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Abstract

Many modified gravity theories are under consideration in cosmology as the source of the acceler-

ated expansion of the universe and linear perturbation theory, valid on the largest scales, has been

examined in many of these models. However, smaller non-linear scales offer a richer phenomenology

with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R)

gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear

scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations

for the scalar field, gravitational slip and the modified Poisson equation in a coherent framework.

In addition, we derive the equation for the leading order correction to the Newtonian regime, the

vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero

and one, for two values of the fR0 parameter. We find that the vector potential at redshift zero in

f(R) gravity can be close to 50% larger than in GR on small scales for |fR0 | = 1.289 × 10−5, al-

though this is less for larger scales, earlier times and smaller values of the fR0 parameter. Similarly

to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation

is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R)

gravity can be completely described by just the scalar potentials and the f(R) field.
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I. INTRODUCTION

A key problem in modern cosmology is understanding the origin of the late time acceler-

ated expansion of the universe. One of the possible solutions to the problem is that General

Relativity (GR) is not the theory of gravity that operates on larger scales in the universe.

The accelerated expansion aside, applying GR to the entire universe is an extrapolation over

many orders of magnitude compared to the scales where it is tested. For these reasons, there

is increasing interest in considering alternative gravity theories and their phenomenology,

see [1] for a review.

On larger scales, where inhomogeneities are small and standard perturbation theory can

be applied, much work has gone into showing that for many models the extra effects can

be described by a time- and space-dependent Newton’s constant and “gravitational slip”,

i.e. a non-zero difference between the scalar potentials, see e.g. [2–4] or further references

and discussion in [1, 5]. In addition, analytic forms can often be found for these effects. On

smaller (non-linear) scales, there is potential for more phenomenology, due to the intrinsically

non-linear nature of gravity, screening mechanisms (see e.g. [6]) such as the chameleon

mechanism [7, 8] and the possibility of significantly sourcing vector and tensor modes.

Non-linear scales are typically studied through the use of N-body simulations, either

Newtonian for the case of GR, or “Newtonian-like” for the case of modified gravity theories

where the Newtonian gravitational equations are modified. It has been an ongoing problem

in cosmology to understand how, for a GR universe, the non-linear Newtonian gravitational

equations arise, how well their solution matches that of a GR cosmology (see e.g. [9]), and

how we can move beyond the Newtonian simulations to simulations that encapsulate more

of GR (see e.g. [10, 11]). However, little attention has been given to the same questions in

modified gravity cosmologies. In addition, the derivation of the “Newtonian-like” equations

for different modified gravity theories can be somewhat incoherent, in the sense that several

different arguments and approximations are invoked in order to simplify the equations and

remove many of the terms.

One of the popular modified gravity models under consideration is f(R) gravity, first

suggested as a possible cause of the accelerated expansion in [12, 13]. In this model the GR

Lagrangian, consisting solely of the Ricci scalar R, is modified to have an additional function

of the Ricci scalar f(R) included. Of particular interest is the Hu-Sawicki form for f(R)
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gravity [14], which has several nice properties: It can be tuned to match a ΛCDM expan-

sion history and can also evade Solar-System tests through the chameleon [7, 8] screening

mechanism. N-body simulations have been run for the Hu-Sawicki form of f(R) gravity

[15, 16] and truly non-linear phenomena have been observed, including the manifestation of

the chameleon screening [16]. As a result of this chameleon mechanism, the f(R) modifica-

tions to the GR equations disappear in dense environments, which is the reason why f(R)

gravity can pass Solar-System tests.

In this paper, we will use the post-Friedmann formalism [17, 18], a post-Newtonian type

expansion in powers of the speed of light c, designed for a FLRW cosmology. We will

apply this formalism to f(R) gravity in order to examine the Newtonian regime for this

theory. In particular, we will derive the leading order equations and the first correction

to the Newtonian regime, a constraint equation for the vector potential. We will use these

equations to calculate the vector potential from N-body simulations and use this to comment

on the accuracy of the “Newtonian-like” simulations for f(R) gravity, similarly to the work

carried out in [19, 20] for GR.

