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Abstract 

Many technologically important synthetic and natural materials display stacking faults which 

lead to complex peak broadenings, asymmetries and shifts in their powder diffraction 

patterns. The patterns can be described using an enlarged unit cell (called a supercell) 

containing an explicit description of the layers. Since the supercell can contain hundreds of 

thousands of atoms with hundreds of thousands of hkl reflections, a Rietveld approach has 

been too computationally demanding for all but the simplest systems. We describe the 

implementation of the speed-ups necessary to allow Rietveld refinement in the computer 

program TOPAS Version 6 [1].  Techniques implemented include: a peaks-buffer that allows 

hundreds of thousands of hkl-dependent peak shapes to be automatically approximated by a 

few hundred peaks; an averaging process for hundreds of large supercells with minimum 

impact on computational time; a smoothing technique that allows for the use of small 

supercells which approximate supercells 10 to 20 times larger; and efficient algorithms for 

stacking sequence generation.  The result is Rietveld refinement of supercells operating at 

speeds 1000s of times faster than that of traditional Rietveld refinements. This allows 

quantitative and simultaneous analysis of structure and microstructure in complex stacking-

faulted samples. 

[1] Bruker AXS (2015). TOPAS, V6.0. Bruker AXS, Karlsruhe, Germany 



3 
 

 

1. Introduction 

Quantitative Rietveld analysis of layered structures exhibiting stacking vector faulting is 

becoming more common as computers become more powerful and the analytical software 

more accommodating. The supercell approach (Ufer et al., 2004; Wang et al., 2012; 

Lutterotti et al., 2010) uses multiple layers in an enlarged unit cell in order to simulate faulted 

layered structures; it was used alongside recursive DIFFaX simulations (Treacy et al., 1991) 

using TOPAS Version 5 by Bette et al. (2015). In that work many stacking sequences relating 

to the structure of NiCl(OH) were trialled with each run taking days of computing time. This 

work addresses the time consuming computational aspects of the supercell approach and is an 

extension of the work by Ainsworth et al. (2016). Bottle necks associated with unit cells 

comprising thousands of atoms resulting in hundreds of thousands of reflections are tackled. 

In particular the three hour 1000 repeat Rietveld refinements performed by Ainsworth et al. 

(2016) for averaging of supercells can now be performed in under a minute.  

Rietveld refinement (Rietveld, 1969; Young, 1993) can be broken down into a number of 

steps; i) calculation of structure factors, ii) calculating peaks with intensities obtained from 

the structure factors, iii) forming a diffraction pattern using the calculated peaks and iv) 

calculating derivatives for parameters that are refined.  We address the challenges associated 

with each of these steps then exemplify the computational speed gains possible. 

2. Calculating structure factors 

The structure factor for a particular hkl of a structure that can be described in terms of stacked 

layers is the complex quantity: 

( )∑ ∑ ∑ +⋅++=
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Where the subscript L corresponds to the different layer types, v to stacking vectors of layer L 

and a to the atoms in layer L. rL,a corresponds to the atom vector position in fractional 

coordinates, TL,a the temperature factor, OL,a the site occupancy, fo,L,a the atomic scattering 

factor,    '
,aLf  and   "

,aLf the anomalous dispersion coefficients, h the hkl vector {h, k, l} and vL,v 

the stacking vector v of each layer in fractional coordinates. The stacking vector part of Eq. 1 

can be taken out of the innermost summation, as shown in Eq. 2, allowing the stacking 

vectors summation to be performed independently of the layers summation. 

( )∑ ∑ ⋅=
L L,hklv
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hklstr LayereF vL   ) (   2

 ,
,vhπ   
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aLaLaLoaLaLaL efiffTOAtom rh⋅++= π  

(2) 

In many cases the number of unique x and y coordinates Nuxy amongst the stacking vectors 

{vL,v,x, vL,v,y} is small and Eq. 2 can be rearranged to reflect this as shown in Eq. 3 where the 

summation over vxy corresponds to stacking vectors with unique {vL,v,x, vL,v,y} and the 

summation over u corresponds to vL,v,z values that all have the same {vL,v,x, vL,v,y}. The 

resulting VL,hkl is a complex quantity derived from all the stacking vectors as applied to layer 

L. Performing the summation of Eq. 2 using Eq. 3 can speed up the calculation of Fstr,hkl by a 

factor of 15 to 20.  

∑=
L L,hklL,hklhklstr LayerVF    ,  

where ∑∑ +=
u

l vi

vxy

  k v h vi
L,hkl

uvxyzvxyyvxyx eeV ,,,,    2)(   2 ππ
 

(3) 

For analyses where {vL,v,x, vL,v,y} vectors are randomly offset, as in the work of Bette et al. 

