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It is widely held that the Nernst effect can drive instability in un-magnetised laser-
plasmas by laterally compressing seed B-fields arising from the field-generating ther-
mal instability [Tidman & Shanny, Phys. Fluids, 12:1207 (1974)]. Indeed, for wavelike
perturbations, differential compression by the Nernst mechanism is thought to be most
pronounced in the limit of low wave-number k → 0, and is considered particularly impor-
tant given that it can ostensibly lead to instability when the more usual field-generating
mechanism is stable. However, as part of a recent article [Bissell et al., New J. Phys.,
15:025017 (2013)] we noted some irregularities to the Nernst mechanism which obscure
its operation. For example, by taking characteristic density and temperature length-scales
ln and lT respectively, we observed that consistent analytical treatment of the instability
requires kln,T � 1, preventing the peak-growth limit k → 0. Furthermore, the Nernst
term—which compresses magnetic field perturbations—does not couple to a correspond-
ing term acting on thermal perturbations, and as such does not describe an unstable
feedback mechanism. In this article we probe the origin of such ambiguities more for-
mally, and in so doing argue (contrary to reports existing elsewhere in the literature)
that the Nernst effect does not drive instability in un-magnetised conditions, at least not
in the fashion typically cited.

PACS codes: Authors should not enter PACS codes directly on the manuscript, as these
must be chosen during the online submission process and will then be added during the
typesetting process (see http://www.aip.org/pacs/ for the full list of PACS codes)

1. Introduction

It has long been known that otherwise un-magnetised plasmas can self-generate large
magnetic fields (∼ 100T) through a variety of mechanisms (Stamper et al. 1971; Pert
1977; Raven et al. 1978; Haines 1986a; Thomas et al. 2009; Li et al. 2013). These fields
strongly affect electron transport by suppressing the cross-field thermal conductivity
(Braginskii 1965) and are thus key to understanding a range of laser-plasma interactions,
including ongoing efforts to achieve controlled inertial confinement fusion (Glenzer et al.
1999; Lindl et al. 2004; Nilson et al. 2006; Froula et al. 2007; Li et al. 2007a,b; Schurtz
et al. 2007; Froula et al. 2009; Li et al. 2009, 2013). Of special importance in such contexts
is the role transport effects might play in driving instabilities, especially given that such
instabilities are themselves often candidate mechanisms for producing the self-generated
field (Weibel 1959; Tidman & Shanny 1974; Bol’shov et al. 1974; Ogasawara et al. 1980;
Haines 1981; Bissell et al. 2010, 2012; Gao et al. 2012; Manuel et al. 2013).

† Email address for correspondence: john.bissell@durham.ac.uk



2 J. J. Bissell

As part of a recent article (Bissell et al. 2013) we discussed how super-Gaussian
transport effects arising from strong inverse bremsstrahlung (I.B.) heating can suppress
growth-rates of one such candidate, the field-generating thermal instability, which was
first reported in 1974 (Tidman & Shanny 1974; Bol’shov et al. 1974), and remains an
important phenomena in laser-plasma interactions (see, for example, experimental stud-
ies of coronal plasmas by Manuel et al. (2013) reported earlier this year). It is widely
held that this instability may be driven by two mechanisms which—denoting the electron
temperature and density as Te and ne respectively, and taking b = B/|B| as a unit vector
in the direction of the magnetic flux density B—may be summarised as follows. In the
first case (i) feedback acts between ∇Te×∇ne generated field and the consequent cross-
gradient Righi-Leduc heat-flow q∧ ∝ b × ∇Te (Haines 1986a; Braginskii 1965; Tidman
& Shanny 1974; Bol’shov et al. 1974). In the second (ii) it is commonly understood that
lateral advection of the field with the diffusive heat-flow q⊥ ∝ ∇Te via the Nernst effect
(Nishiguchi et al. 1985; Bissell et al. 2013), i.e., with velocity vN ≈ q⊥/(