This paper is laid out as follows. In section II we review the pertinent details of Hu-

Sawicki f(R) gravity and the post-Friedmann formalism and in section III we apply the

post-Friedmann formalism to f(R) gravity. In section IV we calculate the vector potential

from f(R) N-body simulations, compare it to the GR case and comment on the consequences.

We conclude in section V. Throughout the paper, a horizontal bar denotes background

quantities and ∇2A = A,ii, where the indices on the partial derivatives ,i can be raised and

lowered freely. Dots denote partial derivatives with respect to time and a subscript 0 denotes

quantities evaluated at redshift 0, i.e. today. Our metric sign convention is (−+ ++).

II. REVIEW OF RELEVANT THEORY

A. f(R) gravity

The equations of f(R) gravity are derived by generalising the Lagrangian of GR, such

that a generic function of the Ricci scalar R, f(R), is added to the action,

S =

∫
d4x
√
−gR + f(R)

16πG
+ Smatter. (2.1)
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Specifying the function f(R) then completely specifies the theory. In general, f(R) gravity

contains fourth order equations of motion, and is a subset of scalar-tensor theories. The

modified Einstein equations, derived by varying the new action with respect to the metric

gµν , are given by

8πGTµν = Rµν (1 + fR)− gµν
2

(R + f(R)) + gµν�fR −∇µ∇νfR, (2.2)

where ∇µ is the covariant derivative, � = ∇µ∇µ and fR = ∂f(R)/∂R. fR corresponds to

the extra scalar degree of freedom that is present in f(R) gravity. The Hu-Sawicki form [14]

of f(R) gravity is given by

f(R) = −m2 c1 (R/m2)
n

c2 (R/m2)n + 1
. (2.3)

In the limit |R| � m2, this can be expanded as

f(R) ≈ −c1

c2

m2 +
c1

c2
2

m2

(
m2

R

)n
(2.4)

fR = −nc1

c2
2

(
m2

R

)n+1

. (2.5)

The ratio c1/c2 is constrained by requiring that the f(R) theory reproduces the ΛCDM

expansion history, m2c1/c2 = 16πGρ̄Λ. The equations can be re-written in terms of fR0 , the

value of the field in the background today,

fR = fR0

(
R̄0

R

)n+1

(2.6)

f(R) = −16πGρ̄Λ −
fR0

n

R̄n+1
0

Rn
(2.7)

Typically, the free parameter n is taken to have the value unity, leaving fR0 as the only

free parameter in the theory. As mentioned in the introduction, This form of f(R) gravity

can match a ΛCDM expansion history and contains the chameleon screening mechanism

[7, 8]. In dense environments, this mechanism screens the effects of the fifth force in the

modified Einstein equations, either fully or partially. This allows the Hu-Sawicki model to

fit Solar-System constraints [14].

B. Post-Friedmann formalism

The post-Friedmann formalism was proposed in [17, 18] and has been used to examine

the vector potential in a GR+ΛCDM cosmology [19, 20] and also the weak-lensing deflec-

tion angle for non-linear scales [21]. It comprises a post-Newtonian type expansion of the
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Einstein equations in powers of the speed of light c, altered compared to a Solar-System

type expansion in order to apply to a FLRW cosmology. The perturbed metric is considered

in Poisson gauge and expanded up to order c−5,

g00 = −
[
1− 2UN

c2
+

1

c4

(
2U2

N − 4UP
)]

g0i = −aB
N
i

c3
− aBP

i

c5
(2.8)

gij = a2

[(
1 +

2VN
c2

+
1

c4

(
2V 2

N + 4VP
))

δij +
hij
c4

]
.

