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We present state of the art resummation predictions for differential cross sections in top-quark pair
production at the LHC. They are derived from a formalism which allows the simultaneous resummation of
both soft and small-mass logarithms, which endanger the convergence of fixed-order perturbative series in
the boosted regime, where the partonic center-of-mass energy is much larger than the mass to the top quark.
We combine such a double resummation at next-to-next-to-leading logarithmic0 (NNLL0) accuracy with
standard soft-gluon resummation at next-to-next-to-leading logarithmic accuracy and with next-to-leading-
order calculations, so that our results are applicable throughout the whole phase space. We find that the
resummation effects on the differential distributions are significant, bringing theoretical predictions into
better agreement with experimental data compared to fixed-order calculations. Moreover, such effects are
not well described by the next-to-next-to-leading-order approximation of the resummation formula,
especially in the high-energy tails of the distributions, highlighting the importance of all-orders
resummation in dedicated studies of boosted top production.
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The 8 TeV run of the LHC delivered about 20 fb−1 of
integrated luminosity to both the ATLAS and CMS experi-
ments. Among the many important results coming from
these data, the properties of the top quark have been
measured with unprecedented precision. At the same time,
theoretical calculations of top-quark-related observables
have seen significant advancements in the past few years. In
particular, very recently, the next-to-next-to-leading-order
(NNLO) QCD corrections to differential cross sections in
top-quark pair (tt̄) production have been calculated [1]. In
Ref. [2], the CMS Collaboration performed a comprehen-
sive comparison between their measurements [3] of the
differential cross sections and various theoretical predic-
tions, including those from the NNLO calculation and those
from Monte Carlo event generators with next-to-leading-
order (NLO) accuracy matched to parton showers. The
overall agreement between the theory and data is truly
remarkable, which adds to the success of the standard
model (SM) as an effective description of nature.
However, a persistent issue in the 8 TeV results is that the

transverse momentum (pT) distribution of the top quark or
antiquark is softer in the data than in theoretical predictions;
i.e., the experimentally measured differential cross section
at high pT is lower than predictions from event generators
or from NLO fixed-order calculations [3,4]. While the
NNLO corrections bring the fixed-order predictions into
better agreement with the CMS data, as noted in Refs. [1,2],
there is still some discrepancy in the high-pT bins where
pT > 200 GeV. Given the importance of the tt̄ production
process as a standard candle for validating the SM and as an

essential background for new physics searches, it would be
disconcerting if this feature were to persist at higher pT
values and with more data. It is therefore important to
assess the effects of QCD corrections even beyond NNLO,
in order to see whether the gap between the theory and data
at high pT can be bridged.
For boosted top-quark pairs with high pT , there are two

classes of potentially large contributions. The first is the
Sudakov-type double logarithms arising from soft-gluon
emissions. The second comes from gluons emitted nearly
parallel to the top quarks, resulting in large logarithms of
the form lnnðmt=mTÞ, where mt is the top-quark mass and
mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ p2

T

p
is the transverse mass of the top quark or

antiquark. In Ref. [5], some of the authors of the current
work developed a formalism for the simultaneous resum-
mation of both type of logarithms to all orders in the strong
coupling constant αs. In this Letter, we report the first
phenomenological applications of that formalism, giving
predictions for the t=t̄ pT and the tt̄ invariant mass
distributions at the 8 TeV LHC and comparing with
experimental measurements as well as the NNLO calcu-
lations when possible. With an eye to the future, we also
present predictions for the 13 TeV LHC, where NNLO
results are not yet available.
Our main finding is that the higher-order effects con-

tained in our resummation formalism significantly alter the
high-energy tails of the pT and tt̄ invariant mass distribu-
tions, softening that of the pT distribution but enhancing
that of the tt̄ invariant mass distribution. These effects bring
our results into better agreement with the experimental data
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compared to pure NLO fixed-order calculations.
Interestingly, for the case of the pT distribution, this
softening of the spectrum is slightly stronger than the
similar effect displayed in recent NNLO results and leads to
a better modeling of the pT > 200 GeV portion of the
CMS data [3]. We comment further on this fact in the
conclusions.
Formalism.—Our predictions are based on the factori-

zation and resummation formula derived in Ref. [5]. The
technical details will be given in a forthcoming paper,
although the main elements have already been sketched out
in Ref. [6]. In the kinematic situation where the top quarks
are highly boosted and the events are dominated by soft-
gluon emissions, the resummed partonic differential cross
section in Mellin space can be written as

