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Abstract In this paper we present some experimen-
tal results about the physical effects of a cylinder’s

streamwise oscillation motion on a downstream one in

a tandem arrangement. The upstream cylinder under-

goes a controlled simple harmonic oscillation at am-

plitudes A/d = 0.2 ∼ 0.8, where d is the cylinder di-
ameter, and the frequency ratio of fe/fs = 0 ∼ 3.0,

where fe is the cylinder oscillation frequency and fs is

the natural frequency of vortex shedding from a single

stationary cylinder. Under these conditions, the vor-
tex shedding is locked to the controlled oscillation mo-

tion. Flow visualization using the planar laser-induced

fluorescence (LIF) and qualitative measurements using

hot-wire anemometry (HWA) reveal three distinct flow

regimes behind the downstream cylinder. For fe/fs >
(fe/fs)c, where (fe/fs)c is a critical frequency ratio

which depends on A/d and Reynolds number Re, a so

called SA-mode occurs. The upstream oscillating cylin-

der generates binary vortices symmetrically arranged
about the centreline, each containing a pair of counter-

rotating vortices, and the downstream cylinder sheds

vortices alternately at 0.5fe. For 0.7 ∼ 1.0 < fe/fs <

(fe/fs)c a complex vortex street that consists of two

outer rows of vortices generated by the oscillating cylin-
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der and two inner rows of vortices shed from the down-
stream stationary cylinder, which is referred to as AA-

mode. For 0.3 ∼ 0.6 < fe/fs < 0.8 ∼ 1.0, one single

staggered vortex street (A-mode) is observed. It also is

found that, when fe/fs is near unity, the streamwise

interaction of the two cylinders gives rise to the most
energetic wake in the corss-stream direction, in terms of

its maximum width, and the wake is AA-mode like. The

effects of other parameters such as the spacing between

the two cylinders, Re and A/d on the flow pattern are
also discussed in details. The observations are further

compared to the stationary tandem cylinder cases.

Keywords vortex shedding, tandem cylinders, forced
streamwise oscillation, LIF, HWA

1 Introduction

Flow behind multiple structures in a cross flow is fre-
quently seen in engineering applications.When the Rey-

nolds number Re, exceeds a critical value, boundary

layer separates, forming the well-known Karman vor-

tex street. The alternative vortex shedding from the
structure in turn induces structural vibrations at a sig-

nificant magnitude sometimes (Blevins, 1994). Such vi-

brations further influence the flow and subsequently the

loadings on the downstream structures. From a different

perspective, the effect of a controlled oscillating cylin-
der on the downstream cylinder’s wake is important for

flow-control applications, where the unsteady flow pat-

tern can be altered or cancelled, which may be used to

suppress flow-induced vibrations, or to reinforce them
for enhancing fluid mixing. For instance, Karniadakis &

Triantafyllou (1989) placed an oscillating cylinder up-

stream of another cylinder to control the vibration of
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the latter; Ming & Gu (2005) showed that a tiny pertur-

bation generated by an oscillating strake on the nose tip

of an aircraft may significantly reduce and even elimi-

nate the side force at large angles of attack; acousticians

frequently come across a problem to identify the vortex-
sound source in a complicated dynamic system such as

an aircraft (Hardin & Wang, 2003), which may involve

oscillating slender structures. The knowledge of such in-

teractions between the flow generated by an oscillating
structure and its neighbouring structures could be im-

portant for the identification of the vortex-sound source

and to further understand the physics associated with

the vortex-sound wave (Inoue & Hatakeyama, 2002). It

is therefore of both fundamental and practical interests
to investigate how an oscillating cylinder interacts its

neighbouring cylinders.

Previous studies mostly focused on the transverse

oscillation of one or both cylinders (Williamson & Roshko,
1988; Staubli & Rockwell, 1989; Hover et al , 1998; Car-

berry et al , 2001; Zhou et al , 2001; Xu & Zhou, 2003,

among others). Sumner (2010) reviewed the multiple

structure problem in a two-cylinder system, which in-

volves side-by-side, in-tandem or staggered arrangements.
Chen (1987) showed that when a lightly damped cylin-

drical structure is immersed in a liquid, the problem

of streamwise vibration could be particularly severe.

Structural failure may result from resonance effect be-
tween the fluid excitation force and the system natural

frequency.