The two scalar potentials have each been split into their leading order (Newtonian) (UN ,VN)

and post-Friedmann (UP ,VP ) components. The vector potential in the 0i part of the

metric has also been split up into BN
i and BP

i . As this metric is in the Poisson gauge, the

three vectors BN
i and BP

i are both divergenceless, BN
i,i = 0 and BP

i,i = 0. In addition, the

tensor perturbation hij is transverse and tracefree, hii = h,iij = 0. From a post-Friedmann

viewpoint, the terms of order c−2 and c−3 are considered to be leading order and the terms

of order c−4 and c−5 are considered to be higher order. As is usual, the time derivatives

will also come with a factor of c−1. The formalism was designed for a ΛCDM cosmology,

so the energy-momentum tensor is constructed from the four-velocity of pressureless dust

and then expanded in powers of c. See [17] for details of the energy-momentum tensor, as

well as useful expressions for the Ricci scalar and the other important quantities. In this

paper, ρ̄, δ and vi denote the background density, density perturbation and velocity for the

pressureless dust fluid.

The leading order equations (c−2 order) derived using this formalism are equivalent to

the quasi-static, weak field and low velocity limit of the Einstein (or modified Einstein)

equations. The advantage of the post-Friedmann expansion is that the corrections to this

limit can be examined order by order. In a GR+ΛCDM cosmology, the first correction is a

constraint equation for the vector potential,

1

c3
∇2BN

i = −16πGρ̄a2

c3
[(1 + δ)vi] |v, (2.9)

with |v denoting the vector (divergence-less) part. This was used to calculate the vec-

tor potential from ΛCDM N-body simulations in [19, 20]. This vector potential acts as a

quantitative check of the Newtonian approximation, and could also influence cosmological

observables such as weak-lensing [21].
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III. POST-FRIEDMANN f(R) GRAVITY

We will now derive the leading order gravitational equations valid for non-linear scales in

f(R) gravity. These equations come from expanding the modified Einstein equations using

the post-Friedmann formalism. The Ricci scalar, Ricci tensor, metric and energy-momentum

tensor will all be expanded as in GR. In addition, we need to decide how to expand the f(R)

and fR terms. We have some clues as to how to perform this. Since R ∼ c−2 at leading order,

we would expect f(R) to be a factor of c−2 smaller than fR at leading order. Examining

the linear perturbation equations, and those currently used in f(R) N-body simulations, the

fR field behaves similarly to the scalar potentials in the metric, i.e. the value of the field

is small everywhere but its spatial derivatives can be large. This suggests that at leading

order, the fR field should be of similar order to the scalar potentials. Finally, considering

the form of the f(R) function, we would want the leading order perturbation to occur at

the same or higher order than the background term, as is the case for the Ricci scalar and

Ricci tensor. These considerations can all be satisfied by expanding the terms at leading

order as follows,

fR =
f ∗R
c2

=
f ∗R0

c2

(
R̄0

R

)2

(3.1)

f(R) = −16πG

c4
ρ̄Λ −

f ∗R0

c2
R̄0
R̄0

R
. (3.2)

We now expand the modified Einstein equations to generate the leading order equations.

As well as this ansatz, we note that at leading order R̄0/R = O(1) and R̄0 = O(c−2).

We subtract the homogeneous background from the equations and define δR∗ = R∗ − R̄∗

and δf ∗R = f ∗R(R) − f ∗R(R̄). For the covariant derivative, we note that � can be replaced

with 1
a2
∇2 as the time derivative terms will be of higher order. More generally, when two

covariant derivatives are acting on a scalar A, ∇0∇0A and ∇i∇jA can both be replaced

by the partial derivatives, as the additional terms that appear are higher order. However,

∇0∇iA = A,0i− ȧ
a
A,i, where now the additional term from the covariant derivative is at the

same order so must be included.

