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Microcanonical and thermal instanton rate theory for
chemical reactions at all temperatures

Jeremy O. Richardson∗

Semiclassical instanton theory is used to study the quantum effects of tunnelling and delocaliza-
tion in molecular systems. An analysis of the approximations involved in the method is presented
based on a recent first-principles derivation of instanton rate theory [J. Chem. Phys., 2016, 144,
114106]. It is known that the standard instanton method is unable to accurately compute thermal
rates near the crossover temperature. The causes of this problem are identified and an improved
method is proposed, whereby an instanton approximation to the microcanonical rate is defined
and integrated numerically to obtain a thermal rate at any temperature. No new computational
algorithms are required, but only data analysis of a number of standard instanton calculations.

1 Introduction
Instanton theory provides a method which allows the computa-
tion of thermal rate constants of chemical reactions including the
quantum-mechanical effects of tunnelling and zero-point energy.
It is sometimes known as semiclassical transition-state theory
(SCTST)1,2 as it provides an approximate quantum-mechanical
generalization of classical transition-state theory. Instead of
requiring knowledge only of the geometry at the top of the
potential-energy barrier (the transition-state), one locates a path-
way which describes the dominant tunnelling pathway through
the barrier.

The theory has been used extensively in a wide range of appli-
cations in physics and chemistry based on “ImF” arguments.3–30

The author recently rederived the method from first-principles,
using semiclassical approximations to the exact expression for
the rate.31 All these instanton approaches give equivalent results,
however.32

The instanton method is closely related to path-integral rate
theories, as the instanton pathway represents an optimized path-
integral configuration describing the reaction. Although centroid-
based path-integral methods33,34 often perform fairly well for
symmetric barriers, they can fail spectacularly in asymmetric sys-
tems.35 This is best understood by considering the optimum path-
integral configuration under the centroid constraint. For sym-
metric systems, it is equal to the instanton, but this is not true
for asymmetric systems.14 Centroid-based methods can therefore
make an error in a part of the formula which is exponentiated
and causes large errors in the rate. Ring-polymer TST (RPTST) is
defined such that the constraint on the ring polymer ensures that
the instanton remains the optimum configuration.14 It is because

Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.

ring-polymer molecular dynamics (RPMD)36,37 is closely related
to RPTST that it gives good approximations for rates in the deep-
tunnelling regime.14

It is particularly important to have a clear understanding of
the approximations involved in the derivation of the instanton
approach if it is to be extended to new problems or if it is to be
used as inspiration for designing improved path-integral quantum
transition-state theories (QTSTs).

One extension of the first-principles derivation has already
been obtained: a nonadiabatic instanton which gives the rate of
electron transfer in the golden-rule limit.38,39 Work is in progress
to derive a similar formula for the Marcus inverted regime and to
relax the restriction of the golden-rule limit to bridge the nonadi-
abatic and adiabatic limits. In the same way that instanton theory
is related to RPMD, it may be possible to find nonadiabatic path-
integral rate theories related to these instantons, which would
define a method applicable also to liquid systems. Note that some
path-integral and instanton formulations of these reactions have
been formulated, although they are based on less-rigorous princi-
ples which are not necessarily valid for anharmonic systems.40–45

The first-principles derivation of instanton theory was based on
a number of semiclassical approximations obtained by asymptotic
relations. According to this principle, B(λ ) is a valid approxima-
tion to A(λ ) if

A(λ )∼ B(λ ), λ → λ0. (1)

This notation is equivalent to the statement limλ→λ0
A(λ )/B(λ ) =

1, where the limiting value, λ0, of the parameter λ can be any
number including 0 or ∞.46 An important example of an asymp-
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totic relation is provided by the steepest-descent integration

∫ z>

z<
g(z)e−λ f (z) dz∼ g(z∗)

√
2π

λ f ′′(z∗)
e−λ f (z∗), λ → ∞, (2)

where z∗ is the minimum of f (z) between the limits z< and z>.†

In this paper, an analysis of the instanton rate will be made to
show that the first-principles derivation has indeed led to a for-
mula which is asymptotically related to the quantum-mechanical
rate. The theory is therefore exact at low temperature in certain
limiting cases, which is not true of many other related QTSTs.

It is well known9,11 that the standard instanton approach fails
to predict the rate accurately when the reciprocal temperature
β = 1/kBT is near crossover, defined by βc = 2π/h̄ω̄0, where ω̄0 is
the imaginary frequency at the barrier top. Above the crossover
temperature, the instanton orbit does not exist and the theory is
not valid.

The reason why the instanton rate cannot be used near
crossover, has been put down to the non-validity of the steepest-
descent approximation. Suggestions have been given to correct
the results in this regime by including anharmonic terms into
the expansion of the Boltzmann operator, e−β Ĥ .11,47–50 This re-
sults in different expressions being used in different temperature
regimes and it is not always obvious where one formula should
take over from the other.

In this paper, it shall be shown that it is not necessarily
the steepest-descent approximations in the position coordinates
which are to blame and that the problem can be solved by a differ-
ent approach. The new approach obtains an approximation to the
microcanonical rate over a range of energies which is weighted by
a thermal distribution and integrated numerically to give a single
unified formula for semiclassical reaction rates at all temperatures
of interest. A number of instantons at different energies will be
required in order to do this, although this may not necessarily be
a concern to the efficiency of the method. It is often the case that
the rate of a reaction is required at multiple temperatures such
that a number of independent instanton calculations have to be
carried out. Even if the rate at only one temperature is desired,
the instanton is often optimized at successively lower tempera-
tures using initial guesses generated from optimizations at higher
temperatures. A standard application of instanton theory discards
this extra information and only takes one instanton into account.
It is not surprising that by retaining all the data, it is possible to
formulate a method which gives a higher accuracy.