3
2neTe), can

lead to exponential compression of the perturbation in B (Brownell 1979; Hirao & Oga-
sawara 1981). In the absence of hydrodynamic effects, case (i) requires that zeroth-order
temperature and density gradients be parallel, i.e., lT ln > 0, where in an x-coordinate
aligned geometry the length scales lT and ln may be defined

1

lT
=

1

T0

∂T0
∂x

and
1

ln
=

1

n0

∂n0
∂x

, (1.1)

respectively, with the subscripts ‘0’ denoting zeroth-order profiles (see §3). This feature of
case (i) makes the mechanism in case (ii) particularly important, since Nernst advection
may both contribute to instability when lT ln > 0 holds, but also (ostensibly) drive
instability when the parallel gradient condition fails, that is, if lnlT < 0 (Brownell 1979;
Hirao & Ogasawara 1981).

Our original comments (Bissell et al. 2013) on the field-generating thermal instability
focused on how super-Gaussian modifications to electron transport can suppress classi-
cally predicated instability growth-rates (by as much as ∼ 80% under both lT ln > 0 and
lT ln < 0 conditions). For this reason, our analysis followed in the tradition of previous
work in its treatment of the Nernst advection terms (Brownell 1979; Hirao & Ogasawara
1981); however, we noted a curious feature of the Nernst mechanism in that it seems
to predict peak instability growth-rates as the perturbation wave-number k vanishes.
When trying to develop a mathematically consistent picture of the instability, this fea-
ture is problematic because analytical treatments typically assume some local conditions
ln,T k � 1 for the unstable modes, precluding k → 0 (Tidman & Shanny 1974; Bol’shov
et al. 1974; Ogasawara et al. 1980; Brownell 1979; Hirao & Ogasawara 1981). Further-
more, the Nernst term (which compresses the field perturbations) does not couple to a
corresponding term acting on thermal perturbations, meaning that mechanism (ii) does
not account for unstable feedback in the usual way.

Given the need for clarity when establishing the stability of laser-plasma configura-
tions, this short article revisits the impact of the Nernst effect on the field-generating
thermal instability, placing special emphasis on resolving the ambiguities described above.
By reviewing the basic instability theory (§2 and §3) we identify various inconsistencies
of treatment which imply that Nernst advection does not drive instability under the
linear assumptions usually made (Brownell 1979; Hirao & Ogasawara 1981), and con-
sequently (in the absence of hydrodynamic motion, and a more advanced treatment of
lateral effects) that laser-plasmas should in fact be stable to the field-generating thermal
instability mechanism whenever lnlT < 0 (§4). In the light of these observations, we also
comment on the role Nernst plays in driving instability more generally (§5 and §6).
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2. Governing Equations

Since we are primarily interested in Nernst advection effects we neglect hydrodynamics,
and the governing equations are simply the thermal energy equation and Faraday’s law,

3

2
ne
∂Te
∂t

+∇ · q−E · j = U̇L and
∂B

∂t
= −∇×E (2.1)

respectively, where U̇L describes the rate-of-change of thermal energy U = 3
2neTe due to

laser heating, and j = (∇ × B)/µ0 is the current (with µ0 as the permeability of free-
space), while the electric field E and total heat-flow q are given by Braginskii (1965):

eneE = −∇Pe + j×B +
me

eτB
αc · j− neβc · ∇Te (2.2)

and q = −neτBTe
me

κc · ∇Te − ψ′ · j
Te
e
. (2.3)

Here the usual notation applies (Bissell et al. 2013), so that e is the elementary electronic
charge, Pe = neTe is the isotropic pressure, me is the electronic mass, and the Braginkii
collision time τB = cBτT is proportional to the thermal collision time τT by the constant
factor cB = 3

√
π/4. By quasi-neutrality, the ion number density may be written in terms

of the atomic number Z as ni ≈ ne/Z, so that with permittivity of free space ε0, and
Coulomb logarithm log Λei ≈ 8, τT is itself given by τT = (4πv3T )/(ni[Ze

