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1 Introduction

1.1 The forest

D-/M-branes in string/M-theory have a rich space of supersymmetric configurations. This

space is parameterized by a set of discrete parameters (abstractly, the number N of branes),
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a set of continuous parameters (the moduli), which are vacuum expectation values of gauge-

invariant operators, and the field profiles that define the bulk (closed string) background

on which the brane propagates. The expectation values of the moduli may or may not

break the underlying gauge symmetry of the brane. For concreteness, we will focus on the

subspace of supersymmetric (bosonic) configurations that do not break the gauge symmetry

(in a standard system like the system of N D3 branes this would be the origin of the

Coulomb branch).

Tracing the properties of this space across N requires a detailed understanding of the

theory that resides on the brane. For D-branes in string theory a configuration of the brane

(supersymmetric or not) is determined by an exact solution of an open string (field) theory,

which, in general, is hard to obtain directly. The common approach to this problem is to

identify first an exact solution (a special point P in configuration space) and work in its

vicinity by setting up an effective field theory description of long-wavength deformations. P

is usually a point with enhanced symmetry where the full open string equations of motion

can be solved exactly. The general assumption in all practical applications of this strategy

is that solutions of the leading order effective field theory are approximate representations

of an exact configuration a finite distance away from P .

It is best known how to implement this stategy in the abelian case of a single D-brane

in string theory. In a standard derivation (see [1] for a review) P is a brane configuration

with a flat worldvolume and a constant gauge field strength F2. The resulting effective field

theory, which is the well-known abelian Dirac-Born-Infeld (DBI) theory, is determined from

a computation of the disk worldsheet partition function or a computation of an infinite set

of tree-level scattering amplitudes. The extension to curved backgrounds and the inclusion

of general couplings with the background fields is known. However, the understanding of

the non-abelian extension of this theory (N ≥ 2) is more rudimentary (we refer the reader

to the review [2] and references therein).

Configurations that preserve some amount of supersymmetry are special and obey

additional conditions. These conditions are nicely packaged in a single projection equation

Γκ ε = ε , Γ2
κ = 1 (1.1)

that involves the spinorial supersymmetry transformation parameter ε [3]. Γκ is the matrix

that controls the κ-symmetry transformations of the brane theory. The specifics of this

matrix depend on the profile of the brane and background fields. The solutions of this

equation involve (i) a set of first order differential constraints on the bosonic fields of the

brane effective theory, and (ii) a set of differential and algebraic constraints on ε that

determine the amount of the preserved supersymmetry.

It is of interest to understand how these structures evolve as we increase the number

of branes N . Parts of the configuration space can often be traced from the one extreme

at N = 1 to the other at N → ∞. For instance, configurations at finite N that involve

only the abelian (diagonal U(1), center-of-mass) degrees of freedom are always solutions

of the same abelian effective DBI theory (up to overall constants). The N →∞ regime is

particularly interesting, because it is the regime where configurations are described by clas-

sical solutions of the bulk supergravity theory. There are many instances in the literature

– 2 –



J
H
E
P
0
5
(
2
0
1
4
)
0
2
3

where a direct correspondence is observed between solutions of the abelian DBI theory and

brane solutions of the bulk supergravity equations of motion (a SUGRA/DBI correspon-

dence). An indicative list of examples includes [4–6]. Connections between κ-symmetry

and calibrations in brane theory and supergravity are also relevant for this aspect (for

recent related work see [7]; for an instructive review see [8]). To the best of our knowledge,

there is currently no systematic general understanding of this correspondence and part of

the motivation of the present work is to provide one.

Such comparisons between the low-N and large-N descriptions require a continuation

of the DBI philosophy to large-N , namely the notion of a theory of long-wavelength defor-

mations of brane solutions in supergravity. In recent years it has been proposed [9, 10] that

such a theory can be set up within a scheme of matched asymptotic expansions (see [11]

for a detailed discussion of such expansions in the context of caged black holes). Once the

zeroth order solution is identified, the constant parameters that control it (e.g. charge den-

sities, rotation parameters, etc.) are promoted to slowly-varying fields of the worldvolume

coordinates and the gravity equations are solved perturbatively in a derivative expansion

scheme. In the process one discovers that the slowly-varying fields are degrees of freedom of

a gravity-induced effective worldvolume theory (coined blackfold theory [9]) that involves

a fluid on a dynamical hypersurface. The hypersurface acts in many ways as a holographic

screen; it is naturally located in a region far from the black hole horizon and the theory on

it is conjectured to control the perturbative solution in the bulk.