2 First-principles derivation of instanton
theory

In this section, a summary is given of the first-principles deriva-
tion of instanton theory from Refs. 31 and 38. Although we
write the formulae in terms of continuous classical trajectories,
the method is intended to be used in the ring-polymer instanton
formalism whereby the pathways are discretized as described in
Refs. 14 and 39.

† See Ref. 46 for the derivation and a fuller discussion of the validity of this relation.

Consider the dynamics of a chemical reaction within the Born-
Oppenheimer approximation. The Hamiltonian is Ĥ = |p̂|2/2m+

V (x̂), where x = (x0, . . . ,x f−1) are the Cartesian coordinates of f
nuclear degrees of freedom. These nuclei move on the potential-
energy surface V (x) with conjugate momenta p = (p0, . . . , p f−1).
Without loss of generality, the degrees of freedom have been
mass-weighted such that each has the same mass, m.

An ( f − 1)-dimensional dividing surface, defined by σ(x) = 0,
separates reactants, σ < 0, from products, σ > 0. Although it
makes no difference to the rate, it is usual to place the dividing
surface such that it cuts through the potential barrier. The exact
expression for the microcanonical cumulative reaction probability
at energy E is51,52

P(E) = 2h̄2 Tr
[
F̂ Im Ĝ(E)F̂ Im Ĝ(E)

]
, (3)

where F̂ =− ih̄
2m

(
δ [σ̂ ] ∂

∂ σ̂
+ ∂

∂ σ̂
δ [σ̂ ]

)
is the flux from reactants to

products. The Green’s functions will play an important role in this
derivation and are defined by

G(x′,x′′,E) =− i
h̄

∫
∞

0
K(x′,x′′, t)eiEt/h̄ dt, (4)

where K(x′,x′′, t) = 〈x′|e−iĤt/h̄|x′′〉 is the quantum-mechanical
propagator. Note that only the imaginary part of the Green’s func-
tion is needed to compute the rate.

The thermal reaction rate is defined by

kZr =
1

2π h̄

∫
∞

0
P(E)e−βE dE, (5)

where Zr is the partition function of the reactants per unit volume.

The standard instanton theory was obtained by taking semiclas-
sical approximations to the Green’s functions and then evaluating
the trace in Eq. 3 by steepest-descent integration. A semiclassical
approximation to the thermal rate is then obtained by steepest-
descent integration of Eq. 5. The new approach suggested in this
work, however, is to obtain an approximation to P(E) and to in-
tegrate over energy numerically.

In order to derive a semiclassical approximation to the Green’s
function, we replace the quantum-mechanical propagator by the
van-Vleck propagator.53–56 This is the semiclassical limit of Feyn-
man’s exact path-integral propagator57 and is defined in terms
of a sum over classical trajectories of time t, from x(0) = x′′ to
x(t) = x′ to give

G(x′,x′′,E)∼− i
h̄ ∑

cl. traj.

∫
∞

0

√
C

(2πih̄) f eiS(x′,x′′,t)/h̄+iEt/h̄ dt (6)

as h̄ → 0. The action along each trajectory is S(x′,x′′, t) =∫ t
0

[
1
2 m
∣∣∣ ∂ x

∂ t

∣∣∣2−V (x(t))
]
dt and the density associated with the tra-

jectory is C =
∣∣∣− ∂ 2S

∂x′∂x′′

∣∣∣. The sign of the square root has to be

carefully chosen to keep the function continuous in the complex
plane. This gives a phase change of e−iπ/2 when passing through
each conjugate point.54–56

The integral over t is then evaluated by the method of steepest
descent to give a semiclassical approximation to the Green’s func-
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tion. The stationary points of the exponent solve ∂ S
∂ t +E = 0 and

since − ∂ S
∂ t defines the energy of a trajectory passing from x′′ to x′

in time t, they correspond to classical trajectories of energy E.

Below the barrier, where E <V (x′′) and E <V (x′), these classi-
cal trajectories must evolve in imaginary time such that their ki-
netic energy is negative. It was found in Ref. 38 that trajectories
which bounce an odd number of times contribute to the imag-
inary part of the semiclassical Green’s function whereas those
which bounce an even number of times (or do not bounce at all)
contribute to the real part. A bounce is counted whenever the
momentum along the trajectory becomes zero.

As longer imaginary-time trajectories are exponentially
damped, the dominant contributions to the imaginary part of
the Green’s function come from only two trajectories: one which
bounces to the left of the dividing surface (t =−iτ−) and the other
which bounces to the right (t =−iτ+).

This gives ImG(x′,x′′,E)∼ Γ−+Γ+ as h̄→ 0, where

Γ
± =− 1

2h̄

√
|C̄|

(2π h̄) f

√
2π h̄

∣∣∣∣∂ 2S̄±

∂τ±2

∣∣∣∣−
1
2

e−S̄±/h̄+Eτ±/h̄ (7)

=− 1
2h̄

√
|D̄±|

(2π h̄) f−1 e−W̄±/h̄, (8)

where S̄± =−iS(x′,x′′,−iτ±) and C̄± =
∣∣∣− ∂ 2S̄±

∂x′∂x′′

∣∣∣. The second line

follows from the Legendre transformation W̄± = S̄±− ∂ S̄±
∂τ±

τ± and

D̄± =
(

∂ 2S̄±

∂τ±2

)−1
C̄±.31,38 The factor of a half appears because the

contour of integration only passes through half of the maximum
peak in the direction which contributes to the imaginary part of
the Green’s function. This is explained more fully in Sec. 4 and
Ref. 38.