2/ε0me]
2 log Λei),

where vT = (2Te/me)
1/2 is the mean thermal velocity and defines a thermal mean-free-

path λT = vT τT . As usual in such treatments, we shall a geometry for which gradients
and fluxes are perpendicular to B, i.e, scalar φ and vector A quantities obey B · ∇φ =
B ·A = 0. Under these conditions, the resistivity αc, conductivity κc, and thermoelectric

tensors βc and ψ′ = βc + [5/2]I (here I is the identity tensor) may be written in the

general form

η · s = η⊥s + η∧b× s, with η ∈ {α, β, κ} and s ∈ {j,∇Te}, (2.4)

where the components η⊥ and η∧ are dimensionless functions of both Z and the Hall
parameter χ = ωLτB , with ωL = (e|B|/me) as the electron Larmor frequency (Braginskii
1965; Epperlein 1984; Epperlein & Haines 1986). Note that for our un-magentised con-
ditions the ‘⊥’ components are constants, that is, η⊥(0) = η‖, while convention dictates
that equation 2.4 takes the slightly different form α · j = α⊥j−α∧b× j for the resistivity.

3. Review of the Basic Linear Theory

Let us begin our analysis by reviewing the basic linear theory. As usual, we assume that
the plasma is initially un-magnetised, so that in zeroth-order our governing equations—
the thermal energy equation and induction equation (Faraday’s Law and Ohm’s Law
combined)—are satisfied by solutions B = B0 = 0, Te = T0(x, t) and ne = n0(x, t),
where gradients in the latter two quantities exist in the x-direction only, and define
length-scales ln and lT according to equations 1.1. In addition, we note that for laser-
plasmas one may take

Λ =
λT
δ
� 1, where δ =

c

ωpe
and ωpe =

(
nee

2

ε0me

)1/2

(3.1)

are the collisionless-skin-depth and plasma frequency respectively, and c = 1/
√
µ0ε0 is

the speed of light in vacuo.
To the zeroth-order solutions we add small wavelike perturbations with wavenumber
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k, frequency γ, and periodicity ∝ (iky + γt), that is,

Te = T0 + δT exp(iky + γt) and B = δB exp(iky + γt)ẑ, (3.2)

with δT � T0 and δB as some complex amplitudes. Hence, after substituting these
perturbed forms into the governing system, subtracting zeroth-order solutions, and ne-
glecting second-order perturbed terms or higher, the linearised energy and induction
equations become

Γ +DTK
2 −Q = +iCE

(
eλ2T
τT

δB

δT

)
K (3.3)

and

Γ +DRK
2 −N = −iCI

(
τT
eλ2T

δT

δB

)
K (3.4)

respectively. Notice here that we have adopted the dimensionless notation

Γ = γτT , K = λT k, LT,n =
lT,n

λT
, DT =

cB
3
κc‖, DR =

αc
‖

cBΛ2
, (3.5)

where DT and DR are the thermal and resistive diffusion coefficients respectively (Bissell
et al. 2012). The remaining terms arise from: i) differential thermal diffusion Q lateral
to the perturbation (down zeroth-order temperature gradients); ii) differential Nernst
advection N lateral to the perturbation; iii) divergent Righi-Leduc heat-flow CE ; and iv)
magnetic field generation CI by the ∇Te ×∇n0 mechanism; these are defined by

Q =
5

2
DT

λ2T
n0τTT0

∂

∂x

(
n0τT

∂T0
∂x

)
∼ DT /L

2
T,n, CE =

c2B
6LT

(
∂κc∧
∂χ

)
, (3.6)

N =
cB
2

∂βc
∧

∂χ

λ2T
τTT0

∂

∂x

(
τT
∂T0
∂x

)
, and CI =

1

Ln
. (3.7)

At this stage in the usual analysis one assumes the local condition KLn,T � 1
(Brownell 1979; Hirao & Ogasawara 1981), so that the lateral diffusion term Q ∼
DT /L

2
T,n may be neglected in equation 3.3 when compared to DTK

2, i.e.,

[DTK
2 −Q] = DTK

2
[
1−O

(
1/K2L2

T,n

)]
≈ DTK

2. (3.8)

Thus, after eliminating terms in (δT/δB) from equations 3.3 and 3.4, one obtains the
dispersion relation (Bissell et al. 2013; Brownell 1979; Hirao & Ogasawara 1981)

