E(J2
t )w(v̄)f(v)dv = o(1),

and this concludes the proof.

Lemma 3 Under assumptions A.1-A.2 and H0, we have

Th
(d1+d3)/2
1 hr1T12 = op(1),

where the term T12 is defined in (16).

Proof. Observe that by construction we have E(GT (Vt)) = 0. We denote by σ̃21 the variance of

T12. To calculate this variance we need to evaluate the covariance between GT (Vt) and GT (V0).

First, under the assumption h2 = o(h1), we have

E(J(Vt, v)) = hr1γ(v) + o(hr1),

where γ(v) is a function of the kernel K, of the rth derivative of F and of g. Second,

Cov(GT (Vt), GT (Vs)) = E(GT (Vt)GT (Vs))

≈ E

(
∫

J(Vt, v)J(Vs, v
′)ξ(v)ξ(v′)dvdv′

)

−2

∫

J(vt, v)E(J(vs, v
′))ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv

′

+

∫

E(J(vt, v))E(J(vs, v
′))ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv

′ + o(1)

=

∫

J(vt, v)J(vs, v
′)ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv

′ −
(
∫

E(J(vs, v))ξ(v)dv

)2

+ op(1),

= I − II ++o(1)
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where ξ(v) = γ(v)w(v̄)f(v). We next need to compute the terms I and II. Let us first calculate

the term I. We have,

I =

∫
{

Kh1(v − vt) (IAt(y)− F (y|v̄))
g(v̄)

−
K∗

h2
(x−Xt) (IAt(y)− F (y|x))

g∗(x)

}

×
{

Kh1(v
′ − vs)

(

IAs(y
′)− F (y′|v′

)

g(v̄′)
−
K∗
h2
(x′ − xs) (IAs(y

′)− F (y′|x′))
g∗(x′)

}

×ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ + op(1).

From the change of variables ( v − vt)/h1 = (a1, a3) ≡ ā; (a2 = y) and ( v′ − vs)/h1 = (b1, b3) ≡
b̄, b2 = y′, we obtain

I =

∫

{

K(ā) (IAt(a2)− F (y|v̄t))
g(v̄t)

− hd1+d31

hd12

K∗(h1xt/h2) (IAt(a2)− F (a2|xt))
g∗(xt)

}

{

K(b̄)
(

IAs(b2)− F (b2|v′s
)

g(v̄s)
− hd1+d31

hd12

K∗(h1xs/h2) (IAs(b2)− F (b2|xs))
g∗(xs)

}

ξ(xt, a2, zt)ξ(x
′
t, b2, z

′
t)f(vt, vs)dvtdvsdadb+ op(1).

If we assume that hd1+d31 /hd12 = o(1), then

I =

∫
(

K(ā) (IAt(a2)− F (y|v̄t))
g(v̄t)

)

(

K(b̄)
(

IAs(b2)− F (b2|v′s
)

g(v̄s)

)

ξ(xt, a2, zt)ξ(x
′
t, b2, z

′
t)f(vt, vs)dvtdvsdadb+ op(1)

=

∫

ζ(vt)ζ(vs)f(vt, vs)dvtdvs + op(1)

= E(ζ(Vt)ζ(Vs)) + op(1),

where ζ(vt) = C∗2 δ(vt)
g(v̄t)

with C∗ =
∫

āK(ā)dā and δ(vt) =
∫

a2
(IAt(a2)− F (y|v̄t)) ξ(xt, a2, zt)da2.

Using similar arguments, we show that

II =

(
∫

vt

ζ(vt)f(vt)dvt

)2

+ op(1) = E(ζ(Vt))
2 + op(1)

Consequently, using Assumption A1.1, we obtain

σ̃21 = V ar(ζ(V0)) + 2
∑

i≥1

Cov(ζ(V1), ζ(V1+i)) <∞.

Hence, under Assumption A2.2, we conclude the proof of Lemma 3.

Lemma 4 Under Assumptions A.1-A.2 and H0, we have

Th
(d1+d3)/2
1 NT = o(1),

where the term NT is defined in (16).
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Proof. The proof is straightforward, since E(J(Vt, v)) = O(hr1) and Th
(d1+d3)/2+2r
1 → 0.

Lemma 5 Under assumptions A.1-A.2 and H0, we have

Th
(d1+d3)/2
1 (Γ̂− Γ̃) = op(1),

where Γ̂ and Γ̃ are defined in (6) and (13).

Proof. This result follows from the same arguments in Su and White (2008).

Proof of Proposition 1. This result can be shown by following the same steps as in the proof of

Theorem 1. However, the term NT defined in (16), is now given by

NT =

∫

E
2(J(Vt, v))w(x, z)dF (v) + o(1)

=

∫

(F (y|x, z) − F (y|x))2w(x, z)dF (v) + o(1).

Therefore, if
∫

(F (y|x, z) − F (y|x))2w(x, z)dF (v) > 0, we have Th
(d1+d3)/2
1 NT → ∞. Hence, the

test is consistent.

Proof of Proposition 2. First, following similar arguments as in Lemma 1-5 for the stochastic

process {(XT,t, YT,t, ZT,t)}, we can show that

Th
(d1+d3)/2
1

(

Γ̂−D −
∫

{F [T ](y|x, z) − F [T ](y|x)}2w(x, z) dF [T ](v)

)

d→ N
(

0, σ2
)

.

Second, under the alternative hypothesis, we have

∫

{

F [T ](y|x, z)− F [T ](y|x)
}2
w(x, z) dF [T ](v) = ξ2T

∫

∆2(x, y, z)w(x, z) dF [T ](v) + op(ξ
2
T ).

Proof of Proposition 3. Conditionally on VT = {Vt}Tt=1, the observations {V ∗
t }Tt=1 forms a trian-

gular array of independent random variables. Thus, conditionally on VT , GT (V ∗
t ) and HT (V

∗
t , V

∗
t )

are independent. The result of this proposition is obtained using similar argument to the one in

the proof of Theorem 1, with the terms, T11, T12, BT and NT in (15) are replaced by their boot-

strapped versions T ∗
11, T

∗
12, B

∗
T and N∗

T , respectively, using the bootstrap data V∗
T = {V ∗

t }Tt=1. Thus,

conditionally on VT and using Theorem 1 of Hall (1984), we get the result in Proposition 3.
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