In Ref. 31, it was shown that when replacing the Green’s func-
tions with their semiclassical approximations,

P(E) ∼ 4
h̄2

m2

∫∫∫∫
SD

p̄(x′)p̄(x′′)Γ−Γ
+

δ (q′)δ (q′′)dq′dq′′dQ′dQ′′

(9)

as h̄→ 0, where p̄(x′) =
∣∣∣ ∂ S̄±

∂x′

∣∣∣ = ∣∣∣ ∂ W̄±

∂x′

∣∣∣ is the magnitude of the

momentum of a trajectory at its end point. The coordinate
transformation from x to (q,Q) is defined such that q is paral-
lel to the trajectory and equal to 0 at the dividing surface, and
Q = (Q1, . . . ,Q f−1) are the perpendicular modes.58 The integrals
over the perpendicular modes should also be performed by steep-
est descent, whereas those over q′ and q′′ can be done exactly due
to the presence of the delta functions.

The stationary points are defined by ∂ W̄
∂Q′ =

∂ W̄
∂Q′′ = 0, where W̄ =

W̄−+W̄+. Here the trajectory which bounces to the left of the
dividing surface joins smoothly with that which bounces to the
right to form a continuous imaginary-time periodic orbit, called
the instanton. Using D̄± = −m2

p̄(x′)p̄(x′′)A±, where A± =
∣∣∣− ∂ 2W̄±

∂Q′∂Q′′

∣∣∣

and31,55,56,58

Z‡ =
√

A−A+

∣∣∣∣∣ ∂ 2W̄
∂Q′∂Q′

∂ 2W̄
∂Q′∂Q′′

∂ 2W̄
∂Q′′∂Q′

∂ 2W̄
∂Q′′∂Q′′

∣∣∣∣∣
− 1

2

, (10)

we obtain the first semiclassical approximation (SC1) to the
microcanonical cumulative reaction probability,31

PSC1(E) = Z‡ e−W̄/h̄. (11)

The semiclassical instanton approximation to the thermal rate
is obtained from Eq. 5 using PSC1(E) and evaluating the integral
using the method of steepest descent. In this case the exponent
is −W̄/h̄−βE which can be rearranged to −

(
W̄ + 2πβ

ω̄0βc
E
)
/h̄ such

that it is of the form of Eq. 2. We can therefore write k ∼ kSC1 as
h̄→ 0 for a given value of β/βc, where

kSC1Zr =
[
2π h̄W̄ ′′(E∗)

]− 1
2 Z‡ e−W̄ (E∗)/h̄−βE∗ , (12)

E∗ is defined such that W̄ ′(E∗) = −β h̄ and here primes denote
differentiation with respect to E.

In Sec. 3, we analyse the rates obtained by the instanton ap-
proach when applied to an analytically solvable one-dimensional
system and suggest a simple ways to extend its applicability. The
derivation is analysed in Sec. 4 for a multidimensional problem
and a modification to the steepest-descent approach is suggested
which improves the accuracy of the approximation. Section 5 ap-
plies the new method to a multidimensional system and compares
the results with the standard approach and the exact rates.

3 Analysis of instanton theory applied to a
one-dimensional system

In this section, we will analyse the semiclassical instanton ap-
proximation to the thermal and microcanonical rate for the one-
dimensional symmetric Eckart barrier. The potential is defined
by

V (x) =V ‡ sech2 x
a
. (13)

For this surface, the imaginary frequency at the barrier top is ω̄0 =√
2V ‡/ma2. The exact expression for the reaction probability for

this system can be given in closed form by59,60

P(E) =
sinh2

α
√

η

sinh2
α
√

η + cosh2
√

α2−π2/4
, (14)

where α = π
√

2ma2V ‡/h̄ and η = E/V ‡ is a reduced energy.
Throughout this paper, the reaction probability is only defined
for energies above the reactant asymptote, E > 0.

When the parameter α is large, the barrier is high and wide and
the semiclassical approximations are valid. In fact, asymptotic
analysis46 shows that, for a given value of η > 0,

P(E)∼ e2α
√

η

e2α
√

η + e2α
=
[
1+ eW̄ (E)/h̄

]−1
, α → ∞, (15)

where W̄ (E) = 2h̄α(1−√η).

For this one-dimensional system, the expression for the reaction
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probability obtained by semiclassical instanton theory, Eq. 11, is

PSC1(E) =

{
e−W̄ (E)/h̄ 0 < E <V ‡

1 E ≥V ‡
, (16)

where W̄ (E) = 2
∫ x>

x< p̄(x)dx is the abbreviated action along the in-
stanton pathway and x≶ are the turning points. For the Eckart
barrier it can be evaluated to give the same result as W̄ (E) found
in Eq. 15.60 PSC1(E) is of course equal to the well-known WKB
approximation for transmission of a one-dimensional barrier.60,61

Note that above the barrier, we have used the the semiclassical re-
sult as derived in the Appendix. This approximation is formally
asymptotically correct for a given value of η obeying 0 < E < V ‡

or E >V ‡ such that PSC1(E)∼ P(E) as α→∞. All these instanton
approximations are thus valid for high and wide barriers. How-
ever, just because it is asymptotically related to the exact result
does not mean that it is a good approximation for finite α. For
instance, it is obviously a poor approximation at energies near
the barrier when W̄ (E) becomes small. Formally, this is because
there is no such asymptotic relation at E = V ‡ at which point
PSC1(V ‡) = 1 whereas P(V ‡)∼ 1

2 .