(2015), then the speed gain using Eq. 3 is not possible.  
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3. Obtaining an average intensity from many similarly faulted crystals 

To more accurately represent the probabilistic nature of stacking faults using supercells of 

finite size an average intensity from many crystals (called structures from here on) can be 

used.  One could perform this averaging from Nstr separate pattern calculations, where Nstr 

corresponds to the number of structures used, which would require an Nstr fold increase in 

computational time. The process can, however, be performed by averaging the intensities as 

described in Eq. 4 and then calculating one pattern instead of Nstr patterns. 

( )∑=
str hklstrstrhklavg FNI 2

,,  1/    (4) 

For structures comprising layer types of various thicknesses, the thickness of each structure 

will vary due to faulting. A finite and small Nv would then give Nstr slightly different lattice 

parameters. Efficient use of Eq. 4, however, requires the use of a single set of lattice 

parameters for all structures; for stacking along the c-axis this means using an average c 

lattice parameter cavg. This allows the use of the same set of hkls and the same calculated peak 

shapes in the Rietveld calculations, and means that summing the calculated peaks onto the 

calculated pattern is performed once and not Nstr times. The neglected smoothing due to 

differing lattice parameter can be approximated in a smoothing function described below.  

The speed at which Iavg,hkl can be calculated for 100 structures in the generation of a typical 

powder pattern is only two to three times slower than Ihkl for a single structure; this is 

demonstrated below. In the theoretical recursive method of Treacy et al., (1991) the intensity 

for a particular faulting probability is treated statistically. The present work achieves a similar 

effect numerically using Iavg,hkl. 

From equations 3 and 4 the computational effort, O(Iavg,hkl), required to calculate Iavg,hkl scales 

by Eq. 5.  
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O(Iavg,hkl) = Nstr (Nv lmax + Nuxy Nhkl) (5) 

lmax corresponds to the maximum l value encountered in the calculation of VL,hkl of Eq. 3. 

4. Generating Stacking Sequences 

In the generation of the stacking sequences from a particular stacking probability matrix it is 

advantageous to have Iavg,hkl changing as little as possible. This allows the goodness of fit of 

multiple Rietveld refinements to be compared as a function of the parameters of the stacking 

probability matrix. Indeed the change in the goodness of fit can be determined as a function 

of the probability parameters and optimization performed in order to determine best-fit 

values.  

Stacking sequences are generated from a stacking probability matrix of the type used in the 

DIFFaX package (Treacy, 1991, see for example Figure 9 of Ainsworth et al. 2016).  In an 

initial step the probability matrix is used to generate Navg Nstr Nv layers and from this 

prediction run the number of each layer i to j transition is determined and placed in a 

summation matrix S which is then divided by Navg to give Spred. Navg is typically set to 100. 

Stacking sequences for each structure are then generated according to the steps shown in 

Table 1. This procedure ensures that the generated summation matrix Sgen closely matches 

Spred which in turn matches the overall faulting expressed in the transition matrix. The overall 

time for generating sequences is small compared to the Rietveld calculations. On termination 

of the generation process an average c lattice parameter cavg from the Nstr structures is 

determined and subsequently used in the calculation of peak positions.  

5. Smoothing ripples and correcting for differing layer thicknesses 

For layer types with differing thicknesses the generation scheme in Table 1 will produce 

supercells of slightly varying thicknesses (varying c lattice parameters) resulting in smearing 

of the peaks. This smearing is not described by Iavg,hkl (Section 3)  due to the use of a finite 

and single cavg lattice parameter in the calculation of peak position. In addition, stacking 
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faulted diffraction patterns calculated from small Nv supercells will contain ripples and 

oscillations from individual hkl reflections when the instrument, emission profile and sample 

aberrations are small. Using Iavg,hkl reduces ripples caused by poor faulting statistics, but does 

not eliminate the ripples caused by small Nv. Ainsworth et al. (2016) therefore used a large 

supercell, Nv=5000, to minimise both effects and generate a smooth pattern. Being able to 

reduce Nv whilst i) reducing ripples and ii) describing smearing due to the use of a single c 

lattice parameter without degrading the faulted pattern would be hugely beneficial; the 

number of reflections would be greatly reduced resulting in much less computer memory 

allocation and far greater computational speed.  

As Nv increases the number of peaks increase; in particular stacking along the 

crystallographic c axis sees peaks inserted between the (h1,k1,l1) and (h1,k1,l1+1) peaks where 

(h1,k1,l1) are the Miller indices when Nv=1. When the distance in 2θ from (h,k,l) to (h,k,l+1) is 

less than the step size of the data for all peaks then the resulting diffraction pattern is smooth. 

For small Nv and sharp intrinsic peaks it is possible to produce a smooth pattern comparable 

to one created with a large Nv by inserting peaks, irrespective of Nv, from 2θh,k,l to 2θh,k,l+1 

with intensities ranging from      2
,, lkhF  to          2

1,, +lkhF . This introduction of peaks can be 

approximated by convoluting a right trapezoid of size d2θ/dl=(2θh,k,l−2θh,k,l+1) into each hkl 

reflection with intensities at its ends corresponding to      2
,, lkhF  and          2

1,, +lkhF . Similarly a right 

trapezoid of size (2θh,k,l−1−2θh,k,l) can be convoluted to insert peaks from 2θh,k,l−1 to 2θh,k,l. 