~cijðN;Mtt̄; mt; μfÞ

¼ Tr

�
~Uijðμf; μh; μsÞHijðMtt̄; μhÞ

× ~U†
ijðμf; μh; μsÞ~sij

�
ln

M2
tt̄

N̄2μ2s
; μs

��

× ~U2
Dðμf; μdh; μdsÞC2

Dðmt; μdhÞ~s2D
�
ln

mt

N̄μds
; μds

�
; ð1Þ

where, for simplicity, we have suppressed some variables in
the functional arguments which are unnecessary for
the explanations below. In the above formula, Mtt̄ is the
invariant mass of the tt̄ pair (which can be related to the pT
of the top quark or antiquark in the soft limit through a
change of variables), N is the Mellin moment variable dual
to 1 −M2

tt̄=ŝ with ŝ the partonic center-of-mass energy
squared, and N̄ ≡ NeγE with γE the Euler constant. The soft
limit corresponds to N → ∞ in Mellin space. The four
coefficient functions Hij, ~sij, CD, and ~sD encode contri-
butions from four widely separated energy scales Mtt̄,
Mtt̄=N̄, mt, and mt=N̄, respectively. The presence of the
four scales leads to the two types of large logarithms
discussed in the introduction. In correspondence with these
four physical scales, there are four unphysical renormal-
ization scales μh, μs, μdh, and μds, one for each coefficient
function. The philosophy of resummation is to choose the
four unphysical scales to be around their corresponding
physical scales, so that the four coefficient functions are
free of large logarithms and are well behaved in the fixed-
order perturbation theory. One can then use renormalization
group (RG) equations to evolve these functions to the
factorization scale μf in order to convolute with the parton
distribution functions (PDFs) and obtain the hadronic cross
sections. The effects of the RG running are encoded in the
two evolution factors ~Uij (for Hij and ~sij) and ~UD (for CD
and ~sD), which resum all the large logarithms to all orders
in αs in an exponential form.

At the moment, the four coefficient functions are known
to NNLO [5,7,8], while the two evolution factors are
known to next-to-next-to-leading logarithmic (NNLL)
accuracy [5]. Such a level of accuracy is usually referred
to as NNLL0 in the literature, and we adopt that nomen-
clature here. While the formula (1) is applicable only in the
boosted soft limit, we can extend its domain of validity by
combining it with information from NNLL soft-gluon
resummation derived in Ref. [9] (recast into Mellin space)
as well as the NLO fixed-order result calculated in Ref. [10]
and implemented in MCFM [11]. The precise matching
formula can be found in Ref. [6]. After such a matching
procedure, we denote the final accuracy of our predictions,
which are valid throughout phase space, as NLOþ NNLL0.
(Ideally, we should also match to a purely boosted formula
in order to resum small-mass logarithms due to hard-
collinear gluon emissions and thus subleading in the soft
limit. However, the numerical study in Ref. [5] indicated
that such logarithms are not very important for top-quark
production at the LHC, so we leave this issue aside in the
current study.)
It would be desirable to match with the recent NNLO

results in Ref. [1] to achieve NNLOþ NNLL0 accuracy.
However, at the moment, NNLO results are available only
for fixed (i.e., kinematics-independent) factorization and
renormalization scales μf ∼ μr ∼mt, whereas for the
study of differential distributions over large ranges of
phase space we consider it important to follow common
practice and use dynamical (i.e., kinematics-dependent)
scale choices. Therefore, such an improvement over our
result is not currently possible, and we leave it for the
future.
Phenomenology.—In the following, we present