There is a simple way to correct this error in the SC1 expres-
sion, by replacing it with the asymptotic result of Eq. 15. For
more general potential-energy surfaces, the value of W̄ (E) is not
known analytically but can be obtained numerically by an instan-
ton calculation. However, this will only be possible when W̄ (E) is
available, i.e. for energies lower than the barrier height when the
instanton exists.

Near the barrier top or above it, the instanton is collapsed so
knowledge is only required for a small region about the transition-
state. As it is assumed that all potential-energy barriers have
the parabolic form, Vpb(x) = V ‡ − 1

2 mω̄2
0 x2, in this small region

around their top, we can use the corresponding transmission to
improve the semiclassical result. The exact result for this case is

Ppb(E) =
[
1+ eW̄pb(E)/h̄

]−1
, where W̄pb(E) = 2π(V ‡−E)/ω̄0 is the

abbreviated action for the parabolic barrier.60

We can therefore suggest the form of an improved instanton
theory, which we call the SC3 approximation,

PSC3(E) =


[
1+ eW̄ (E)/h̄

]−1
0 < E <V ‡

Ppb(E) E ≥V ‡
. (17)

Asymptotic approximations are not unique and adding higher-
order terms is always possible. A simple justification of Eq. 17 is
that it doesn’t break any of the asymptotic relations which existed
previously and now in fact PSC3(E)∼ P(E) as α→∞ for all E > 0.
Equation 17 was previously suggested by Kemble60,62,63 based
on a WKB analysis. To calculate PSC3(E), we require no more
information than is obtained in a typical instanton calculation, i.e.
the abbreviated action W̄ (E) and the imaginary barrier frequency
ω̄0.

Note that Eq. 17 is exact for a parabolic barrier. Because the
exact transmission for the Eckart barrier is asymptotic to the
parabolic barrier for E ≥ V ‡, PSC3(E) is an asymptotic limit for
the Eckart barrier at all energies. One therefore assumes that

it will also be a good approximation for real chemical systems,
which tend to have potential barriers of a similar shape.

The SC1 approximation to the thermal rate is defined by
Eq. 12, where for this one-dimensional system Z‡ = 1 and Zr =√

m/2πβ h̄2 is the translational partition function of the reactants
per unit length. For the Eckart barrier, whose crossover temper-
ature is given by βc = α/V ‡, this can be expressed analytically
using the location of the stationary point, E∗/V ‡ = β 2

c /β 2, which
gives

kSC1 =

√
2V ‡

m
βc

β
e−S̄/h̄, (18)

where S̄ = h̄α(2−βc/β ).
This result is exact in the limit that α → ∞ for a given value of

β/βc. Such an asymptotic relation does not exist for many other
approximate quantum rate theories. For instance, h-RPTST is de-
fined by performing the integrals in RPTST by steepest descent;14

this gives a rate with the correct exponent but a slightly different
prefactor from that obtained by SC1.‡ This suggests that instan-
ton rate theory gives the more fundamental description of deep
tunnelling and shows that the quantum transition-state theory ap-
proximation which leads to RPTST64,65 is not exact, even in the
limiting case of a high and wide barrier. This explains the obser-
vation that the free-energy version of instanton theory is superior
to RPTST at low temperatures for the atom-diatom scattering cal-
culations performed in Ref. 66.

Of course RPTST performs well at higher temperatures where
it tends to classical transition-state theory. Unlike RPTST, the SC1
rate suffers from problems near the crossover temperature due
partly to the errors in Eq. 16 and partly to the steepest-descent
approximation for the energy integral. An improved thermal rate
can be defined using Eq. 17 as

kSC3Zr =
1

2π h̄

∫
∞

0
PSC3(E)e−βE dE, (19)

which can be integrated numerically.
Using the two different approximations described so far we ob-

tain the thermal rate constants shown in Figure 1 for a model
system describing a proton transfer.

Of course, none of the semiclassical results is exact because the
value of α is given by the chemical barrier under study and can-
not be made arbitrarily large. The SC3 rates coincide with the
SC1 approximation at low temperatures because in this region
the instantons are much lower than the barrier height making
PSC1(E) ≈ PSC3(E) and the steepest-descent integration over en-
ergy is accurate. At high temperatures, kSC3 correctly tends to the
classical result, which is a consequence of the quantum-classical
correspondence principle. The major improvement of the SC3 in-
stanton approximation over the standard approaches is that the
rates are also accurate in the region of the crossover temperature.
It avoids the discontinuity and remains finite at all temperatures.
For this value of α, the error remains below 25%, which is often
quite acceptable in a chemical reaction rate calculation and prob-

‡ The extra prefactor term was called αh(β ) in Ref. 14.
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Fig. 1 In the upper panel, dimensionless thermal rates calculated for
the Eckart barrier are shown with various levels of theory: exact (black),
classical (dashed), parabolic barrier (blue), standard semiclassical
instanton SC1 (green), new improved instanton SC3 (red). In this
example, the parameter α = 12 is chosen to replicate results from Refs.
34 and 14. Relative errors are given in the lower panel per cent.

ably cannot be beaten by other approximate path-integral rate
theories.