This twin right trapezoidal function can be approximated by a Gaussian centered at 2θh,k,l and 

then shifted by the centroid shift of the twin trapezoid as shown in Eq. 6a.  

Not all peaks should be broadened by d2θ/dl. For example, if all layers have the same height, 

peaks with indices (0,0,nNv) where n is an integer won’t be broadened; nor would other 

categories of (h,k,nNv) peaks depending on the faulting mechanism. When going from a no-
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faulting case to a faulting case, lattice points with unchanging perpendicular distances to a 

particular plane will have their corresponding peak remain sharp. One way of testing whether 

(h,k,l) should be broadened is by looking at the structure factors. If          2
1,, −lkhF and          2

1,, +lkhF  are 

near zero and      2
,, lkhF  is large, then little to no broadening is expected.  On the other hand if

         2
1,, −lkhF ,      2

,, lkhF  and          2
1,, +lkhF  are all of a similar intensity then dθ/dl broadening is expected. If 

we assume the broadening is dependent on ( )         2
1,,

     2
,,

         2
1,,

     2
,,     1 +− ++− lkhlkhlkhlkh FFFF  we arrive at 

the broadening term      
,, lkhΔ  shown in Eq. 6b. 
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τ  is a parameter that is varied in order to obtain the best fit during refinement.      
,, lkhΔ  is small 

when          2
1,, −lkhF and          2

1,, +lkhF  are small and      2
,, lkhF  is large; it is large when          2

1,, −lkhF ,      2
,, lkhF  and 

         2
1,, +lkhF  are of similar intensity.      

,, lkhΔ  corresponds to the FWHM in 2θ of a Gaussian function 

convoluted into each peak and       
, ,h k lShift  is the shift applied to each convolution. Eq. 6 

represents a smoothing function that allows small supercells to approximate much larger 

supercells. In addition to reducing ripples due to a small Nv it also approximates the smearing 

not seen when there are layer types of varying thicknesses and a single set of lattice 

parameters used.  

This approach produces calculated patterns comparable to supercells 10 to 20 times larger. 

Specifically for two cases a and b with Nv,a and Nv,b layers, the speed gain in terms of 

calculating Iavg,hkl using Eq. 5 is shown in Eq. 7. 
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Gain = Oa(Iavg,hkl)/Ob(Iavg,hkl) = 

Nstr,a (Nv,a lmax,a + Nuxy,a Nhkl,a) / (Nstr,b (Nv,b lmax,b + Nuxy,b Nhkl,b)) 

(7) 

where O(Iavg,hkl) is the computational effort to calculate Iavg,hkl. For cases a and b to have 

similar faulting statistics then Nstr,a Nv,a=Nstr,b Nv,b. Noting also that lmax,a/lmax,b=Nv,a/Nv,b and 

Nhkl,a/Nhkl,b=Nv,a/Nv,b, after substitution into Eq. 7 we get the speed gain shown in Eq. 8. 

Gain = (Nv,a lmax,b + Nuxy,a Nhkl,a) / (Nv,b lmax,b + Nuxy,b Nhkl,b) (8) 

For structures with small Nuxy Eq. 8 reduces to ~Nv,a/Nv,b. If vL,v,x and vL,v,y were random 

values then Nuxy,a and Nuxy,b becomes Nv,a and Nv,b for systems a and b respectively. The speed 

gain would then be exactly Nv,a/Nv,b.  

6. Calculating derivatives of structural parameters 

Derivatives of Iavg,hkl with respect to stacking vector coordinates, atomic coordinates, 

occupancies, atomic scattering factors, anomalous dispersion coefficients or temperature 

factors are all necessary in order to refine on the corresponding parameters in a non-linear 

least squares sense. Excluding the stacking vector coordinates, these derivatives can all be 

calculated using a layer dependent NstrxNhkl matrix calculated each non-linear least-squares 

iteration. Consider the case of calculating the derivative with respect to the fractional atomic 

coordinate rL,a,x for  atom a of layer L. From Eq. 3 we have: 

hiAtomVFrI aLhklLhklstrxaLhklavg   2     2  ,, ,,,, π=∂∂  (9) 

In each derivative the quantity hklLhklstr VF , ,   2  is used. Both ,  ,and str hkl L hklF V  are used during 

the calculation of Iavg,hkl and hence do not need recalculating for the derivatives. Thus once 

Iavg,hkl is calculated, determining the derivatives for a structural parameter for a multi-

structure refinement takes the same computational effort as for a single-structure refinement. 
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For the stacking vector coordinates, the derivative from Eq. 3 for the x coordinate of stacking 

vector v becomes:  

i heLayerFvI Li
hklLhklstrxLhklavg   2     2  ) (   2

, ,,, ππ vh⋅=∂∂  (10) 

Again, both ,  str hklF and ,  L hklLayer are calculated during the calculation of Iavg,hkl and hence 

do not need recalculation for stacking vector coordinate derivatives. Even though these 

derivatives can be calculated in a fast manner, coordinates of the stacking vectors are 

typically not refined independently as the quality of the data does not support using 1000s of 

such parameters. Instead thicknesses of layer-types might be refined resulting in fewer than a 

dozen or so independent parameters.  