Γ± =
1

2

{
−
[
(DT +DR)K2 −N

]
±
√

[(DT +DR)K2 −N ]
2

+ 4DTK2 [DR (K2
G −K2) +N ]

}
, (3.9)

where KG is the source term describing coupling between the Righi-Leduc heat-flow CE

and ∇Te×∇ne field generation CI as described by Tidman & Shanny (1974) and Bissell
et al. (2012), viz

K2
G =

CECI

DTDR
=

c2BΛ2

2LTLnαc
‖κ

c
‖

(
∂κc∧
∂χ

)
. (3.10)

Equation 3.9 is the dispersion relation quoted by the author in our earlier context
(Bissell et al. 2013) where we observed that in the absence of Nernst advection (N → 0)
the cut-off wave-number becomes KG, so that instability requires LTLn > 0 (Tidman &
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Shanny 1974; Brownell 1979; Hirao & Ogasawara 1981). In terms of plasma stability, this
result makes the contribution from the advection term N particularly important, since
it ostensibly predicts instability when LTLn < 0 provided N > 0 (Brownell 1979; Hirao
& Ogasawara 1981). As both Brownell (1979) and Hirao & Ogasawara (1981) describe,
equation 3.9 suggests that lateral compression of the field by the advection term should be
especially effective in the limit of long-wavelength perturbations K → 0 (when damping
effects, such as thermal diffusion, are minimised), in which case the peak growth-rate
becomes Γ = N . Of course, the value K = 0 is not a physically meaningful one to take for
the peak wave-number; however, as we noted in our original context (Bissell et al. 2013),
the apparent mathematical inconsistency between the local assumption KLn,T � 1 made
in the analysis, and the (ideal) conclusion that instability peaks when K = 0, invites us
to treat the basic theory with some caution. What is more, Nernst compression by N
does not described coupling between the energy and induction equations, and so fails
to provide a mechanism for unstable feedback. For these reasons we stated that the
Nernst term cannot be understood as driving instability proper, though it may lead to
exponential compression of the local field. In what follows we consider the source of such
ambiguities in more formal detail by re-examining the basic linear theory, and reflecting
further on the physical basis of the Nernst effect. Ultimately, we conclude by taking the
opposing view that Nernst will not drive instability in un-magnetised conditions, at least
not without a more sophisticated treatment of lateral effects.

4. Inconsistencies in the Basic Linear Theory

In essence, the ambiguities described in the previous section arise from miss-application
of the local approximation; however, it is often as instructive to consider the shortcomings
of physical arguments as their advantages, and to this end it is worth discussing such
miss-application in relative detail. Indeed, by probing related problems in the the basic
linear theory (Brownell 1979; Hirao & Ogasawara 1981), one can gain insight into both
the meaning of various analytical steps, and the physical processes involved. Here three
issues are considered: first, physical interpretation (§4.1); second, ordering of terms (§4.2);
and third, lateral effects (§4.3).

4.1. Physical Interpretation

Recall that the Nernst effect describes advection of the magnetic field with the diffusive
heat-flow q⊥, i.e., the heat-flow representing thermal diffusion down temperature gradi-
ents (Nishiguchi et al. 1985; Bissell et al. 2013). Indeed, one may write the velocity vN

of Nernst advection as

vN =
2AN

3DT

q⊥
Pe
≈ q⊥

3neTe/2
, where q⊥ = −3

2
neDT

λ2T
τT
∇Te (4.1)

is the diffusive heat-flow, AN is a dimensionless Nernst advection coefficient defined by

AN =
cB
2χ
βc
∧ ≈ DT =

cB
3
κc⊥, (4.2)

and the approximate equality follows by considering values for the transport coefficients
over a range of χ (Haines 1986b; Bissell et al. 2012). Physically, therefore, our term N in
the linearised induction equation 3.4 arises from differential advection of the field pertur-
bation by heat-flow electrons moving down the zeroth-order temperature gradient, i.e.,
those electrons which account for lateral diffusive transport of the temperature pertur-
bation Q in the linearised energy equation 3.3. It seems curious that we should retain N
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(lateral B-field advection) in the dispersion relation 3.9, whilst simultaneously arguing
for the exclusion of the thermal term Q ∼ DT /L