Then, the trace equation is

R̄δfR + δR
(
1 + fR(R̄) + δfR

)
− 2 (δR + δf(R)) + 3�δfR =

8πG

c4
δT. (3.3)

As we are only interested in the leading order equations here, we then expand each term as

6



described earlier to show the leading order power of c for each term

R̄∗

c2

δf ∗R
c2

+
δR∗

c2

(
1 +

f ∗R(R̄)

c2
+
δf ∗R
c2

)
− 2

(
δR∗

c2
+
f ∗(R)

c4

)
+

3

a2

(
− ∂2

c2∂t2
+∇2

)
δf ∗R
c2

=
8πG

c4

(
−ρ̄δc2

)
⇒ 3

a2
∇2 δf

∗
R

c2
=
δR∗

c2
− 8πG

c2
ρ̄δ at leading order. (3.4)

We then repeat the same process for the 00 Einstein equation,

R̄00δfR + δR00

(
1 + fR(R̄) + δfR

)
− ḡ00

2
(δR + δf(R)) +

δg00

2

(
R̄ + δR + f(R̄) + δf(R)

)
+ḡ00�δfR + δg00�(fR(R̄) + δfR)−∇0∇0δfR =

8πG

c4
δT00. (3.5)

Expanding out the terms and then taking only the leading order yields

R̄∗00

c2

δf ∗R
c2

+
δR∗00

c2

(
1 +

f ∗R(R̄)

c2
+
δf ∗R
c2

)
+

1

2

(
δR∗

c2
+
f ∗(R)

c4

)
+
UN
c2

(
R̄∗

c2
+
δR∗

c2
+
f ∗(R̄)

c4
+
f ∗(R)

c4

)
+

1

a2

(
∂2

c2∂t2
−∇2

)
δf ∗R
c2

+
2UN
a2c2

(
− ∂2

c2∂t2
+∇2

)(
f ∗R(R̄)

c2
+
δf ∗R
c2

)
− ∂

c∂t

∂

c∂t

δf ∗R
c2

=
8πG

c4

[
ρ̄δc2 + ρ̄(1 + δ)

(
v2 − 2UN

)]
⇒ − 1

c2a2
∇2UN +

1

2

δR∗

c2
− 1

a2
∇2 δf

∗
R

c2
=

8πG

c2
ρ̄δ at leading order. (3.6)

This equation can be combined with the trace equation to give

1

6

δR∗

c2
− 16πG

3c2
ρ̄δ =

1

c2a2
∇2UN , (3.7)

and also
∇2

a2

2δf ∗R
c2
− δR∗

2c2
=

1

c2a2
∇2UN , (3.8)

which will we use shortly. A further form for the f(R) Poisson equation is given by

8πGa2

c2
ρ̄δ =

1

c2
∇2δf ∗R −

2

c2
∇2UN . (3.9)

Finally, we need to examine the diagonal ii Einstein equations in the same way (note that

there is no summation here yet),

R̄iiδfR + δRii

(
1 + fR(R̄) + δfR

)
− ḡii

2
(δR + δf(R))− δgii

2

(
R̄ + δR + f(R̄) + δf(R)

)
+ḡii�δfR + δgii�(fR(R̄) + δfR)−∇i∇iδfR =

8πG

c4
δTii. (3.10)
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Again, expanding out and then keeping only the leading order terms gives

R̄∗ii
c2

δf ∗R
c2

+
δR∗ii
c2

(
1 +

f ∗R(R̄)

c2
+
δf ∗R
c2

)
− a2

2

(
δR∗

c2
+
f ∗(R)

c4

)
− a2VN

c2

(
R̄∗

c2
+
δR∗

c2
+
f ∗(R̄)

c4
+
f ∗(R)

c4

)
+

(
− ∂2

c2∂t2
+∇2

)
δf ∗R
c2

+
2a2VN
c2

(
− ∂2

c2∂t2
+∇2

)(
f ∗R(R̄)

c2
+
δf ∗R
c2

)
−∇i∇i

δf ∗R
c2

=
8πG

c4
ρ̄a2(1 + δ)vivi

⇒ 1

c2

[
−∇2VN + (UN − VN),ii

]
− a2

2

δR∗

c2
+∇2 δf

∗
R

c2
−∇i∇i

δf ∗R
c2

= 0 at leading order. (3.11)