7. Computational effort as compared to traditional Rietveld refinement  

Rietveld refinement without the use of stacking vectors requires the explicit definition of 

atoms in each stacked layer. We can consider the computational effort using a traditional 

approach (e.g. TOPAS Version 4, Bruker (2009)) for averaging Nstr=100 structures each with 

Nv=960 layers using the La2O2Cu0.667Cd0.667Se2 example investigated by Ainsworth et al. 

(2016).  Each structure has Nhkl=54881 hkls, six layer types NL=6 with four layers having 

seven atoms per layer and two layers having eight atoms per layer. Each peak shape 

generated requires Nops_per_pk≅2000 operations and each summation of the peak shape to the 

calculated pattern requires Npk_shape_sum≅150 operations. The value of Nops_per_pk ~2000 

corresponds to a pseudo-Voigt peak shape convoluted with one emission profile line with the 

instrument aberrations of axial divergence and a receiving slit width (Cheary & Coelho, 

1992). The computational effort required to calculate Iavg,hkl, O(Iavg,hkl), and to calculate the 

peaks, O(Peaks), approximately scales according to Eq. 11 with all numbers originating from 

the program itself. 
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( ) LvL atomsLhklstrhklavg NNNNNIO       )( ,, ∑=  

= 100*54881*44*960/6 = 3.86x1010 

( )_ _ _ _( )      hkl ops per pk pk shape sumO Peaks N N N= +  

= 54481*(2000+150) = 1.17x108 

(11) 

 

The same calculation in TOPAS Version 6 with the stacking implementations discussed 

above reduces to the scaling shown in Eq. 12. 

( ) ( ) ( )hklLL atomsLhklL atomsLhklhklavg NlNNNNNIO +++= ∑∑ max,,,      2     )(  

= 54881*44+2*44*54881+6*(4915+54881) = 7.60x106 

umpk_shape_ssummedpksops_per_pkpks_buf  N N  N NO(Peaks) _+=  

= 1348*2000+11000*150 = 4.34x106 

(12) 

( )∑L atomsLhkl NN ,   corresponds to ∑L L,hklLayer  in Eq. 2 which relates to the calculation of the 

structure factors for the six different layers. lmax corresponds to the maximum l value 

encountered in the calculation of VL,hkl of Eq. 3.  

For hkl dependent peak broadening traditional Rietveld programs, for example TOPAS 

Version 5 (Coelho, 2015) and earlier, would require the calculation of NstrNhkl = 2.5x108
 

peaks. TOPAS Version 6 uses a peaks buffer that is hkl dependent (Ainsworth et al., 2016) to 

greatly reduce the number of peaks calculated. In this example it generates Npks_buf = 3474 

peaks which is used by the Nstr structures. Summing the peaks from the peaks buffer to form 

the calculated pattern is also a process that can be streamlined such that peaks of a similar 

shape that lie in between adjacent data points have their intensities appropriated to the 

adjacent data points. In this manner the number of peaks summed onto the calculated pattern 
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is typically less than the number of data points in the pattern; in the present example 

Npks_summed ≅11000 as opposed to the number of reflections which is 54881. 

Both Eq. 11 and Eq. 12 are approximate in regards to computing time as each operation can 

amount to 4 to 10 floating point operations with the actual time taken being hardware 

dependent; they do, however, give an idea of the magnitude of the computation, especially 

when comparing the values between Eq. 11 and Eq. 12. For derivatives the computational 

effort is dependent on which parameters are refined. The number of operations for calculating 

a peak shape derivative scales by O(Peaks); for structural parameters it scales by Nhkl, see Eq. 

9, and O(Npks_summed Npk_shape_sum). Thus even though O(Npks_summed Npk_shape_sum) is relatively 

small compared to Iavg,hkl of Eq. 12 it can become significant when many structural 

parameters are refined. 

The resulting computational speedup of Eq. 12 compared to traditional Rietveld refinement 

(Eq. 11) is in the order of 104; this would further increase for structures with more atoms in 

each layer, or, for cases where more complex peak shapes are used. 