This approach can be employed in diverse contexts, e.g. zero or finite temperature,

neutral or charged branes, asymptotically flat or asymptotically non-flat backgrounds. For

finite-temperature AdS black branes the same process leads naturally to the fluid-gravity

correspondence [12], where one recovers an effective fluid on a surface with fixed geom-

etry. The latter is related holographically with the fluid description of a dual strongly

coupled quantum field theory. Until now the blackfold approach has been applied suc-

cessfully in gravity to provide evidence for new black holes solutions with exotic horizon

geometries [13–18], in the AdS/CFT correspondence [19, 20], in string/M-theory [21–28]. A

recent discussion about the relation of blackfolds, the fluid-gravity correspondence and the

membrane paradigm appeared in [29]. A different interesting direction has been pursued

in [30, 31].

For asymptotically flat neutral black brane solutions in Einstein gravity refs. [32, 33]

have shown that the leading order hydrodynamical equations of blackfold theory guarantee

the existence of a regular first order corrected solution of the Einstein equations. Regular-

ity refers here to the solution outside the black hole horizon. This result has been partially

extended to electrically charged black brane solutions of Einstein-Maxwell gravity in [34].

The generic brane configuration in theories with bulk gauge fields (e.g. in supergravity)

involves complex anisotropic fluids with multiple conserved higher-differential-form charge

currents. Such descriptions are ubiquitous in the discussion of brane bound states. The

elastic and fluid-dynamical properties of these systems are less understood. More im-

portantly, the derivation of the first order corrected supergravity solutions in these more

general cases remains a largely open problem.

Supersymmetric solutions provide a fruitful arena for this problem. As a first step in

this direction we consider the formulation of supersymmetric perturbations of brane bound
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states within the blackfold expansion scheme. We propose a specific ansatz for the first

order deformation of the supergravity fields and demonstrate that a special part of the

supergravity Killing spinor equations gives rise to a projection equation that has the same

structure as the κ-symmetry equation (1.1) of the non- gravitational abelian DBI theory.

This observation suggests a concrete gauge-gravity map between the degrees of freedom

of the DBI description and degrees of freedom derived directly from gravity. As a result,

this map adds a new element to the SUGRA/DBI correspondence and opens the road

to a deeper understanding of the nature and structure of the dynamical equations of the

blackfold effective theory.

As a final comment, we note that there is an old proposal (first applied to string theory

in [35]) that identifies the abelian part of the D-/M-brane degrees of freedom (transverse

scalars, gauge fields) in supergravity as collective coordinates associated to large gauge

transformations. Although this approach shares some qualitative similarities with the

blackfold description, the two are significantly different. For instance, the old approach

of [35] (for a review see [3]) identifies from supergravity worldvolume abelian gauge fields. In

contrast, we will see that the blackfold approach identifies naturally, with a particular non-

linear rewriting that we analyze in this paper, worldvolume abelian gauge field strengths.1

Moreover, the blackfold effective theory encodes in a rather straightforward manner the

full non-linear nature of the DBI action. This is hard to achieve with the techniques of [35].

1.2 The tree

For concreteness, in this paper we will investigate the above construction in the context

of a very specific brane configuration in the eleven-dimensional supergravity description of

M-theory. Following closely the logic of the string theory derivation of the DBI action [1]

we begin with the configuration of an M5 brane in the presence of a constant worldvolume

three-form flux. The specifics of this solution and the details of the abelian M5 brane theory

proposed in [37–39]are summarized in section 2. In section 3 we move to the supergravity

regime and recall the details of a corresponding exactly known supergravity solution that

represents a planar M2-M5 bound state. Both gauge theory and gravity solutions are 1/2-

BPS and the analysis of the Killing spinor equations in supergravity in this simple uniform

case reveals immediately a natural connection with the κ-symmetry equation of the abelian

M5 brane theory. Part of this connection is a specific map between the uniform three-form

flux of the abelian M5 brane theory and a parameter that controls the M2 brane charge in

the supergravity solution.

An ansatz for a general extremal long-wavelength deformation of the seed planar M2-

M5 solution in supergravity is proposed in section 4. The proposal extends the treatment of

neutral black branes in [32, 33] to a setting of an extremal two-charge black brane solution.