There have been a number of experimental inves-

tigations involving a single cylinder oscillating in the

streamwise direction. Griffin & Ramberg (1976) inves-
tigated the vortex formation from a cylinder oscillat-

ing in line with flow when the natural vortex shed-

ding frequency fs matches with the cylinder oscillat-

ing frequency fe. Ongoren & Rockwell (1988b) further
studied the flow structure behind a cylinder oscillat-

ing at an angle of 0 ∼ 90o to the streamwise direc-

tion and identifies two basic modes: the symmetric and

anti-symmetric modes, with the latter further divided

into four sub-modes. Cetiner & Rockwell (2001) stud-
ied the lock-on state in the flow at fe/fs = 0.5 ∼ 3.0

and found that the time-dependent transverse force is

phase-locked to the cylinder motion and vortices are

observed both upstream and downstream of the cylin-
der. Based on their experimental data, Xu et al (2006)

observed a new mode at this flow condition, but at

larger A/d (A being the oscillation amplitude; d being

the cylinder diameter) or fe/fs, which consists of two

rows of binary vortices symmetrically arranged about
the centreline.

In terms of the experimental studies of vortex-induced

vibration of two flexible cylinders in tandem arrange-

ment, King (1977) investigated the wake interactions

between two tandem flexible cylinders in a water flow

and observed that vortex shedding patterns depend on

the spacing between the cylinders. Tanida et al (1973)

measured the lift and drag forces on the two cylin-
ders when the downstream one oscillates streamwisely

at A/d = 0.14 and fe/fs = 0.5 ∼ 2.2. Okajima et al

(2007) focused on the flow-induced vibration of two tan-

dem cylinders and also showed different excitation re-
gions determined by the reduced velocity and the spac-

ing between the cylinders, L/d. In addition, Bearman

(2011) provided useful reviews of some recent experi-

mental works in this flow category together with some

other recent works (Assi et al , 2010; Huera-Huarte &
Bearman, 2011) focusing on the near wake interactions,

although in these works the oscillation is induced by the

flows rather than forced.

Previous investigations improved our understand-
ing of flow around two in-line cylinders (oscillating or

stationary). However, many aspects of this flow type

remain unknown. For instance, to the best of the au-

thors’ knowledge, no study has been conducted so far

regarding how a streamwisely forced oscillating cylin-
der affects a downstream cylinder. Yang et al (2014)

recently addressed a similar tandem arrangement but

the oscillation is in the transverse direction. This study

aims for the dependence of the typical flow structures
on A/d and fe/fs. The effects of L/d and Re are also

examined. The results are further compared with sta-

tionary cylinder cases.

2 Experimental details

2.1 Flow visualization in a water tunnel

Laser-induced fluorescence (LIF) visualisations are car-

ried out in a water tunnel with a working section of
0.15m×0.15m×0.5m. The working section is made of

four 20mm thick perspex panels. The maximum veloc-

ity obtainable in the working section is 0.32m/s. Two

acrylic circular tubes of identical diameter d =10mm
are cantilever-mounted horizontally in a tandem man-

ner at the mid-plane of the working section; see figure 1.

The clearance between the cylinder ends and the tun-

nel wall is about 0.5mm. A DC motor is used to drive

the upstream cylinder to oscillate harmonically at an
amplitude of A/d = 0.5 in the streamwise direction.

The oscillation frequency fe varies from 0 to 9Hz which

is well below the first-mode natural frequency of the

fluid-cylinder system (estimated to be about 32Hz).
The cylinders have an aspect ratio of 15. King (1977)

showed that for a stationary cylinder, an aspect ratio

of 27 or larger is necessary to avoid the end effects.
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Fig. 1 Schematic arrangement of cylinders and two hot-wire
probes; side view of the working section. The probes are
placed at x/d = -1, 0, 1, 2, 5, 8 and y/d = 0, ±1, ±2, ±3,
±4, symmetrically about the centreline. The sketch is not to
scale and the incoming flow is in the +x direction.

However, for an oscillating cylinder this requirement
is less stringent since the two-dimensionality will be

enhanced by the vortex shedding from the oscillation

motion. It has been observed that when the oscillation

amplitude is greater than 0.02d, the spanwise fluctuat-

ing pressure correlation coefficient ρp increases greatly,
comparable to a stationary cylinder case, e.g. given a

threshold ρp = 0.5, the spanwise correlation length is

estimated to be 40d, indicating a negligible end effect

in the present experiments. Loosely speaking, the end
surface of the oscillating cylinder can be considered as

a small moving plate in the flow. A viscous transverse

wave forms in the Stokes layer (the boundary layer at

the cylinder end Wu et al 2006) and propagates away

from the cylinder. The wave keeps the fluid away from
the cylinder and the end effect is weakened.