8. Test data 

Figure 1 shows the current implementation fitting data generated with the test input file 

dia.dat for stacking-faulted diamond distributed with the DIFFaX suite (Treacy, 1991) with a 

0.7 probability (pa) for Nv=200 and for the cases of Nstr=1 and Nstr=200. The much improved 

fit for Nstr=200 (Figure 1b), Rwp =0.58% as opposed to Rwp =3.76%, is due to the averaging 

procedure of Eq. 4 and the smoothing function of Eq. 6. No weighting was given to the data 

during refinement and the formula used to calculate Rwp is shown in Eq. 13, where Yo and Yc 

correspond to observed (here DIFFaX-simulated) and calculated intensities. 
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The time taken to perform the first 8 iterations for Nstr=1 is 1.92 seconds; for Nstr=200 it is 

1.99 seconds. Refinement times, however, depend on what is being refined as various 

calculated data is saved during refinement and calculated only once. It is therefore more 

relevant to consider the time taken to calculate the pattern itself; for ten pattern calculations 

the time for Nstr=1 is 0.67 seconds; for Nstr=200 it is 1.26 seconds; or around twice as slow 

for 200 times more structure factors calculations. Working with the same DIFFaX data of 

Figure 1, Ainsworth et al. (2016) used Nv=5000 stacking vectors but with Nstr=1. Using the 

input file of Table 2 but with these parameters (Nhkl=236902, Npks_buf=2760) results in an Rwp 

of 1.28% and a time to calculate the pattern ten times of 6.8 seconds. This demonstrates the 

great benefit of averaging in both computing time and accuracy.  

To explore the influence of Nstr and Nv the simulated data were initially fitted with Nstr=200 

and Nv=5000 and without the use of the smoothing function; five peak shape parameters, a 

zero error and one Rietveld scale parameter were initially refined. These large Nstr and Nv 

values results in a low Rwp of 0.465% as shown in Table 3. The peak shape parameters and 

zero error were then fixed and the smoothing function of Eq. 6 included in refinements using 

different Nstr and Nv values; Table 3 shows the results. For equivalent faulting statistics 

(Nstr×Nv equal) the Rwp values are very similar. A reduction in Rwp is seen as Nstr×Nv 

increases. For Nv≥100 and for Nstr×Nv≥100000 Rwp values are similar. The case of Nstr=200, 

Nv=200 has a marginally higher Rwp=0.509%, but still with the excellent fit seen in Fig. 1b. 

These data demonstrate that small supercells (low Nv) can approximate much larger 

supercells when averaging and the smoothing function of Eq. 6 are used. 
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To further test the Iavg procedure, the test structure described in Tables 4 and 5 was used to 

generate a complex test pattern with pa=0.7 and with two different layer heights of 5 and 6 Å 

(ε=1 in Table 5) with the other five lattice parameters being a=3 Å, b=4 Å, α=90°, β=90° and 

γ=95°. For accuracy a small step size of 0.01° 2θ was used and the peak shape comprised a 

Gaussian instrument function with a FWHM of twice the step size; this results in a pattern 

that is essentially the aberration function produced from stacking faults. The pattern was 

generated using a normal Rietveld calculation averaging 200 individual structures each with a 

large supercell comprising Nv=2000 layers and each with separate c lattice parameters 

corresponding to the overall heights of the stacked layers.  Each unit cell therefore comprised 

2000×4=8000 atoms for a total of 1,600,000 atomic sites in the calculation. The calculation 

was performed out to 40° 2θ which encompassed 28325 reflections. This translates to an 

innermost loop for the calculation of structure factors that is executed 

1600000×28325=45,176,000,000 times; the pattern calculation time was long at 1828 

seconds. Fitting to this test pattern using Iavg with Nstr=200 and Nv=2000 (identical faulting 

statistics to the generation procedure) produces the good fit shown in Fig. 2 where 

Rwp=3.27(20)%; the calculation time for the first iteration was only 1.2 seconds. The non-

zero Rwp is due to the faulting statistics represented by the transition probability matrix and 

remaining minor ripples in the (instrument/sample unbroadened) test pattern.  Setting Nv=400 

and using the smoothing function of Eq. 6 results in Rwp=4.08(25)% and a 10-fold faster 

calculation of 0.12 seconds. Thus Iavg correctly describes the Rietveld generated pattern with 

two layer heights in an extremely fast manner when a relatively small Nv is used together with 

the smoothing function.  

To further show the benefits of the smoothing function of Eq. 6 the same structure but with 

α=75°, β=85° and γ=95° was used to generate a test pattern out to 150° 2θ;  no smoothing 

function was used and the pattern was again generated using Iavg with Nstr=200 and Nv=2000. 
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Fitting to this test pattern with the same faulting statistics (equal Nstr×Nv) we put Nstr=2000 

and Nv=200. Fig. 3a shows the poor fit when the smoothing function is not used. Fig. 3b 

show the fit when the smoothing function is used resulting in Rwp=1.77(13)% out to 150° 2θ.  

Setting Nstr=200 gives an Rwp=1.82(5)%. Thus the smoothing function with a small supercell 

accurately describes much larger supercells for the complex case of varying layer heights.  