Before a general version of the improved SC3 approximation
can be obtained, we must look more closely at the microcanonical
approximations for the case of a multidimensional system.

4 Microcanonical Instanton Theory

It was already noted by Chapman et al.2 that there is a prob-
lem with the semiclassical instanton estimation of microcanonical
rates in multidimensional systems. This becomes apparent by
considering a separable two-dimensional system of a barrier un-
coupled to a harmonic well with frequency ω1 and eigenstates
En = (n+ 1

2 )h̄ω1. The correct cumulative reaction probability for
this reaction is related to the transmission of the one-dimensional
barrier, P1D(E) by

P(E) =
∞

∑
n=0

P1D(E−En) (20)

∼
∞

∑
n=0

e−W̄ (E−En)/h̄, h̄→ 0, (21)

where in the second line, we have used the one-dimensional semi-
classical instanton approximation and assumed that E is less than
the barrier height. However, for this system, the multidimen-

sional semiclassical instanton approach, Eq. 11, takes the form

PSC1(E) =
[
2sinh 1

2 u1(E)
]−1

e−W̄ (E)/h̄

=
∞

∑
n=0

e−W̄ (E)/h̄−(n+ 1
2 )u1(E), (22)

where W̄ (E) is the abbreviated action of the instanton orbit,
u1(E) = ω1τ is the stability parameter, τ =− ∂ W̄

∂E is the imaginary
period, and we have used a series expansion for the hyperbolic
function. Equation 22 is only a good approximation to Eq. 21 in
the limit that u(E)→ 0.§ However, in molecular systems, it is quite
common for the vibrational frequencies to be large and for this ap-
proximation to fail. Worse, is that it is defined only for E <V ‡ and
a significant zero-point energy contribution from the vibrational
modes will make the method unable to study the transmission
anywhere near the barrier top, which occurs at V ‡ +E0.

An improved result is obtained by taking a slightly differ-
ent steepest-descent approximation in the derivation of the
Green’s function from that of Sec. 2. Taking as an example a
parabolic barrier uncoupled to a set of f −1 harmonic oscillators,
Vpb+h(x) =V ‡+∑

f−1
j=0 mω2

j x2
j , where ω0 = iω̄0 and ω̄0 > 0, whereas

ω j > 0 for j > 0. The classical action is given by

S(x′,x′′, t) =
f−1

∑
j=0

mω j

2sinω jt

[(
(x′j)

2 +(x′′j )
2
)

cosω jt−2x′jx
′′
j

]
(23)

and the prefactor in the van-Vleck propagator by

C =
f−1

∏
j=0

c j, c j =
mω j

sinω jt
. (24)

In the approach followed in Sec. 2, we would now perform a
steepest-descent approximation to the integral in Eq. 6 to obtain
a semiclassical approximation to Ĝ. The conjugate times, given
by t = nπ/ω j for n ∈ Z, are poles of the integrand. For E < V (x′)

and E <V (x′′), the exponent, iS/h̄+ iEt/h̄, has a series of station-
ary points at imaginary times corresponding to all possible direct
or bouncing trajectories under the parabolic barrier. We deform
the contour of integration to the one shown in Figure 2, which
is a path of steepest descent of the exponent and passes through
its stationary points. By Jordan’s lemma, the integral along this
contour is equal to the one in Eq. 6 since we can give E an in-
finitesimal positive imaginary part to ensure that the integrand
tends to 0 as t → ∞. As shown above, this approach gives poor
results for the microcanonical cumulative reaction probability of
multidimensional systems. However, when the low-temperature
thermal reaction rate is obtained by steepest-descent evaluation
of Eq. 5, it apparently gives good results again. This is probably
due to an error cancellation, which is as yet unidentified.

The reason for the poor result is, however, now clear. Mak-
ing the variable transformation t = −iτ gives C̄ = ∏

f
j=0 c̄ j and

c̄ j = −ic j = mω j/sinhω jτ. On the negative imaginary-t axis, it
becomes apparent that c̄ j ( j ≥ 1) acquires an exponential de-

§ It also happens to be exact for the special case of a parabolic barrier.
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Re t

Im t

Fig. 2 Argand diagram for the separable parabolic+harmonic system.
Filled circles represent poles of the integrand and open circles represent
stationary points of the exponent. Assuming x′0 + x′′0 > 0, they
correspond to the trajectories depicted in position space to the side of
each stationary point. The second and third stationary points, located at
−iτ+ and −iτ−, are those which contribute to the imaginary part of the
semiclassical Green’s function. As they are saddle points, i.e. maxima in
one direction and minima in the other, they only contribute as the
steepest-descent contour departs (and not as it arrives) thus giving a
factor of half to the integral.

pendence on τ and should thus be treated as part of the expo-
nential rather than the prefactor in the steepest-descent approx-
imation. This is especially important when ω j is large, which is
commonly the case in chemical applications. This is not true of
c̄0 = mω̄0/sin ω̄0τ which remains oscillatory. We therefore rewrite
Eq. 6 as

G(x′,x′′,E)∼− i
h̄

∫ √ c̄0

(2π h̄) f eiS(x′,x′′,t)/h̄+φ/h̄+iEt/h̄ dt (25)

as h̄→ 0, where φ = 1
2 h̄∑

f−1
j=1 ln c̄ j and the integration contour is

depicted in Figure 2.