1For brane configurations in supergravity interpolating between the asymptotic Minkowski space and

a near-horizon AdS space, the abelian nature of the brane effective theory suggests that this theory is a

supersingleton field theory. This fact was recognized early on in [36]. The new element that we add to this

story is the proposal that this supersingleton field theory is blackfold theory. It would be interesting to

explore this connection further.
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We summarize the basic assumptions and salient features of the approach and list the

relevant bosonic blackfold equations.

The insertion of this ansatz to the supergravity Killing spinor equations gives a lengthy

set of complicated equations. In sections 5, 6, which contain the main results of the paper,

we notice that there are drastic simplifications if we focus on a specific part of the equations,

and that this part has the same structure as the κ-symmetry equations of the abelian

M5 brane theory. Having considered a general inhomogeneous configuration of the brane

solution, the correspondence between the gravity-induced and gauge theory κ-symmetry

conditions implies a specific map between the blackfold effective degrees of freedom (which

control the form of the supergravity solution) and the abelian M5 brane theory degrees of

freedom. This map is a central result of the paper.

We conclude with a summary of the most pressing open issues and an outlook of the

approach. Useful technical details are collected in two appendices.

2 Abelian M5 brane theory

The theory of a single M5 brane is a six-dimensional abelian theory of the tensor multiplet

with sixteen supersymmetries. The latter comprises of two complex Weyl spinors, a self-

dual two-form potential B2, and five scalar fields. The dynamics of the long-wavelength

fluctuations of the brane is controlled by a non-linear effective action of these fields, which

is the M5 brane analog of the Dirac-Born-Infeld action for D-branes. Following [38] the

bosonic part of this action (in short PST action) reads2

SM5 = −TM5

∫
d6σ

(√
−det(γab + H̃ab) +

1

4

√
−det γ H̃abHabcvc

)
+TM5

∫ (
C6 +

1

2
H3 ∧ C3

)
. (2.1)

TM5 = 1
(2π)5`6P

is the M5 brane tension. The scalar fields Xµ (of which only 5 are physical)

define the induced worldvolume metric

γab = gµν∂aX
µ∂bX

ν (2.2)

where a, b, . . . are worldvolume indices and gµν the background metric. The H3 field

strength is the gauge invariant 3-form

H3 = dB2 − C3 . (2.3)

C3 is the background supergravity 3-form potential and C6 its Hodge dual. The self-duality

of the worldvolume 2-form potential is expressed nicely in the PST formulation with the

use of an auxiliary scalar field ϕ (usually referred to as a in the literature). The derivatives

of this field define the unit vector

va =
∂aϕ√
−∂bϕ∂bϕ

(2.4)

2See also [40] for a recent reformulation of the M5 brane action in a ‘3 + 3’ split.
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which appears in (2.1). In (2.1) we are also using the definitions

H̃ab = H∗abcvc , H∗abc =
1

3!

1√
−det γ

εabcd1d2d3Hd1d2d3 . (2.5)

Notice that the physical bosonic degrees of freedom of the tensor multiplet in six

dimensions are 8: 5 from the scalars and 3 from the self-dual 2-form. The PST action is

expressed in terms of Xµ, va, H̃ab, which have in total 25 components.3 In the supergravity

analysis below we will also encounter a 25-component set of bosonic fields arising directly

from the gravitational degrees of freedom.

The supersymmetric bosonic configurations of the M5 brane (which will be the main

focus of this paper) obey the projection equation

Γκ ε = ε (2.6)

where ε is a Majorana spinor in eleven-dimensions and Γκ the M5 brane κ-symmetry matrix

Γκ =
vatb√

−det(γ + H̃)
Γab +

√
−det γ vaH̃bc

2
√
−det(γ + H̃)

Γabc − εa1...a5bv
bva

5!
√
−det(γ + H̃)

ΓaΓa1...a5 . (2.7)

We defined

ta =
1

8
εab1b2c1c2dH̃b1b2H̃c1c2vd (2.8)

and Γa are curved worldvolume Γ-matrices.

2.1 1/2-BPS planar solution with uniform H-flux

Before ending this section we summarize the properties of a 1/2-BPS solution that will

soon play a protagonistic role in our discussion.