Rhodamine Dye (6G 99%) is introduced through

one injection pinhole located at the mid-span of the

cylinders at the top and the bottom surface. A Spectra-
Physics Stabilite 2017 Argon ion laser with a maximum

power output of 4W is used for illumination. Images are

taken by a digital video camcorder (JVC GY-DV500E)

at a framing rate of 25Hz. Measurements are carried out

for cylinder spacing L/d = 2.5, 3.5, 4.5 and Re based
on cylinder diameter 150 ∼ 1000.

2.2 Quantitative measurements in a wind tunnel

The wind tunnel is described in details in Zhou et al
(2002), which has a working section of 2.4×0.6×0.6m.

The maximum wind speed in the working section is

50m/s. Two aluminium alloy cylinders of d = 15mm

with an aspect ratio 23 are cantilever-supported in the
horizontal mid-plane of the working section. Their spac-

ing can be adjusted from L/d = 2.5 to 4.5; see fig-

ure 1. One microcomputer-controlled DC motor system

is used to drive the upstream cylinder to oscillate har-

monically at A/d = 0.67, and fe = 0 ∼ 20Hz which

is well below the first-mode natural frequency of each

cylinder (≈272 Hz). The free stream turbulence inten-

sity is measured to be 0.4%. Most measurements are
conducted at free stream velocity U∞ = 1.0 m/s giv-

ing a Re = 1150. At this speed, the vortex shedding

frequency from the upstream cylinder is locked on to

the cylinder motion. It must be noted that in order to
account for the low frequency unsteadiness at this low

free stream velocity, three additional screen layers are

installed at the contraction section and the operation

steadiness is verified by a hot-wire measurement test.

All the hot-wire data are also high-pass filtered in order
to further remove any possibly remaining low frequency

unsteadiness and to increase the signal-noise ratio.

The dominant frequencies in the flow are measured

using two hot-wire probes, placed at locations shown in
figure 1. The sampling frequency is 1.5kHz per channel

and the typical duration of each record is about 30s.

The hot-wires are calibrated over the range of 0.3 ∼

10m/s using TSI-1128 velocity calibrator.

3 Typical flow structures

In this article, two dimensionless frequencies are used.

The first accounts for the forcing frequency, namely

fe/fs, where fe is the cylinder oscillation frequency

and fs is the vortex shedding frequency from an iso-
lated stationary cylinder. In water tunnel visualisations,

fs = 0.3 ∼ 2Hz while in wind tunnel measurements

fs = 13.3Hz. Note that fs is not the vortex shedding

frequency of two stationary tandem cylinders since it

depends not only on Re but also on the spacing L/d.
The second is f∗ = fd/U∞, which is used to quan-

tify the characteristic frequency in the power spectrum

measurements.

From the flow visualisation, it is found that the flow
structure around the two cylinders largely depends on

the combination of fe/fs and A/d for L/d = 2.5 ∼

4.5, similarly to the one for a single isolated oscillating

cylinder (Karniadakis & Triantafyllou, 1989; Xu et al ,

2006). This suggests the dominance of the oscillating
cylinder’s wake over the downstream stationary one’s.

Three distinguishable flow patterns can be identified

when the vortex shedding frequency is locked on to fe,

with the first two patterns (SA and AA mode) showing
new vortex structures which have never been observed

and the third pattern (A mode) similar to a previous

reported one.
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3.1 Symmetric-antisymmetric binary street (SA-mode)

For fe/fs ≥ 1.6 and A/d = 0.5, the flow behind the

downstream cylinder is characterised by a binary street

that consists of two outer rows (towards the free stream
region) of symmetrically arranged vortices originated

from the oscillating cylinder and two inner rows (closed

to the centreline) of anti-symmetrically arranged vor-

tices generated by the downstream cylinder; see fig-

ure 2.