Stationary points of the exponent are defined by values of t
which solve

i
∂ S
∂ t

+
∂ φ

∂ t
+ iE = 0 (26)

or equivalently

E =
∂ S̄
∂τ
− ∂ φ

∂τ
. (27)

Although the addition of φ shifts the stationary points slightly, for
low enough E, they remain on the imaginary axis such that the
schematic in Figure 2 still represents the steepest-descent integra-
tion contour. Note that for the case of harmonic oscillators with

high frequency,

∂ φ

∂τ
=−1

2

f−1

∑
j=1

h̄ω j

tanhω jτ
≈−1

2

f−1

∑
j=1

h̄ω j. (28)

The total energy is therefore the sum of the instanton energy, ∂ S̄
∂τ

,

and the zero-point energy of perpendicular modes, 1
2 ∑

f−1
j=1 h̄ω j.

Because of the phase change after the conjugate time
t =−iπ/ω̄0 and taking into account the direction of the steepest-
descent contour, it is the single-bounce trajectories which con-
tribute to the leading asymptotic terms for the imaginary part of
the Green’s function. Their imaginary times, which solve Eq. 27,
are denoted τ± depending on whether it bounces once on the
right or left of the dividing surface. The three other trajectories
depicted in Figure 2 only contribute to Re Ĝ and not therefore
to the rate. As before, the total imaginary part of the Greens’
function is ImG(x′,x′′,E) ∼ Γ+ + Γ− as h̄→ 0, where Γ± is the
contribution from just one of these trajectories but is now defined
by

Γ
± =− 1

2h̄

√
|c̄±0 |

(2π h̄) f

√
2π h̄

∣∣∣∣∂ 2S̄±

∂τ±2 −
∂ 2φ±

∂τ±2

∣∣∣∣−
1
2

e−S̄±/h̄+φ±/h̄+Eτ±/h̄

=− 1
2h̄

√
|D̄±|

(2π h̄) f−1

[
1−
(

∂ 2S̄±

∂τ±2

)−1
∂ 2φ±

∂τ±2

]− 1
2

e−W̄±/h̄− ∂ φ±
∂τ± τ±/h̄,

(29)

where in all cases the terms with a ± superscript correspond to
the imaginary-time trajectory with τ±.

Applying the new definition of Γ± to Eq. 9, we obtain the SC2
approximation for the microcanonical cumulative reaction prob-
ability,

PSC2(E) = 4
h̄2

m2 (2π h̄) f−1 Z‡ p̄(x′)p̄(x′′)√
A−A+

Γ
−

Γ
+. (30)

Note that the SC1 and SC2 approximations are equivalent for
a one-dimensional system but that the SC2 result is expected to
perform better in multidimensional problems. For the case that
we have a separable system of a one-dimensional barrier uncou-
pled to a set of harmonic oscillators of high frequency, such that
∂ 2φ±

∂τ±2 ≈ 0, the results reduce to

Γ
± =− 1

2h̄

√
|D̄±|

(2π h̄) f−1 e−W̄±/h̄+ 1
2 ∑

f−1
j=1 ω jτ

±
, (31)

such that

PSC2(E) = Z‡ e−W̄/h̄+ 1
2 ∑

f−1
j=1 ω jτ , (32)

where τ = τ− + τ+ and here Z‡ =
[
∏

f−1
j=1 2sinh 1

2 ω jτ
]−1

. In the

limit of high frequencies, this gives

PSC2(E) = e−W̄/h̄, (33)

which is the instanton approximation to the cumulative reac-
tion probability of the one-dimensional system at the energy
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E − 1
2 ∑

f−1
j=1 h̄ω j. This is the leading term of Eq. 21, equivalent

to assuming that the perpendicular modes are all in their ground
states. We have thus managed to obtain an instanton approxi-
mation to a microcanonical rate which is a good approximation
both for one-dimensional and multidimensional systems and is
applicable for energies at least up to the barrier height plus the
zero-point energy of the perpendicular modes.

We apply the barrier-top correction of Sec. 3 also to the mul-
tidimensional microcanonical cumulative reaction probability to
give

PSC3(E) =

PSC2(E)
[
1+ e−W̄/h̄

]−1
E ≤ Emax

Ppb+h(E) E > Emax

, (34)

where PSC2(E) is given in Eq. 30. Emax ≈V ‡− ∂ φ

∂τ

∣∣∣
τ=βch̄

is defined

as the highest energy for which the corresponding instanton re-
mains stretched. Once it is collapsed, we switch to the exact result
for the parabolic+harmonic system,

Ppb+h(E) =
∞

∑
n1=0
· · ·

∞

∑
n f−1=0

Ppb

(
E−

f−1

∑
j=1

(n j +
1
2 )h̄ω j

)
. (35)

Unfortunately, this does not necessarily match exactly with the
microcanonical instanton approximation just below the barrier.
This is not a significant problem as the integral in Eq. 5 will
smooth out the discontinuity and give a continuous function of
k with respect to β .

In practice, rather than solving the transcendental equation
Eq. 27 for τ± for a given value of E, one can use it to define E di-
rectly from a given value of τ. Trajectories can then be optimized
using the usual ring-polymer instanton approach.14,39 A number
of values of τ will be required in order to evaluate the integral,
and each will require an independent calculation of an instanton.
Derivatives of φ± with respect to τ± can be obtained by finite
differences by reoptimizing trajectories with slightly longer and
slightly shorter imaginary times, keeping the end-points fixed.