We can then sum the three ii equations and combine with equation 3.8 to give

1

c2
∇2 (UN − VN) =

1

c2
∇2δf ∗R. (3.12)

The final set of leading order equations is thus

∇2

a2

δf ∗R
c2

=
1

3

(
δR∗

c2
− 8πG

c2
ρ̄δ

)
1

6

δR∗

c2
− 16πG

3c2
ρ̄δ =

1

c2a2
∇2UN

1

c2
∇2 (UN − VN) =

1

c2
∇2δf ∗R. (3.13)

As expected, these post-Friedmann equations match those currently used in f(R) N-body

simulations. Note that in deriving equations (3.13), we have only expanded out the Ricci

tensor part of the Einstein tensor. The perturbed Ricci scalar has been kept in the equations

and then used to substitute for the fR term. This is why the potential VN that appears in

the Poisson equation in [17], here only shows up in the last of equations (3.13) and not in

the Poisson equation. For δf ∗R = 0, the last equation in (3.13) implies the relation VN = UN

that is valid in the GR ΛCDM context, and therefore our equations reduce to those in [17],

as they should.

A key purpose of the post-Friedmann approach is that it allows us to derive additional

equations, such as the equation for the vector potential. We now apply the same expansion

to the 0i Einstein equation in order to derive this equation. The 0i Einstein equation in

f(R) gravity is given by

δR0i

(
1 + fR(R̄) + δfR

)
− g0i

2

(
R̄ + δR + f(R̄) + δf(R)

)
+g0i�(fR(R̄) + δfR)−∇0∇iδfR = −8πG

c3
ρ̄a(1 + δ)vi. (3.14)
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As before, expanding out the terms and then keeping the leading order only leads us to

− 1

2c3a

(
4ȧUN,i + 4aV̇N,i −∇2BN

i

)(
1 +

f ∗R(R̄)

c2
+
δf ∗R
c2

)
+
aBN

i

2c3

(
R̄∗

c2
+
δR∗

c2
+
f ∗(R̄)

c4
+
f ∗(R)

c4

)
−B

N
i

ac3

(
− ∂2

c2∂t2
+∇2

)(
f ∗R(R̄)

c2
+
δf ∗R
c2

)
− ∂

c∂t

δf ∗R,i
c2

+
ȧ

ac3
δf ∗R,i = −8πG

c3
ρ̄a(1 + δ)vi

⇒ 1

c3

(
2ȧUN,i + 2aV̇N,i −∇2B

N
i

2
+ a ˙δf

∗
R,i − ȧδf ∗R,i

)
=

8πG

c3
ρ̄a2(1 + δ)vi at leading order. (3.15)

As in GR, the scalar part of this final equation is redundant: If we take the divergence of

this equation then we get an equivalent equation to the time derivative of equation (3.9),

using energy-momentum conservation to substitute for δ̇. Note that the continuity and Euler

equations for the matter are the same as for a ΛCDM cosmology, see [17] for these equations

in the post-Friedmann approach.

Taking the vector (divergence free) part of the final equation in (3.15) leads to the fol-

lowing equation for the vector potential at leading order,

1

c3
∇2BN

i = −16πGρ̄a2

c3
[(1 + δ)vi] |v. (3.16)

This is the same as the equivalent equation in a GR+ΛCDM cosmology, which is easily

understood as follows. At leading order in this weak-field regime, any additional terms that

contain the fR will be linear in the field. Since the new field is a scalar, no combination of

derivatives of this field can create a divergenceless quantity without multiplying the field by

itself or a metric potential, which cannot occur at order c−3. Thus, the modified Einstein

equations can only modify the scalar part of the 0i equation at leading order and not the

vector part. We expect that this result could hold for all modified theories of gravity that

only contain scalar additional degrees of freedom. Nonetheless, the momentum field itself

will evolve differently, so the source term for the vector will have a different numerical value.