Each pair shed from the upstream cylinder further

comprises a pair of counter-rotating vortical structures,

which is similar to the 2P mode in Williamson & Roshko
(1988) but with a significant difference, i.e. they are

mirror imaged about the centreline, instead of alterna-

tive. To label the difference, we name it a binary vortex

structure. A better understanding of the formation of
this structure is via sequential photographs at various

phases within one typical period of the cylinder oscil-

lation. When the oscillating cylinder moves upstream

(from +A to −A, figure 2 a-c), one clockwisely rotating

structure Au1 forms due to the natural vortex shedding.
As it moves downstream (from −A to +A c-f), fluid

close to the cylinder wall moves along due to viscous

effect, while fluid further away moves upstream rela-

tively to it. Since the velocity maxima of the cylinder is
3.77cm/s (Um = 2πAfe, fe = 1.2Hz) and U∞=2.7cm/s,

the maximum relative velocity is 1.07 cm/s, resulting

in an instantaneous relative Re= 120 based on this rel-

ative velocity, which exceeds the critical Re≈ 40 (see

Schlichting & Gersten, 2000) and Au2 begins to form in
an anti-clockwise sense. Eventually, the structure con-

taining the pair Au1 and Au2 separates from the cylin-

der (f-h) and is swept downstream by U∞. A similar

flow structure can be observed at a higher Re = 500
(not shown).

Figure 3 shows the power spectral density function

Eu of the measured hot-wire signals above the centre-
line. Between the two cylinders at x/d = −1 (figure 3a),

Eu exhibits one pronounced peak at f = fe along the

y direction, indicating the lock-on event between the

binary vortex shedding and the cylinder oscillation mo-

tion. The peak corresponds to f∗ = 0.29. The spec-
tral phase (not shown) measured from the two hot-wire

probes arranged symmetrically about y = 0 is zero at

this peak, reassuring the symmetry arrangement of the

binary vortices (figure 2). At y/d > 1, another peak
occurs at f = 2fe (f∗ = 0.58) and becomes more

pronounced when y/d increases, which apparently in-

dicates the vortex pair in each binary vortex (figure 2).

Behind the downstream cylinder at x/d = 2, one

strong peak appears at f = 0.5fe for y/d ≤ 1 only (fig-

ure 3b). This peak is ascribed to the two inner rows of

Fig. 2 Sequential photographs of a symmetric-
antisymmetric binary street (SA-mode) at fe/fs = 1.8.
L/d = 3.5, Re = 300, A/d = 0.5. The phase of each photo is
indicated in the side plot, where t and X represent time and
the streamwise displacement, from the reference position (X
= 0) of the upstream cylinder, respectively. The reference
position is marked by a vertical line near the upstream
cylinder in the photographs.

vortices shed from the downstream cylinder. It is fur-

ther corroborated by a spectral phase near π at f/fe =

0.5 (not shown) between the two hot-wire measure-

ments mentioned above, which is in consistence with
the anti-symmetric shedding manner shown in figures 2.

It indicates that the vortex shedding frequency of the

downstream stationary cylinder halves that of the bi-
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Fig. 3 Power spectral density function of the hot-wire signals for the SA-mode at fe/fs = 1.45, A/d = 0.67, L/d = 3.5 and
Re = 1150. (a) x/d = -1; (b) x/d = 2; (c) x/d = 5; (d) x/d = 8; refer to figure 1 for locations. Spectral lines are shifted in the
vertical direction for clearer presentation purposes.

nary vortices. For y/d ≥ 2, the peak at 0.5fe disappears
but the one at fe remains visible, in line with the obser-

vation that the symmetrically arranged binary vortices

occur fairly far away from the centreline. The peak at

f = 2fe or f∗ = 0.58 in figure 3 (a) is not seen at

x/d = 2, suggesting that one of the counter-rotating
vortical structures has vanished due to vorticity cancel-

lation.

Further downstream at x/d = 5 (figure 3c), on the

one hand, the peak at f = 0.5fe disappears completely,

indicating the disappearance of the alternating inner
vortex street generated by the downstream stationary

cylinder; on the other hand, the peak at f = fe is still

discernible, referring to a longer persistence of the bi-

nary vortices, i.e. the vorticity concentration of the vor-

tical structures separated from the upstream cylinder
are significantly stronger, therefore survive for longer

time.

Both inner and outer vortex streets decay fast. By

x = 8d, all peaks are barely visible. Zhou et al (2002)

observed a faster decay of two coupled streets generated

by two side-by-side cylinders, compared to the street
behind an isolated fixed cylinder, and attributed it to

the strong vortex interaction between the inner and

outer rows. This mechanism is probably also respon-

sible for the observation in this experiment. The vortic-
ity cancellation between the opposite-sensed rotating

structures in the binary vortex may further accelerate

the decay of these vortex streets.