Although these formula were derived with the
parabolic+harmonic system in mind, the approach is also
valid for more general systems. There are however a number
of ways in which φ could be defined for a nonseparable system.
In anharmonic and asymmetric systems, it may happen that
∂ φ+

∂τ+ 6= ∂ φ−

∂τ−
such that there is not a unique definition for the total

energy represented by the instanton. In these cases, it may be
possible to simply average the two results. Tests will have to
be performed to discover which precise definition performs best
over a wide range of problems.

5 Thermal instanton rate theory
As in the one-dimensional case, the thermal reaction rate of a
multidimensional system is obtained from the cumulative reac-
tion probability using numerical integration of Eq. 19. After com-
puting PSC3(E) at a range of energies, the thermal rate can be ob-
tained at many different temperatures without recomputing any
instantons. To be consistent with the semiclassical approxima-
tions, the appropriate reactant partition function per unit volume

should be used, employing harmonic approximations for the vi-
brational modes.

Here, we compare the results of various approaches on a sim-
ple test system with parameters chosen to model the transition-
state of the gas-phase H+H2 reaction. A two-dimensional poten-
tial is defined as an uncoupled sum of the Eckart barrier, Eq. 13,
with V ‡ = 0.425 eV and a = 0.734 a.u., in one direction and a har-
monic oscillator, with ω1 = 2055 cm−1, in the other. The mass
was chosen to be m = 1061 a.u. This system has a crossover
temperature given by βc ≈ 850 a.u. and a zero-point energy of
1
2 h̄ω1 ≈ 0.128 eV. The reactant partition function per unit length

is Zr =
√

m/2π h̄2
β
[
2sinh 1

2 h̄βω1
]−1

.

For comparison, the rate given by Eyring’s TST,67 which ne-
glects tunnelling effects, is given by

kTSTZr =
1

2πβ h̄

[
f−1

∏
j=1

2sinh 1
2 h̄βω j

]−1

e−βV ‡
, (36)

whereas the exact rate of the parabolic+harmonic system is60

kpb+h =
1

2π h̄Zr

∫
∞

−∞

Ppb+h(E)e−βE dE (37)

=
1
2 h̄βω̄0

sin 1
2 h̄βω̄0

kTST, β < βc. (38)

Results for the microcanonical rate are presented in Table 1
and for thermal rates in Table 2. The results of the SC3 approx-
imation compare very well with the exact rates throughout and
the relative errors remain below 20%, whereas each of the other
approximations fails in a particular regimes. At higher energies
than those presented in Table 1, the SC2/SC3 instanton becomes
collapsed and the parabolic barrier expression is used. This is a
good approximation in this regime.

kTST is of course unable to describe tunnelling and is many or-
ders of magnitude too small at low temperatures. The parabolic
barrier approximation to the microcanonical rate becomes good
near the barrier top. The thermal rate based on this approxima-
tion is good at high temperatures but in error near and below
the crossover temperature where it tends to infinity and becomes
undefined. The standard SC1 instanton rates are equal to the
SC3 approximation at low temperature but perform poorly near
crossover. PSC1(E) cannot be obtained for E >V ‡ and is obviously
inferior to the SC3 approximation at low energies.

Table 1 Microcanonical cumulative reaction probability obtained from
various methods: Ppb+h(E) from Eq. 35; PSC1(E) from Eq. 11; PSC3(E)
from Eq. 34; and the exact result P(E) from Eq. 20 and Eq. 14. Powers
of ten are given in parentheses.

E /eV Ppb+h(E) PSC1(E) PSC3(E) P(E)
0.15 3.48(−6) 2.57(−8) 1.35(−9) 1.61(−9)
0.20 1.66(−5) 7.25(−7) 1.72(−7) 2.07(−7)
0.25 7.91(−5) 1.15(−5) 4.60(−6) 5.54(−6)
0.30 3.77(−4) 1.26(−4) 6.57(−5) 7.92(−5)
0.35 1.79(−3) 1.07(−3) 6.52(−4) 7.85(−4)
0.40 8.50(−3) 7.49(−3) 5.03(−3) 6.06(−3)
0.45 3.92(−2) − 3.17(−2) 3.80(−2)
0.50 1.63(−1) − 1.56(−1) 1.82(−1)
0.55 4.82(−1) − 4.81(−1) 5.28(−1)
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Table 2 Thermal rates obtained from various methods: kpb+h from
Eq. 38; kSC1 from Eq. 12; kSC3 from Eq. 19; k is the exact result defined
by Eq. 5. In the third column, kpb+h is used above the crossover
temperature and kSC1 below. Atomic units are used and powers of ten
are given in parentheses.

β kTST kpb+h or kSC1 kSC3 k
100 2.6(−4) 2.6(−4) 2.6(−4) 2.7(−4)
250 1.6(−5) 1.8(−5) 1.8(−5) 1.9(−5)
500 2.2(−7) 4.3(−7) 3.8(−7) 4.2(−7)
840 8.5(−10) 7.1(−8) 4.5(−9) 5.2(−9)
860 6.1(−10) 7.9(−9) 3.5(−9) 4.1(−9)

1000 6.4(−11) 1.1(−9) 7.8(−10) 9.3(−10)
1500 2.1(−14) 1.7(−11) 1.7(−11) 2.0(−11)
2000 7.4(−18) 1.9(−12) 1.9(−12) 2.3(−12)

6 Discussion
We have shown that instanton theory is a powerful technique for
studying chemical reactions and is one of the few approximate
methods which gives the exact rate in the limiting case of a high
and wide barrier. Knowledge of the new first-principles derivation
has been used to extend the method beyond its former capabilities
and define an accurate microcanonical rate theory which can be
numerically integrated to give a thermal rate at any temperature.
This avoids the discontinuity problem at the crossover tempera-
ture without significantly changing the computational algorithms
required for implementation of the instanton approach.