IV. VECTOR POTENTIAL FROM f(R) N-BODY SIMULATIONS

Using equation (3.16), we can extract the vector potential from f(R) N-body simulations.

We will follow the extraction process as outlined in [19, 20] for the momentum field method.

This consists of using the Delauney Tesselation Field Estimator (DTFE) code [22–24] to

extract the source term for the vector potential, the momentum field. After extracting the
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momentum field from the simulations, the scalar part is subtracted in fourier space,

[(1 + δ)v]|v = (1 + δ)v − k
(k · [(1 + δ)v])

k2
. (4.1)

The power spectrum of the vector potential is then given by

PBN (k) =

(
16πGρ̄a2

k2

)2

P[(1+δ)v]|v(k). (4.2)

The momentum field can also be extracted (and the vector potential calculated) using a

Cloud-in-Cells code [25] for comparison. As described in [20], there is also an additional way

to extract the power spectrum of the vector potential using the DTFE code, which revolves

around taking the curl of equation (3.16). This method has also been applied to the f(R)

snapshots with reasonable agreement on small scales, but worse agreement on larger scales.

The results from these methods are detailed in appendix A. For this work, the simulations

were run with 10243 particles in a 250h−1Mpc box. The initial conditions were created

at redshift 49 using the Zel’dovich approximation [26]. The particles were then evolved to

z = 0 using the ECOSMOG code [27] (see also [28, 29] for more details), which was based

on the RAMSES code [30]. The particles were evolved under the influence of f(R) gravity

for two different values of the fR0 parameter, |fR0| = 1.289× 10−5 and |fR0| = 1.289× 10−6.

The same initial distribution was also evolved under standard GR for comparison. The

cosmological parameters used for the simulation are as follows: Ωm = 0.267, ΩΛ = 0.734,

H0 = 71kms−1Mpc−1, σ8 = 0.8 and ns = 0.958. From [19, 20], we know that the vector

potential requires a good mass resolution for the calculation of the vector potential. The

resolution of the simulations used here is not quite in the ideal parameter range, so it is

possible that there may be a small spurious contribution to the vector potential power

spectra extracted here. We aim to ameliorate this effect by examining the ratio of the value

in the f(R) and GR simulations. We have examined the output of the simulations at both

redshift zero and redshift one, and checked that the results from our GR simulation agree

with the results obtained in [20].

A. Results

Our results for the vector potential are shown in figures 1 and 2. The first of these shows

the dimensionless vector potential power spectrum at redshift zero, for GR (black, dashed),

10



FIG. 1: The dimensionless power spectrum of the vector potential extracted from the GR and f(R)

N-body simulations at redshift zero. The red curve is for f(R) gravity for |fR0 | = 1.289×10−5 and

the blue curve is for |fR0 | = 1.289× 10−6. The dot-dashed black curve shows the power spectrum

in GR.

|fR0| = 1.289× 10−5 (red) and |fR0| = 1.289× 10−6 (blue). Figure 2 shows the ratio of the

vector potentials extracted at redshift one and redshift zero for the three models. Although

the vector potential is growing on non-linear scales for all three models, on linear scales the

vector potential is actually decreasing, similarly to the linear theory scalar potential. Note

that in all cases the vector potential is much smaller than the scalar gravitational potential

and shows a similar scale dependence (see [20]).

In figures 3 and 4 we show the ratio of the vector potential power spectrum in f(R)

gravity (for |fR0| = 1.289 × 10−5 and |fR0| = 1.289 × 10−6 respectively) to that in GR. In

these plots, the black curve shows the ratio at redshift zero and the blue curve shows the

ratio at redshift one. We can see that the vector potential power spectrum in f(R) gravity

is sensitive to the value of fR0 , with the difference compared to GR changing from of order a

few percent to of order a few tens of percent between the two different values of fR0 . In both

cases, there is a smaller difference compared to GR at earlier times and on larger scales, in

line with the behaviour of the density and velocity fields in f(R) gravity [27, 28].