2
T,n responsible for its physical origin.

4.2. Ordering of Terms

That such a contradiction arises may be understood by reviewing the local approxima-
tion KLn,T � 1; as we saw in equation 3.8, should this condition hold it is legitimate to
neglect terms in Q ∼ DT /Ln,T when compared to those in DT in the linearised energy
equation 3.3. However, closer inspection of the Nernst term reveals that the local ap-
proximation also applies to N . Indeed, for our un-magnetised conditions the cross-field
thermoelectric coefficient is directly proportional to the Hall parameter, i.e., βc

∧ ∝ χ
(Braginskii 1965), so that

∂βc
∧

∂χ
=
βc
∧
χ

⇒ N = AN
λ2T
τTT0

∂

∂x

(
τT
∂T0
∂x

)
∼ AN/L

2
T,n, (4.3)

and thus, since DR ≈ AN , we have (cf. equation 3.8 and 3.9)[
DTK

2 −N
]

= DTK
2
[
1−O

(
1/K2L2

T,n

)]
≈ DTK

2. (4.4)

Consistent application of the local condition KLn,T � 1 to neglect Q in equation 3.3
therefore demands that we neglect N in the dispersion relation (equation 3.9). That we
cannot do so at the stage of linearising the induction equation 3.4 is a consequence of
the relatively small value of the resitive diffusion coefficient DR when compared to the
thermal diffusion coefficient DT (by the factor 1/Λ2, cf. equations 3.1 and 3.5).

4.3. Lateral Effects

Our discussion in the previous two sections demonstrates that (as a consequence of
their common physical basis) the term Q arising from the divergence of the heat-flow
down zeroth-order gradients has the same functional form as N . Furthermore, equations
3.8 and 4.4 establish that both Q and N should be properly neglected in the theory
provided that the local condition KLn,T � 1 holds. It is natural to wonder, therefore,
whether these terms should be retained in the analysis under conditions for which the
local approximation KLn,T � 1 does not apply, in which case we might expect Q to
modify the growth-rate alongside N by acting as an additional source of instability.

To address this supposition, let us consider more carefully the role played by the local
condition in the process of linearisation. Strictly speaking, the proper form for the per-
turbations applied in §3 should postulate some x-dependence, and this is especially true
when we are interested in differential advection or diffusion, because any x-dependence
will have consequences for the lateral compression (or rarefaction) of the perturbations
normal to the wave-vector. To account for such lateral effects, therefore, one must set
δT ≡ δT (x) and δB ≡ δB(x), and in this case equations 3.3 and 3.4 acquire new terms.
For example, after neglecting terms of order (δT )2 and higher, the thermal diffusion
component to equation 3.3 undergoes the transformation

DTK
2

[
1− Q

DTK2

]
→ DTK

2

[
1− Q

DTK2
+O

(
λ2T

K2δT

d2δT

dx2

)
+O

(
λT

K2LT δT

dδT

dx

)]
.

(4.5)
Thus, our perturbation equations 3.3 and 3.4 become coupled second-order ordinary dif-
ferential equations reminiscent of those encountered in problems involving hydrodynamic
stability (Chandrasekhar 1961). Indeed, although the final two differential terms describe
gradients in small quantities, because the ∇Te×∇n0 field generating mechanism respon-
sible for driving initial growth of the instability operates over the density length-scale ln,
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one expects both (dδT/dx)/δT ∼ 1/ln and (d2δT/dx2)/δT ∼ 1/l2n. The differential terms
will thus be of a similar order to the lateral heat-flow term in Q/DT ∼ 1/L2

T,n. In this
way, we see that if the local condition does not hold, then one is obliged to retain not only
Q, but also the differential terms describing gradients in δT , and the eigenvalue problem
becomes one requiring solution of a non-linear system of coupled ordinary differential
equations with eigenfunction solutions δT and δB dependent on appropriate boundary
conditions (cf. Chandrasekhar (1961)). In general such a problem will be non-trivial.