A nice consequence of the new SC3 approach is that the data
obtained by each instanton calculation is used to compute the
thermal rate. In contrast, the standard SC1 approach throws
away the information from all but one instanton.

The microcanonical instanton formulation opens the possibility
of studying reactions initiated from certain non-equilibrium con-
ditions. It could also be weighted by more general distributions
than the Boltzmann distribution to give non-thermal rates.

Some of the new formulae given in this paper are similar, al-
though not equivalent, to expressions suggested in previous work.
In particular Chapman, Garret and Miller2 recognized the prob-
lems with PSC1(E) in multidimensional systems and corrected it
by replacing terms of the form Eq. 22 with Eq. 21. It is good to see
that a similar transformation can be achieved more rigorously us-
ing an extension of the usual steepest-descent integration. Kryvo-
huz27 has also suggested an instanton method which can avoid
the problems of the thermal rate near the crossover temperature.
This was done by truncating the steepest-descent integral over
energy at the barrier top to give an error function. Above the
crossover temperature, an alternative formula was used. This was
first derived by Cao and Voth47 from a fourth-order expansion of
the potential about the barrier top.

Of course, instanton theory cannot be applied directly to chemi-
cal reactions in solution, as in these systems, too many imaginary-
time classical trajectories contribute. For such studies, path-
integral methods such as RPMD37 are obviously more appropri-
ate. However, it is only through the underlying instanton theory
that we fully understand how the RPMD approach works14 and
will be able to find ways of extending it to new problems.

The first-principles derivation of instanton theory makes it clear
that only the imaginary-time trajectories which bounce are able to

contribute to the imaginary part of the Green’s function and hence
to the rate. It is the fact that we need to only sample bouncing
trajectories which makes accurate path-integral transition-state
theories difficult to define. The optimum dividing surface chosen
by RPTST is devised to bias towards ring-polymer configurations
which are stretched and thus contribute to Im Ĝ. The quantum in-
stanton approach68,69 utilizes two dividing surfaces for the same
reason—because it is necessary to ensure that the sampled con-
figurations are stretched. This was not necessary for the semi-
classical instanton, where it is easier to categorize trajectories as
direct or bouncing and thus to keep only the relevant parts. If we
are to develop new path-integral rate theories based on sampling
ring polymers, it will be necessary to find a way of sampling only
the correct configurations which contribute to Im Ĝ. Work is in
progress in this area.
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Appendix: Semiclassical rate above the bar-
rier
To show the universality of the semiclassical Green’s function ap-
proach, the rate over the barrier will be derived in this way. For
simplicity, we take a one-dimensional system and choose two di-
viding surfaces σa(x) = x−xa and σb(x) = x−xb with xa < xb. The
exact microcanonical cumulative reaction probability can be de-
fined by52

P(E) =
h̄4

m2

[
∂ 2ImG(xa,xb,E)

∂xa∂xb
ImG(xa,xb,E)

−∂ ImG(xa,xb,E)
∂xa

∂ ImG(xa,xb,E)
∂xb

]
. (39)

Assuming that E is larger than the barrier height, the semiclas-
sical approximation to the Green’s functions is found using the
direct real-time trajectory between xa and xb.38

ImG(xa,xb,E)∼−
1
h̄

√
m2

p(xa)p(xb)
cos(W/h̄), h̄→ 0, (40)

where W =
∫ xb

xa
p(x)dx and p(x) =

√
2m[E−V (x)].

Therefore the semiclassical approximation to the cumulative
reaction probability above the barrier is

P(E)∼ h̄2

p(xa)p(xb)

[
p(xa)p(xb)

h̄2 cos(W/h̄)cos(W/h̄)

+
p(xa)

h̄
sin(W/h̄)

p(xb)

h̄
sin(W/h̄)

]
= 1, h̄→ 0, (41)

which is of course the correct result of classical mechanics.

Wigner’s quantum correction to the thermal rate70 is written
as a series in powers of h̄, where the first term is the classical
rate. The semiclassical method includes no tunnelling corrections
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above the barrier because it only returns the leading-order term.
Only below the barrier, where the classical rate is zero, does the
leading-order term include tunnelling. In Eq. 17, the SC3 result
is improved using the exact result for the parabolic barrier which
includes all terms.

A full semiclassical study of the multidimensional problem
above the barrier would involve a search for real-time periodic
trajectories in a similar way to Gutzwiller’s trace formalism.55

These can travel perpendicular to the reaction coordinate and be
very long, complicated and chaotic, making the method more in-
volved than a standard instanton calculation. We therefore con-
tent ourselves with using the exact result for the parabolic barrier
with perpendicular harmonic modes in all cases. By doing this,
we have effectively made a harmonic approximation to the per-
pendicular coordinates. This separable approximation is not ap-
propriate below the barrier, where the instanton provides a better
description,71 but leads to the Eyring TST formula67 at high tem-
peratures, which is often an acceptable approximation in these
limits.
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