In order to have a better understanding about why
the binary vortex frequency doubles the one of the al-

ternative shedding from the downstream cylinder, a

hot-wire measurement is conducted for the case where

the upstream cylinder is stationary and the results are

shown in figure 4. Eu displays only one peak at f∗ =
0.127 at both x/d locations which reflects that both

cylinders generate vortices at the same pace (Igarashi,

1981). Evidently, the cylinder oscillation has changed

the vortex shedding frequency from f∗= 0.127 to 0.29
for the upstream cylinder and to 0.145 for the down-

stream cylinder. It seems plausible that flow separa-

tion from the upstream cylinder may trigger the one

from the downstream cylinder or vice versa, implying

that the two frequency must be identical. As a result,
the symmetric vortex shedding frequency from the up-

stream cylinder must double the one from the down-

stream cylinder since the latter is alternative. Whereas

if the vortex shedding modes of both cylinders are the
same, either symmetric or anti-symmetric, their shed-

ding frequency must also be identical, just like the case

of two stationary cylinders (Ishigai et al , 1972). The

assertion is further confirmed by the flow structures of

the other two modes; see § 3.2 and § 3.3 below.

Eu with and without the oscillation are compared

in figure 5 for a better understanding of the influence of

the upstream cylinder’s oscillation motion on the down-
stream one. When the oscillation occurs, the peak ap-

pears at f = 0.5fe with a magnitude about 0.002; in

contrast, the magnitude of the peak for a stationary
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Fig. 4 Power spectral density function of hot-wire signals
for the case where the upstream cylinder is stationary, i.e.
fe/fs = 0: (a) x/d = −1, between the cylinders; (b) x/d = 2,
behind the downstream cylinder. L/d = 3.5, and Re = 1150.
Spectral lines are shifted in the vertical direction.
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Fig. 5 Power spectral density functions of the hot-wire sig-
nals with and without the oscillation of the upstream cylin-
der. L/d = 3.5, Re = 1150. The upstream cylinder’s oscilla-
tion condition is fe/fs = 1.45, A/d = 0.67. The measurement
location is at x/d = 2 and y/d = 1, which is in the pathway
of the inner vortex street behind the downstream cylinder.

case is about two orders of magnitude larger (≈ 0.207),

demonstrating a great loss of the vortex strength under

the influence of the symmetrical binary vortices.

3.2 Antisymmetric-antisymmetric binary street

(AA-mode)

When fe/fs reduces to 1.0 ∼ 1.6 and A/d remains at
0.5, a completely different flow structure emerges; see

figure 6. A careful examination of the video reveals that

a binary street occurs in the flow field, which consists of

two outer rows of binary vortices such as Au and Bu,

originated from the upstream cylinder (also different

to the 2P mode in Williamson & Roshko 1988), and

two inner rows of single vortices, denoted by Ad and

Bd, generated by the downstream cylinder (similar to
the 2S mode). The two successive vortices alternately

shed from the upstream cylinder quickly move to one

side of the centreline before reaching the downstream

cylinder. The structure Au2, which is originated from
the upper side of the upstream cylinder, crosses the

centreline to approach Au1 originated from the lower

side of the same cylinder (figure 6a). The two vortices

eventually pair up and form a binary vortex in the outer

row (b-d). But Au2 appears to be losing its identity
quickly due to vorticity cancellation by Au1, leaving

a single vortex Au remaining (e-h). The evolution of

vortices Bu1 and Bu2, which are shed from the upper

and lower side of the upstream cylinders respectively,
is quite similar to that of Au1 and Au2, although they

end up above the centreline.

The motion of the upstream cylinder plays a key

role to induce a vortex across the centreline which then

merges with the one on the other side. Note that the

vortex shedding frequency from the upstream cylinder
is locked to fe, i.e. each time when the cylinder moves

against U∞, one vortex forms, e.g. the vortex Cu2 in

figure 6(e) is just born. The movement in the upstream

direction reduces the backpressure on the cylinder. The
very low pressure in the lower region draws Cu2 towards

the centreline (f), which then is pushed downstream by

the ensuing streamwise movement (g-h).