NLOþ NNLL0 predictions for theMtt̄ and pT distributions
at the LHC. In all our numerics, we choosemt ¼ 173.2GeV
and use MSTW2008 NNLO PDFs [12]. For pT distribu-
tions, the default values for the factorization scale and the
four renormalization scales are chosen as μf ¼ mT ,
μh ¼ Mtt̄, μs ¼ Mtt̄=N̄, μdh ¼ mt, and μds ¼ mt=N̄. For
Mtt̄ distributions, the only difference is μf ¼ Mtt̄. We
estimate scale uncertainties by varying the five scales
around their default values by factors of 2 and combining
the resulting variations of differential cross sections in
quadrature; we do not consider uncertainties from
PDFs and αs in this Letter. The hadronic differential cross
sections are first evaluated in Mellin space at a given
point in phase space, and we then perform the inverse
Mellin transform numerically using the minimal
prescription [13]. This procedure relies on an efficient
construction of Mellin-transformed parton luminosities, for
which we use methods outlined in Refs. [14,15].
The differential cross sections considered below span

several orders of magnitude when going from low to high
values of pT or Mtt̄. In order to better display the relative
sizes of various results, we show in the lower panel of each
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plot the differential cross sections normalized to our default
prediction, i.e., the ratio defined by

ratio≡ dσ

dσNLOþNNLL0 ðμi ¼ μdefaulti Þ : ð2Þ

Figure 1 compares our NLOþ NNLL0 resummed pre-
diction for the normalized pT distribution to the CMS
measurement [3] in the leptonþ jet channel at the LHC
with a center-of-mass energy

ffiffiffi
s

p ¼ 8 TeV. Also shown is
the NNLO result from Ref. [1], which adopted by default
the renormalization and factorization scales μr ¼ μf ¼ mt
and also used a slightly different top-quark mass,
mt ¼ 173.3GeV. At low pT, it is clear that both the
NLOþ NNLL0 and the NNLO results describe the data
fairly well. With the increase of pT , it appears that the
NNLO prediction systematically overestimates the data,
although there is still agreement within errors. On the other
hand, with the simultaneous resummation of the soft-gluon
logarithms and the mass logarithms and also with the
dynamical scale choices, our NLOþ NNLL0 resummed
formula produces a softer spectrum which agrees well with
the data.
In Ref. [4], the ATLAS Collaboration carried out a

measurement of the pT spectrum in the highly boosted
region using fat-jet techniques. Although the experimental
uncertainty is rather large due to limited statistics, it is
interesting to compare it with the theoretical predictions
here, since it is expected that the soft and small-mass
logarithms become more relevant at higher energies. In
Fig. 2, we show such a comparison. The NNLO result for
such high pT values is not yet available, so we compare

instead with the NLO result computed using MCFM with
MSTW2008 NLO PDFs and dynamical renormalization
and factorization scales, whose default values are
μr ¼ μf ¼ mT . Scale uncertainties of the NLO results
are estimated through variations of μr ¼ μf by a factor
of 2 around the default value. From the plot, one can see
that the NLO result calculated in this way does a good job
in estimating the residual uncertainty from higher-order
corrections, as the resummed band lies almost inside
the NLO one up to pT ¼ 1.2 TeV. On the other
hand, the inclusion of the higher-order logarithms in the
NLOþ NNLL0 result significantly reduces the theoretical
uncertainty, which is crucial for future high-precision
experiments at the LHC.
Our formalism is flexible and can be applied to other

differential distributions as well. To demonstrate this fact,
in Fig. 3, we show the NLOþ NNLL0 resummed predic-
tion for the top-quark pair invariant mass distribution along
with a measurement from the ATLAS Collaboration [16] at
the 8 TeV LHC. Since the NNLO result in Ref. [1] for this
distribution has an incompatible binning, it is currently not
possible to include it in the plot, so we show instead the
NLO result computed with the same input as in Fig. 2, but
this time with the default scale choice μr ¼ μf ¼ Mtt̄. One
can see from the plot that the NLO result with this scale
choice is consistently lower than the experimental data. The
resummation effects significantly enhance the differential
cross sections, especially at high Mtt̄. As a result, the
NLOþ NNLL0 prediction agrees with the data quite well.
We have found that choosing the default renormalization
and factorization scales to be half the invariant mass
increases the fixed-order cross section and therefore mimics
to some extent the resummation effects. In fact, this
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procedure has been extensively employed in the literature
for processes such as Higgs production [17], where higher-
order corrections are also large. Consequently, it may be
advisable to employ a renormalization and factorization
scale of the order of Mtt̄=2 in fixed-order calculations
(and Monte Carlo event generators), and we shall use this
choice when studying the Mtt̄ distribution at the 13 TeV
LHC below.
The LHC has started the 13 TeV run in 2015. So far,