Fig. 4 show the fit to a simulated pattern of the La2O2Cu0.667Cd0.667Se2 structure reported by 

Ainsworth et al. (2016) which comprised three layer types. The simulated pattern used a step 

size of 0.005° 2θ, peak shapes set to a Gaussian with a FWHM of 0.01° 2θ, Nstr=200 and 

Nv=2000 and no smoothing function. The calculated pattern for Nstr=2000 and Nv=200 with 

the smoothing function resulted in Rwp=1.335(39)%; setting Nstr=200 and Nv=200 gives 

Rwp=1.63(27)%. These Rwp values can be compared to 1.45% for Nstr=200 and Nv=2000 

(same values as those used for the simulated pattern; non-zero Rwp due to the faulting 

statistics). Fig. 5 shows Rwp as a function of iteration time from Rietveld refinement using 

Iavg, the smoothing function, Nstr=200 and Nv=200 for the La2O2Cu0.667Cd0.667Se2 test pattern. 

The refinement range of was set to 1.5 to 30° 2θ resulting in 41272 reflections. The 

refinement comprised 15 site coordinate parameters, 3 layer height parameters, one lattice 

parameter, one Rietveld scale parameter and τ from the smoothing function of Eq. 6b. Layer 

height parameters were initially set to ~0.05 Å from their optimal values.  Fig. 5 show the fast 

convergence of these stacking vector parameters. The five seconds to refinement convergence 

is significant as it allows for hands on real time analysis of such data sets. 

These test data suggest that large Nv supercells are not necessary to fit complex patterns. In 

addition, real data has considerable intrinsic broadening due to instrument, emission profile 

and specimen type aberrations such as crystallite size and strain broadening. Thus even 

though the smoothing function of Eq. 6 is important in allowing small-Nv  fits to simulated 

test data with narrow intrinsic peaks, the need with real data is lower.  
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9. Real data Analysis 

We can further explore the speed and accuracy gains enabled by these developments using 

one of the data sets described in Ainsworth et al. (2016). We choose the 

La2O2Cu0.667Cd0.667Se2 composition discussed above which is a layered oxychalcogenide that 

can be described in terms of alternating fluorite-like [La2O2]2+ slabs and either [CdSe2]2– or 

[Cu2Se2]2– anti-fluorite-derived slabs.  The ideal structure has a 2:1 ordered sequence of metal 

chalcogenide layers (Cd1|Cd2|Cu3|Cd4|Cd5|Cu6), where each underlined Cd layer is offset 

by (a/2, b/2).  Two types of faults were investigated: a pa type fault involving an additional 

layer of either metal to form local (Cu|Cu|Cd|Cd) or (Cu|Cd|Cd|Cd) sequences; and a pb fault 

involving Cd layers being offset by (a/2, b/2) either side of a Cu layer. In the original paper 

the dependence of Rwp on fault probabilities pa and pb was investigated using a model with 

six [LaOLaSe(Cu2/Cd)Se] layers (three unique) stacked to form a supercell with 960 layers in 

total (Nstr=1, NL=6, Nv=960).   

Firstly, we investigate the stacking generation method as a function of the constant q 

described in step (2) of Table 1. Figure 6a shows the frequency distribution of Rwp for 500 

Rietveld refinements for the cases of q=0.5 and  q =∞; in the latter case there is no constraint 

on the number of faults generated in the structures and the average Rwp is slightly larger than 

the value for  q=0.5.  Figure 6b shows corresponding generated pa values pagen; a much 

narrower spread in pagen is found for q=0.5 as expected. For this reason q=0.5 is used in the 

analysis below. 

Table 6 shows the influence of different values for Nstr and Nv on Rwp and pagen using our 

averaging approach. Figure 7 shows the influence of different Nstr values for the Rwp surfaces 

obtained for Nv=960 with pa and pb values between 0.0 and 0.1 with different procedures.  

Figure 7a show the surface of minimum Rwp values obtained from 100 Nstr=1 trial structures 

for each of 64 pa/pb combinations as reported in the original paper. The entire surface took 
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around 15 hours to calculate on an i7 3.4 GHz single core desktop computer.  Figure 7b 

shows the equivalent Rwp surface determined using our averaging processes with Nstr=100, 

which took 160 s on the same computer. The speed gain is a combination of the smaller 

number of refinements required (64 vs 6400), the use of a more efficient algorithm to create 

constrained stacking sequences, and other improvements to TOPAS.  A more direct 

comparison of the speed gain from averaging can be obtained by comparing the time to do 

64×100 refinements with Nstr=1 (~8000 s) with 64 Nstr=100 refinements (160 s).  A speed 

gain of around 50 fold is observed as expected from the discussion above. Using the 

convolution approach of Section 5 an equivalent surface can be calculated for Nv=96 in 

around 20 s. 