Figure 7 (a) shows declined spectra Eu as y/d in-

creases. Another peak occurs at f = 0.5fe for y/d ≥ 1

and x/d = −1, which is significantly more pronounced
than that at f = fe. The former corresponds to the ob-

servation in figure 6 that every other vortex (e.g. Au2

or Bu2) shed from the upstream cylinder cross the cen-

treline to coalesce with a cross-stream vortex.

At x/d = 2, the peak at f = 0.5fe remains pro-
nounced and the one at f = fe can also be seen, albeit

much weaker. The latter, particularly at small y/d, is

believed to be attributed to the vortex shedding from

the downstream cylinder. This is supported by our PIV

measurements (not shown) that the vortices shed from
the downstream cylinder display a weaker intensity com-

pared with those originated from the upstream cylinder;

it is consistent with the proposition that the frequency

of the vortex shedding from the two cylinders should
be identical given the same shedding mode. Both peaks

are identifiable at x/d = 5 and 8 (7c and d), suggesting

a longer survival of the binary street than at f = 1.0fe.
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Fig. 6 Sequential photographs of an antisymmetric-
antisymmetric binary street (AA-mode) at fe/fs = 1.08.
L/d = 3.5, Re = 300, A/d = 0.5.

3.3 Antisymmetric single street (A-mode)

The flow of this mode is characterised by a single stag-

gered street, behind both cylinders, for 0.5 < fe/fs ≤
1.0 and A/d = 0.5. Although the shedding pattern can

be categorised as the 2S mode (Williamson & Roshko,

1988), here we adopt a different terminology as A-mode

to be consistent with the previous two modes. Figure 8
presents sequential photographs of this case. It can be

seen that under the influence of the downstream sta-

tionary cylinder, vortices Au and Bu are separated al-

ternately to the upper and lower sides of the centreline.

These vortices merge to the surrounding shear layers,

separate from the downstream cylinder and form a stag-

gered vortex street downstream. Apparently the vor-

tex shedding frequency must be identical between the
upstream and the downstream cylinder, which is also

locked-on to the cylinder oscillation. This is confirmed

by the power spectra in figure 9, which exhibits a single

peak at f = fe for all x.

4 Discussion

4.1 The effect of L/d and Re on the flow structure

Figure 10 shows the dependence of the flow structure on

the spacing of the two cylinders. As can been observed,

the typical flow structures (SA-mode) are essentially
the same regardless of the L/d value within the testing

range. In contrast, the flow behind two tandem station-

ary circular cylinders does depend on L/d, which can be

classified into three flow regimes as shown in Igarashi
(1981) and Zdravkovich (1987).

The degree of the Re dependence is examined in fig-

ure 11. When undergoing oscillation, Re does not seem

to affect the vortex shedding mode to a significant ex-
tent although the flow becomes turbulent at higher Re.

The same mode can be observed as Re increases from

300 to 800. Nevertheless, Re is an important influen-

tial factor for single cylinder case (Gerrard, 1978) and
two stationary tandem cylinder case (Ljungkrona et al ,

1991). Our measurements at the fixed A/d = 0.5 indi-

cates a negligible Re effect on the critical fe/fs ratio,

where the flow pattern changes from one mode to an-

other, for Re > 300. It thus can be deduced that it
is the oscillation of the upstream cylinder which deter-

mines different flow patterns, the influence of Re and

L/d is rather weak in comparison.

4.2 Theoretical consideration of the SA-mode
occurrence

The flow between the cylinders displays a remarkable

symmetric binary vortex street pattern in this mode,

which is quite similar to the S-II mode previously re-

ported in Xu et al (2006), which was found that the
vorticity produced by the streamwisely oscillating cylin-

der surface consists of two components: one is identical

to that generated by a stationary cylinder subjected to

a steady uniform cross flow; the other depends on the
cylinder oscillation, anti-symmetric or symmetric about

the centreline. The non-linear interaction between the

two components results in various flow modes.
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Fig. 7 Power spectral density function of hot-wire signals for the AA-mode at fe/fs = 0.8, A/d = 0.67, L/d = 3.5 and Re
= 1150. (a) x/d = −1; (b) x/d = 2; (c) x/d = 5; (d) x/d = 8. Spectral lines are shifted in the vertical direction for clearer
presentation purposes.

Fig. 8 Sequential photographs of an antisymmetric single
street (A-mode) at fe/fs = 0.5. L/d = 3.5, Re = 150, A/d =
0.5.