there are only two CMS measurements [18,19] of differ-
ential cross sections for tt̄ production, based on just
42 pb−1 of data. The resulting experimental uncertainties
are therefore quite large, and it is not yet possible to probe
higher pT or Mtt̄ values. Nevertheless, in the near future
there will be a large amount of high-energy data, which will
enable high-precision measurements of tt̄ kinematic dis-
tributions, also in the boosted regime. In Fig. 4, we show
our predictions for the pT and Mtt̄ spectrum up to pT ¼
2 TeV and Mtt̄ ¼ 4.34 TeV, contrasted with the NLO
results. Note that, for theMtt̄ distribution, we have changed
the default μf to a lower value Mtt̄=2 for the reasons
explained above. The plots exhibit similar patterns as
observed at 8 TeV, namely, that the higher-order resum-
mation effects serve to soften the tail of the pT distribution
but enhance that of the Mtt̄ distribution compared to a pure
NLO calculation.
As mentioned before, we would like to match our

calculations with the NNLO results when they become
available in the future. We end this section by discussing
the expected effects of such a matching, by estimating the
size of resummation corrections beyond NNLO. We do this
in Fig. 5, where the relative sizes of the beyond-NNLO
corrections generated through the resummation formula are
displayed as a function of Mtt̄ or pT with the default scale

choices. The exact NNLO results for these scale choices
are not yet available, so we show in comparison the
relative sizes of the approximate NNLO (aNNLO)
corrections obtained by expanding and truncating our
NLOþ NNLL0 formula to that order. More precisely, the
blue and black curves in Fig. 5 correspond to

aNNLO correction≡ dσaNNLO − dσNLO

dσNLO
;

beyond NNLO≡ dσNLOþNNLL0 − dσaNNLO

dσNLO
; ð3Þ

where dσaNNLO refers to the approximate NNLO result. The
figure clearly shows that corrections beyond NNLO are
significant in the tails of the distributions, especially in the
case of the Mtt̄ distribution.
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Conclusions and outlook.—In this Letter, we have
presented new resummation predictions for differential
cross sections in tt̄ production at the LHC. The predictions
include the simultaneous resummation to NNLL0 accuracy
of both soft and small-mass logarithms, which endanger
the convergence of the fixed-order perturbative series in
the boosted regime where the partonic center-of-mass
energy is much larger than the mass of the top quark.
This resummation is matched with both standard soft-gluon
resummation at NNLL accuracy and fixed-order NLO
calculations, so that our results are applicable in the whole
phase space. Such predictions for tt̄ differential distribu-
tions at the LHC are not only the first to be calculated in
Mellin space but also represent the highest resummation
accuracy achieved to date, namely, NLOþ NNLL0. The
results in this Letter build upon previous works [5,9], going
beyond them by providing a unified framework and
numerical predictions valid for all kinematic configurations
of interest. Our results are thus a major step forward in the
modeling of distributions, particularly their high-energy
tails, which are of great importance for new physics
searches.
The agreement of NLOþ NNLL0 predictions with the

data indicates the value of including resummation effects
and using dynamical scale settings correlated with pT or
Mtt̄ when studying differential distributions. Interestingly,
in the case of normalized pT distribution measured by the
CMS Collaboration [3], the NLOþ NNLL0 calculation
produces a slightly softer spectrum than recent NNLO
predictions (which use a fixed scale setting where μf ¼
μr ¼ mt by default), thus achieving a better agreement with
the data. However, we emphasize that the optimal use of

resummation is to supplement NNLO calculations, not to
replace them. With this in mind, we have studied the size of
corrections beyond NNLO encoded in our resummation
formula and found that their effects are significant in the
high-energy tails of distributions, especially for the tt̄
invariant mass distribution where they enhance the differ-
ential cross section. It will therefore be an essential and
informative exercise to produce NNLOþ NNLL0 predic-
tions once NNLO calculations are available with dynamical
scale settings.
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