The averaging process with Nstr=100 also leads to a much better defined minimum in the Rwp 

surface as shown by the contour levels and minimum–maximum Rwp ranges in Figures 7a and 

7b (2.80–7.02% and 2.71–8.59% respectively).  The flatter surface in Figure 7a arises from 

the range of Rwp values encountered for different individual Nstr=1 sequences.  Figure 7c 

shows this effect by superimposing the single Rwp value from the Nstr=100 refinement (large 

points and surface mesh) with the 100 Rwp values from Nstr=1 refinements (small points).  For 

each set pa/pb combination we see a vertical “rod” of Rwp values reflecting the random nature 

of the individual stacking sequences generated in each structure.  Close to the overall Rwp 

minimum the Nstr=100 refinements lie at the minimum of these rods.  For larger pa/pb values 

some Nstr=1 refinements show lower Rwp, but this is due to individual structures having fewer 

faults then the expectation value.  Figure 7d shows an equivalent plot to Figure 7c, but with 

Rwp values for the Nstr=1 refinements plotted against the actual number of faults present in 

each stack. On this plot Nstr=100 models lie essentially on the minimum-Rwp surface.  This 

plot also shows that Nstr=1 Rwp values have significant scatter; around the Rwp minimum 

individual Rwp values can be up to 1% higher than the lowest value.  
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As expected from the smooth Rwp surfaces in Figure 7, it is relatively straightforward to 

directly optimise values of pa and pb.  There are a number of ways of doing this based on 

Monte-Carlo or simulated annealing type approaches (e.g. Bette 2015).  Here a 

straightforward downhill or greedy algorithm is effective.  Figure 8 shows typical 

minimisation pathways for this problem.  Each minimisation was complete in a few minutes 

of computer time. 

Conclusion 

In conclusion we show how the use of efficient algorithms for calculating structure factors, 

efficient pattern averaging, speed-ups in powder pattern calculation using a peaks buffer, a 

smoothing procedure that allows for the use of much smaller supercells and efficient stacking 

algorithms lead to massive speed gains in the Rietveld analysis of stacking-faulted structures.  

Real speed gains of the order of 104 have been obtained, allowing rapid combined structural 

and microstructural analysis of complex systems.  These processes have been implemented in 

a general way in the computer program TOPAS Version 6, and we believe they will have 

wide applicability. 
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1) For each structure generate Nv layers based on the probability matrix and form 

a single summation over all structures to produce the summation matrix Sgen of 

layer i to j transitions.  

2) Terminate the generation of Sgen when the following is obeyed for each of its 

elements: 

 

jipredjigenjipred q ,,,,,,    SSS <−  

 

where the subscripts i and j are over the elements of S and q = 0.5. 

 

3) Chose one of the generated structures at random.  

4) Add a layer to the randomly chosen structure and keep the last Nv layers.  

5) Go to step (2). 

 

Table 1 Steps used in the generation of stacking sequences for all structures. 
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 xdd diffax_dia.xye 

   LP_Factor(0) bkg 1 

   start_X 10 finish_X 149.6 

   rebin_with_dx_of 0.01 

   lam ymin_on_ymax 0.0001 la 1 lo 1.5405754 lh  1e-5 

   Zero_Error(@, 0.0025) 

   weighting 1 

   str 

      space_group P1 

      a 2.518156 b 2.518156 c = Get(generated_c); ga 120 

      prm !pa 0.7 prm !h 2.05870  

      prm s 1 min 1e-15 scale = s 1e-6 / (Nv Nstr); 

      generate_stack_sequences { 

         number_of_sequences Nstr 200 

         number_of_stacks_per_sequence Nv 5000 

         Transition(A, h) 

            to A = pa;   a_add =  2/3; b_add =  1/3;  

            to B = 1-pa; a_add =  0;   b_add =  0;    

          Transition(B, h) 

            to A = 1-pa; a_add =  0;   b_add =  0;    

            to B = pa;   a_add = -2/3; b_add = -1/3;  

      } 

      site C1 x =-1/3; y =-1/6; z = -0.125/Nv; occ C 1 beq 1 layer A 

      site C2 x = 1/3; y = 1/6; z =  0.125/Nv; occ C 1 beq 1 layer A 

      site C3 x = 1/3; y = 1/6; z = -0.125/Nv; occ C 1 beq 1 layer B 

      site C4 x =-1/3; y =-1/6; z =  0.125/Nv; occ C 1 beq 1 layer B 

      peak_buffer_based_on = Xo; peak_buffer_based_on_tol 0.1 

      TCHZ_Peak_Type(@,0.01,@,-0.01,@,0.01,,0,@,0.1,@,0.01) 'Instrument function 

 

Table 2 Input file used for fitting to DIFFaX diamond data for Nstr=200 and Nv=5000. 
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Nstr 1 1 200 1000 500 200 10000 5000 200 

Nv 200 5000 200 100 200 500 100 200 5000 

Nstr x Nv 200 5000 40000 100000 1000000 

Nhkl 9474 236902 9474 2361 9474 23611 4724 9474 236902 

Npks_buf 2532 2760 2532 1122 2532 5305 1122 2532 2760 

Avg. Rwp (%) 2.90 1.28 0.509 0.498 0.489 0.483 0.471 0.458 0.465 

Std Dev. Rwp  0.53 0.17 0.040 0.020 0.025 0.027 0.007 0.006 0.006 

 