It is demonstrated in Xu et al (2006) that for a

cylinder oscillating at an amplitude

X (t) = A cos (2πfet+ ψo) , (1)

fe being the frequency and ψo being the initial phase

angle, the two dimensional vorticity equation, when ap-
plied on the surface of the cylinder, can be written as

∂ωz

∂t
=

8π2f2

e
A

d
cos (2πfet+ ψo) sin θ, (2)

where θ is the azimuthal component of the cylindrical
coordinates. Integrating yields the vorticity created on

the surface

ωz =
4πfeA

d
sin (2πfet+ ψo) sin θ + ωz,c (θ, p) (3)

= ωz,u (θ, t) + ωz,c (θ, p) , (4)

where ωz,u (θ, t) is the oscillation-induced vorticity, which
is anti-symmetric about the centreline, but symmet-

ric in terms of magnitude; ωz,c (θ, p) is an oscillation-

independent component, which is the vorticity associ-

ated with two stationary cylinders in a steady uniform

flow, i.e. ωz (θ, t) ≡ 0. If feA is large enough, ωz,c (θ, p)
can be neglected compared to ωz,u (θ, t) and the vortic-

ity generated by the upstream cylinder is governed by

the oscillation motion and is symmetric about the cen-

treline in terms of magnitude, producing the SA-mode.
Note that vortex shedding from the downstream cylin-

der is always alternative, which is not affected by the

flow structure between the cylinders.

The occurrence of the SA-mode may also be inferred

in terms of the vorticity flux σ on the surface of a cylin-
der as suggested in Morton (1984) and Blackburn &

Henderson (1999)

σ = −νro · ∇ωz = −ro × (∇p+ a)−
1

ρr

∂p

∂θ
(5)

+4π2f2

e
A cos (2πfet+ ψo) sin θ|r|ro,
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Fig. 9 Power spectral density function of hot-wire signals for the A-mode at fe/fs = 0.45, A/d = 0.67, L/d = 3.5 and Re =
1150. (a) x/d = −1; (b) x/d = 2; (c) x/d = 5; (d) x/d = 8.

(a)

(b)

(c)

Fig. 10 Flow structure at various L/d. Re = 300, fe/fs =
1.8, A/d = 0.5. (a) L/d = 2.5; (b) L/d = 3.5; (c) L/d = 4.5

where ro is the unit vector in the radial direction; σ

represents the vortex flux strength per unit time and
area on a cylinder surface. Equation (6) comprises of

two components: the tangent gradient of the pressure

p and the tangent component of the acceleration. The

(a)

(b)

(c)

Fig. 11 Flow structure at various Re. L/d = 3.5, fe/fs =
1.8. (a) Re=300; (b) Re=500; (c) Re=800.

first component does not depend on oscillation but the
second one does. If feA is large enough, σ will be sym-

metric about the centreline.

Defining a relative Reynolds number based on the

cylinder’s relative velocity to the free stream U∞, when

the cylinder moves upstream, ∆U = U∞ − Ẋ = U∞ +
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2πfeA and ∆Re always exceeds the critical Re for the

formation and separation of vortices in an isolated cylin-

der case, which is about 50. However, when the cylinder

moves downstream, ∆U = U∞ − 2πfeA. If the maxi-

mum Ẋ exceeds U∞, i.e. 2πfeA > U∞, ∆U is negative
relative to U∞. The condition for the occurrence of the

SA-mode may start, given ∆U negative and sufficiently

large in magnitude, as

∆Re =
(2πfeA−U∞) d

ν
≥ ∆Rec, (6)

where ∆Rec is a critical Reynolds number, which is

suggested to be less than 5 for a single streamwise os-

cillating cylinder case (Xu et al , 2006). Solving (6) in
terms of fe/fs, A/d and Strouhal number St, we obtain

fe/fs ≥
(1 +∆Rec/Re)

2πSt (Re)

(

A

d

)

−1

= (fe/fs)c , (7)

where St=St(Re) is for an isolated stationary cylin-
der wake and is well documented in Chen (1987) and

Blevins (1994) for example; (fe/fs)c is the threshold

value for the occurrence of the SA-mode. Based on (7),

(fe/fs)c is inversely proportional to A/d. If (7) is not
satisfied, e.g. in cases of a small ∆U , ∆Re < ∆Rec,

then A- or AA-mode occurs.