Paralleling the GR case examined in [19–21], there are several immediate consequences

that can be drawn from the value of the vector potential in f(R) gravity. As in GR, the
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FIG. 2: The ratio of the vector potential power spectra at redshift zero and redshift one. The red

curve is for f(R) gravity for |fR0 | = 1.289 × 10−5 and the blue curve is for |fR0 | = 1.289 × 10−6.

The dot-dashed black curve shows the ratio for GR.

FIG. 3: The ratio of the vector potential power spectrum in f(R) gravity to that in GR, for

|fR0 | = 1.289 × 10−5. The blue curve shows the ratio at redshift one, and the black curve shows

the ratio at redshift zero.

vector potential is the leading order correction to the equations valid in the Newtonian-like

regime, so the small magnitude of this quantity suggests that the approximations used in

deriving the equations used in f(R) N-body simulations are indeed satisfied to a high degree

of accuracy. Furthermore, as noted in [21], the equation for the deflection angle in section
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FIG. 4: The ratio of the vector potential power spectrum in f(R) gravity to that in GR, for

|fR0 | = 1.289 × 10−6. The blue curve shows the ratio at redshift one, and the black curve shows

the ratio at redshift zero.

IIIA is valid for any metric theory of gravity, including f(R) gravity. Thus, similarly to

GR [19, 21], the vector potential in f(R) gravity is unlikely to have a significant effect on

weak-lensing observations. This also means that the standard ray-tracing approach to weak

lensing should be valid in f(R) gravity. Nonetheless, the larger amplitude of this vector

potential in f(R) gravity on smaller scales means that, if a way can be found to observe

this quantity, it can be used as an additional test of modified gravity theories on non-linear

scales.

Although little work has gone into examining f(R) gravity beyond linear perturbation

theory, the vector potential examined here could in principle also be calculated using second

order perturbation theory, as done for GR in [31, 32]. Perturbation theory would be expected

to break down at most of the scales considered here, and is wrong by nearly two orders of

magnitude for GR on the smallest scales considered in [19, 20]. However, on the largest

scales looked at here, we are close to the linear regime, so the vector potential would be

expected to agree reasonably well with the prediction from perturbation theory. In addition,

the vorticity could also be examined analytically, which is one of the contributions to the

alternative curl method of extracting the vector potential (see appendix A) and which has not

yet been examined in f(R) gravity. It would be interesting to perform detailed perturbative
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calculations in f(R) gravity in order to examine these phenomena and compare them to the

results presented here. We leave this for future work.

V. CONCLUSIONS

In this paper we have applied the post-Friedmann approach to f(R) gravity, and in doing

so have provided a coherent derivation of the equations used in f(R) N-body simulations. In

additon, we have derived the equation for the first correction to the leading order equations,

the vector potential. The equation for this vector potential is the same as in GR, a result

that may hold for other modified gravity theories that only contain an additional scalar

degree of freedom.

We have used this equation to extract the power spectrum of the vector potential from

f(R) N-body simulations, following the procedure used for a GR+ΛCDM cosmology in

[19, 20]. The result of this analysis is shown in figures 1-2 and figures 3-4. We found that the

vector potential can be close to 50% larger in the f(R) simulations for |fR0| = 1.289× 10−5,

although this is reduced at earlier times, on larger scales, or for a smaller value of |fR0 |. The

relatively low magnitude of the vector potential suggests that the approximations used in

deriving the equations for the N-body simulations are accurate and that the vector potential

is unlikely to be found through weak-lensing surveys.