On the other hand, should the local approximation hold, then its utility is now clear.
Provided KLn,T � 1 we can effect a ‘secondary linearisation process’ whereby we discard
the differential terms in equation 4.5 (and similar), and thence solve for the growth rate
Γ algebraically; in so doing, however, consistency requires us to surrender terms in both
Q and N (as described in §4.2). To address the supposition made at the beginning of
this section directly, therefore, we conclude that while it is possible for laterally divergent
transport to drive instability when the local approximation does not apply, proper treat-
ment of such effects requires a more sophisticated analysis than that considered here; it
is not sufficient simply to add terms in Q and N to the dispersion relation 3.9. Indeed,
substantial further investigation inclusive of numerical simulations is needed to better
determine the role played by lateral effects in de-stabilising laser plasmas under such
conditions.

5. Super-Gaussian Transport and Suppression of Instability

Although our argument here has focused on classical (Braginskii) transport effects, it
remains for us to comment briefly on how the loss of the advection mechanism N affects
those results stated in our earlier context (Bissell et al. 2013) where the primary concern
was super-Gaussian transport phenomena arising from strong inverse-bremsstrahlung
heating. One obvious consequence is stabilisation of the plasma to the field-generating
instability when lT ln < 0. Nevertheless, the reduction of both ∇Te×∇ne field generation
and the Righi-Leduc heat-flow when super-Gaussian transport applies, means that our
original predictions (Bissell et al. 2013), i.e., heavy suppression of instability growth-rates
due to I.B. (by as much as ∼ 80%), remain valid for lT ln > 0. Of course, if hydrodynamic
motion is included in the analysis, then instability can prevail without Nernst for lT ln < 0
(Ogasawara et al. 1980); however, in this case we would continue to expect significant
growth-rate suppression by I.B. heating because super-Gaussian transport phenomena
are unaffected by hydrodynamic flow (Bissell et al. 2013).

6. Conclusion

The usual treatment of Nernst advection effects (Brownell 1979; Hirao & Ogasawara
1981) on the field-generating thermal instability (Tidman & Shanny 1974) leads to ambi-
guities in the dispersion relation for the growth of unstable modes. For example, and as
we noted in a recent article (Bissell et al. 2013), lateral compression by the Nernst effect
ostensibly yields peak-growth rates which correspond to vanishing wavenumber k → 0,
violating the local approximation kln,T � 1 (§1 and §3). In this short article we have
sought to determine the source of such ambiguities more formally, both by re-examining
the basic analysis, and returning to the physical meaning of the Nernst effect (§2 and
§3). In particular, we argued that consistent (and necessary) application of the local
approximation requires the Nernst advection term to be omitted from the dispersion
relation 3.9 (§3 and §4), meaning that for un-magnetised conditions Nernst cannot drive
instability in the fashion commonly cited (Brownell 1979; Hirao & Ogasawara 1981). One
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consequence of such an interpretation is that—in the absence of significant hydrodynamic
motion (Ogasawara et al. 1980)—un-magnetised laser-plasmas should be stable to the
field-generating instability whenever zeroth-order temperature and density gradients are
anti-parallel, i.e., lnlT < 0 (§5).

Naturally, we do not go so far as to state that Nernst advection can never drive in-
stability, since it is possible that further investigation of lateral effects might lead to a
compressive mechanism precluded by the approach taken here; though such an investi-
gation would require solving a more complex eigenvalue problem formulated in terms of
second-order differential equations, in combination with a thorough numerical investiga-
tion, and is therefore left as future research (§4.3). Indeed, theoretical and computational
work reported elsewhere has shown that the Nernst effect is expected to drive a related
field-compressing magneto-thermal instability in laser-plasmas under sufficiently magne-
tised conditions (Bissell et al. 2010, 2012).

The author would like to thank two anonymous referees for insightful comments on
the original manuscript which have helped to clarify its argument. JJB is supported by
a Leverhulme Trust Grant (Tipping Points Project, University of Durham).
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