At Re> 300, St(Re)≈0.2, ∆Rec/∆Re ≈ 0 (given

∆Rec ≈5), the Re effect on the generation of the SA

mode should be negligible. Equation (7) can then be

simplified as

fe/fs ≥ (fe/fs)c ≈
5

2π

(

A

d

)

−1

. (8)

This relation gives rise to the curve (fe/fs)c = 0.8 (A/d)
−1

in figure 12, which is used to predict the occurrence of

the SA-mode. It is worth pointing out that ∆Rec could

be slightly different from 5 in the presence of a down-
stream cylinder, which depends on L/d, albeit weak as

suggested in figure 10.

5 Conclusion

This article presents wake patterns excited by the stream-

wise oscillation of the upstream cylinder. Three dis-

tinguishably different patterns, as summarised in fig-

ure 13, are governed primarily by the oscillation fre-

quency fe/fs and the amplitude A/d, weakly by the
cylinder spacing L/d and Re. The SA-mode occurs for

fe/fs > (fe/fs)c (about 1.45 for A/d = 0.67, 1.6 for

A/d = 0.5). The upstream oscillating cylinder gener-

ates binary vortices symmetrically arranged about the
centreline, each binary vortex consisting of a pair of

counter-rotating vortices. Meanwhile, the downstream

cylinder sheds vortices alternately at a frequency of

 �  SA mode

▲  AA mode

 ●  A mode

Fig. 12 Dependence of the flow structure on A/d and
fe/fs. The curve (fe/fs)c = 0.8(A/d)−1 indicates the crit-
ical fe/fs for the occurrence of the SA mode; (fe/fs)c =
0.565(A/d)−1 − 0.029(A/d) separates the A and AA modes;
(fe/fs)c = 0.239(A/d)−1 − 0.029(A/d) separates the lock-on
and non-lock-on states.

one half of the oscillation frequency. A complex vortex

street occurs behind the downstream cylinder, which

includes two outer rows of symmetrically arranged bi-

nary vortices originating from the upstream oscillating
cylinder and two inner rows of staggered vortices gener-

ated by the downstream stationary cylinder. Analysis

has been developed to predict the occurrence of the

SA-mode flow structure, which is in good agreement
with the experimental data. The AA-mode occurs for

0.7 ∼ 2.4 ≤ fe/fs ≤ (fe/fs)c, when alternate vortex

shedding occurs for both cylinders. The flow behind the

downstream cylinder is characterised by a complex vor-

tex street that consists of two outer rows of binary vor-
tices, originated from the upstream cylinder, and two

inner rows of single vortices shed from the downstream

cylinder. The vortices in the two outer or two inner

rows are spatially antisymmetrical about the centreline.
The A-mode emerges behind the downstream cylinder

at 0.27 ∼ 0.61 ≤ fe/fs ≤ 0.7 ∼ 1.6. In general, fe/fs,

at which a particular mode of the flow structure occurs,

decreases as A/d increases.

In general, at a fixed A/d, the frequency f space

is divided into three ranges, each corresponds to one

mode, i.e. f(A) < f(AA) < f(SA). It is found, from a

quick comparison of the three patterns (e.g. figure 2, 6

and 8 and the corresponding PSD for x/d > 0), that
the widest wake behind the downstream cylinder is ob-

served when fe/fs is near unity. If we consider the two-

cylinder as a system, it implies that fs is also in the

vicinity of the nature frequency of the entire system,
the interaction of the two cylinders leads to a resonant

effect, which outputs the most energetic wake. Consider

a small fluid parcel with a mass m, its displacement in
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Fig. 13 Summary sketch of dominant flow structures (λ represents the vortex wavelength). (a) Two inline stationary cylinders;
(b) A-mode; (c) AA-mode; (d) SA-mode

the y direction is Y (t), which is a function of time and

similar to a simple harmonic motion. Y (t) can be de-
scribed by a linear system:

mŸ (t) + cẎ (t) + kY (t) = F , (9)

where the input F , at a fixed Re, is a function of fs,

A and d, i.e. F = F(fs, A, d). This system has a natu-

ral frequency fo =
√

(1− ζ2)(k/m), with the damping

ratio ζ, which is of an isolated cylinder. It implies that
if fe is set near fo, the resonance effect is seen, which

is verified by figure 6. This observation shows that a

properly chosen streamwise oscillation frequency of one

component is able to induce a resonant effect of the en-

tire system, which can maximise the spanwise mixing
in the far wake region.
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