The results of this analysis, and that of [19, 20], suggests that even on scales where the

density contrast is not constrained to be small, gravitational phenomena can be entirely

described by the two scalar potentials in the metric and their leading order relationship to

the matter fields. This inference should be checked for further alternative gravity theories

but, if found to continue to hold, could have important consequences. In particular, although

much work has been put into model independent parameterisations of modified gravity, to

date these parameterisations are perturbative and thus valid only on linear scales. If our

result holds for other theories of modified gravity, this could be used as the basis for a model

independent parameterisation of modified gravity on non-linear scales. This would be of

great utility for the analysis of future surveys including the Euclid satellite.

Whilst this manuscript was being prepared, [33] appeared on the arXiv, which contains

a similar c−1 expansion applied to f(R) gravity theories. The Hu-Sawicki model studied

here is in their Class I theories, for which their results seem equivalent to those obtained
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for the c−1 expansion here.
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FIG. 5: The vector potential calculated from the Cloud-in-Cells momentum field divided by that

calculated from the DTFE momentum field. The black curve is for GR and the blue curve is for

f(R).

Appendix A: Additional methods for extracting the vector potential

As examined in [20], there are two methods for extracting the vector potential from N-

body simulations. Here we present results from several of those for comparison with our

result in section IV. Firstly, it is possible to extract the momentum field using a Cloud-in-

Cells [25] code rather than the DTFE code. Figure 5 shows the ratio between the vector

potential calculated using these two methods. In this figure, the black curve shows the ratio

for GR and the blue curve shows the ratio for f(R), although the two curves are almost

indistinguishable. The agreement between the two methods is good for most of the range

of scales examined here, although it becomes worse for the smallest scales. This is expected

due to the different window functions that come into the two methods: The DTFE and CiC

methods have a different method of smoothing the particles in the snapshot onto a regular

grid, so the extracted field is a convolution of the field with the respective window function.

This begins to have a non-negligible effect on the extracted field as we move closer to the

Nyquist frequency of the grid, which is what is being seen here.

In addition, rather than extracting the full momentum field and then calculating the

vector part, we can take the curl of equation (3.16) as done for GR in [20]. The source term

then breaks down into three components, ∇δ × v, δ∇ × v and ∇ × v. The advantage of

splitting up the source like this for GR was two-fold: Firstly, it allowed us to compare the
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FIG. 6: The ratio of the vector potentials calculated using the momentum-field (MF) method and

the curl method, for both GR (black) and f(R) (blue).

vorticity we are extracting with the literature, as there were no similar results to compare

to when the work of [20] was carried out. Furthermore, it allowed us to show that the

non-linear quantities were contributing far more significantly than the vorticity, which only

contributes linearly to the source term. Although these advantages are negated for f(R)

gravity due to the lack of studies of the vorticity in the literature, we can still extract the

vector potential using this method. As shown in [20], this method does not agree exactly

with the momentum field method used in the main body of the paper, with the agreement

being worse on larger scales. In figure 6, we show the difference between the two methods for

GR (black) and f(R) (blue); the agreement for GR agrees with that expected from [20], with

the f(R) agreement being even worse on large scales. We are unsure why the two methods

do not agree better, however we note that the difference between the methods is insufficient

to affect our conclusions regarding the validity of the approximation or the observability of

the vector potential.

In figure 7, we show the analogue of figure 3 for this “curl” method of extracting the vetor

potential, so the black curve is the ratio between the f(R) (|fR0| = 1.289 × 10−5) and GR

power spectra at redshift z = 0 and the blue curve is the ratio at redshift z = 1. For most

of the range the result is similar to that obtained in the main body of the paper however,

at large scales, the increased difference between the two methods for f(R) gravity creates

an increased ratio between the f(R) and GR result. It seems unlikely that this result is
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FIG. 7: The ratio between the f(R) (|fR0 | = 1.289× 10−5) and GR vector potential power spectra

using the curl method. The black curve shows the ratio at redshift zero, and the blue curve shows

the ratio at redshift one.

physical, since f(R) quantities typically return to those of GR on these scales [27, 28].
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