Table 3 Average and standard deviation of Rwp over 30 refinements each on DIFFaX-

simulated diamond data for pa=0.7 for various Nstr and Nv values. Refinement range 10 to 

150o 2θ. The smoothing function was applied to all refinements except for the cases with 

Nv=5000. 
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Layer Atom x y z Beq (Å2) 

1 C –1/3 –1/6 -0.125 1 

1 C 1/3 1/6 0.125 1 

2 C 1/3 1/6 -0.125 1 

2 C –1/3 –1/6 0.125 1 

 

Table 4  Fractional atomic coordinates used to generate test patterns. All sites occupied with 

carbon atoms with an occupancy of 1. 
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From layer 1 

To layer 1 with a probability of pa and shifted by the vector {2/3,1/3,c/Nv} 

To layer 2 with a probability of 1-pa and shifted by the vector {0,0,c/Nv} 

From layer 2 

To layer 1 with a probability of 1-pa and shifted by the vector {2/3,0,(c+ε)/Nv} 

To layer 2 with a probability of pa and shifted by the vector {2/3,2/3,(c+ε)/Nv} 

Table 5  Transition matrix and stacking vectors used to generate test patterns.  Shifts in ab 

plane expressed in fractional coordinates; those along stacking direction in Å. 
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Nstr 1 100 200 1 25 100 200 

Nv 960 960 960 192 192 192 192 

Nhkl 54877 54877 54877 10973 10973 10973 10973 

Npks_buf 3474 3474 3474 1326 1326 1326 1326 

Average Rwp(%) 3.014 2.933 2.933 3.591 2.780 2.751 2.748 

Std Dev. Rwp(%) 0.146 0.010 0.008 0.662 0.044 0.019 0.014 

pagen 0.0096 0.01103 0.01101 0.009 0.0109 0.01101 0.01101 

Std Dev. pagen 0.0014 0.00012 0.00008 0.006 0.0006 0.00025 0.00022 

Time (s) 0.71 1.33 1.96 0.45 0.49 0.56 0.66 

 

Table 6 Average and standard deviation of Rwp and pagen over 500 refinements for 

La2O2Cu0.667Cd0.667Se2 (data from Ainsworth et al., 2016) for various Nstr and Nv values. 

Refinement range 1.5 to 20o 2θ.  The approximate relative time required for each of the 500 

refinements is given. 
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Figure 1 Fit to simulated diamond data from DIFFaX for the cases of a) Nstr=1 and b) 

Nstr=200. In both cases Nhkl=9474 and Npks_buf=2532 peaks. Red, blue and grey lines 

correspond to calculated, DIFFaX simulation and difference plots.  
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Figure 2 Fit to Rietveld-generated pattern comprising 200 structures each with 2000 layers 

and each with its own c lattice parameter determined from the different layer thicknesses and 

faulting. The calculated pattern used the Iavg implementation with a single c lattice parameter. 
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Figure 3  Fit to a simulated test pattern created with Nv=2000 and no smoothing function 

using a calculated pattern created with Nv=200 for the cases a) no smoothing function and b) 

with the smoothing function. 
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Figure 4  Fit to a simulated La2O2Cu0.667Cd0.667Se2 test pattern created with pa=0.3, Nv=2000 

and no smoothing function using a calculated pattern with Nv=200 and with the smoothing 

function. 
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Figure 5  Rwp versus time from Rietveld refinement of a test La2O2Cu0.667Cd0.667Se2  

pattern. The refinement used Nstr=200 and Nv=200.  
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Figure 6  Frequency distribution from two sets of refinements, q=0.5 and q=∞, each 

comprising 500 refinements of La2O2Cu0.667Cd0.667Se2 with Nstr=100 and Nv=192 for a) Rwp 

for b) pagen.  
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a) Rwp(min) 100×Nstr=1 b) Rwp 1×Nstr=100
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Figure 7 3D plots showing Rwp values for refinements of different La2O2Cu0.667Cd0.667Se2 

stacking models.  (a) shows the minimum Rwp value from 100 repeat refinements of models 

with Nv = 960 and Nstr = 1 and different pa/pb values.  (b) shows the Rwp value from single 

models with Nv = 960 and Nstr = 100.  (c) plots the 100 Rwp values for Nstr = 1 (small points) 

and the single value for Nstr = 100 (large points).  (d) is as (c) but with data plotted against the 

actual number of faults generated in each sequence.  The same z-range and colouring is used 

in each plot.  Lines in (c) and (d) are to guide the eye. (e) shows the structure in terms of 

[La2O2]2+ (green/red), [CdSe2]2– (blue/yellow) and [Cu2Se2]2– (brown/yellow) slabs. 
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Figure 8 Minimisation pathway using simple downhill algorithm. Minimisation pathways 

from ten different random starting points shown on an equivalent surface to that of Figure 2b. 

 

 