A simple solution of the PST equations of motion in flat space with trivial planar

worldvolume geometry has (in the temporal gauge)

va = (1, 0, 0, 0, 0, 0) (2.9)

and constant H-flux with non-vanishing components4

H012 =
H√

1 +H2
, H345 = H , H = constant . (2.10)

For this profile H̃12 = H, the vector t is vanishing and the κ-symmetry matrix is

Γκ = − 1√
1 +H2

(
HΓ|| + Γ||Γ⊥

)
(2.11)

3Xµ has 11 components, va as a unit worldvolume vector has 5, and H̃ab has 15 − 6 = 9 because of

anti-symmetry and the defining relation vaH̃ab = 0. Several gauge invariances operate on this system. For

example, one can use a symmetry that shifts the auxiliary field ϕ (and at the same time transforms the

2-form potential B2) to fix the vector va and obtain a non-manifest Lorentz invariant formulation of the

M5 brane effective theory [41].
4For a general parametrization of constant H-flux solutions see [42]. Such solutions give rise to a non-

commutative M5 brane theory and play a role in the general setup of OM theory [43].
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where Γ|| = Γ0Γ1Γ2 and Γ⊥ = Γ3Γ4Γ5. Defining an angle θ such that5

cos θ =
1√

1 +H2
, sin θ =

H√
1 +H2

(2.12)

the κ-symmetry equation (2.6) becomes(
1 + sin θ Γ|| + cos θ Γ||Γ⊥

)
ε = 0 . (2.13)

This equation implies the reduction of the original thirty-two supersymmetries of the back-

ground by one half.

Since the H-flux induces M2 brane charge this solution is naturally interpreted as

a 1/2-BPS state of the M5 with M2 brane charge along the directions (012) uniformly

smeared along the transverse (345) plane inside the M5 brane worldvolume.

3 M5 branes in supergravity

We now turn to the opposite regime where an infinite number of overlapping M5 branes is

described by an extremal solution of the eleven-dimensional supergravity. In this section we

fix our notation and present the symmetric solution whose long-wavelength deformations

we will study later.

3.1 Supergravity conventions, equations of motion, Killing spinor equations

We shall use small Greek letters µ, ν, . . . to denote the curved spacetime indices and hatted

small Greek letters µ̂, ν̂, . . . to denote tangent flat spacetime indices. Small latin letters

a, b, . . . will be employed for spacetime directions parallel to the M5 brane worldvolume.

The components of the metric, vielbein and spin connection are denoted respectively as

gµν , eν̂µ, ω ν̂ρ̂
µ . Hodge duals in the eleven-dimensional spacetime will be written using a ?,

and Hodge duals on effective worldvolumes later using a ∗.
The bosonic part of the eleven-dimensional supergravity action is

Isugra =
1

2κ2
11

∫
d11x

√
−g
(
R− 1

2 · 4!
Fµ1µ2µ3µ4F

µ1µ2µ3µ4

)
− 1

12κ2
11

∫
C3 ∧ F4 ∧ F4 (3.1)

where κ11 is the eleven-dimensional Newton constant and F4 = dC3 the four-form field

strength. The equations of motion for the metric and gauge field are

Rµν −
1

12

(
(F 2

4 )µν −
1

12
gµνF

2
4

)
= 0 , (3.2)

d ? F4 +
1

2
F4 ∧ F4 = 0 (3.3)

where the shorthand notation F 2
4 = Fµ1µ2µ3µ4F

µ1µ2µ3µ4 and (F 2
4 )µν = Fµρ1ρ2ρ3F

ρ1ρ2ρ3
ν was

employed. In addition we have the Bianchi identity

dF4 = 0 . (3.4)

5In this definition θ ∈
[
−π

2
, π

2

]
. With a parity transformation θ extends over the full range [0, 2π).
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The supergravity multiplet also includes a single spin-3/2 field, the gravitino ψ. Bosonic

supersymmetric configurations with ψ = 0 require the presence of a residual supersymme-

try expressed in terms of a Majorana spinor η that obeys the Killing spinor equation

∇µη +
1

288

(
Γ ν1ν2ν3ν4
µ − 8δ ν1

µ Γν2ν3ν4
)
Fν1ν2ν3ν4η = 0 . (3.5)

We are using the standard notation where Γµν... denotes the antisymmetrized product of

Γ-matrices Γµ = eµν̂Γν̂ obeying the Clifford algebra {Γµ,Γν} = 2gµν .

It is known [44] that by using the Killing spinor equation (3.5) on the identity

∇[ρ∇µ]η =
1

8
Rρµσ1σ2Γσ1σ2η (3.6)

one can deduce the equation

0 =

[
Rρµ −

1

12

(
(F 2

4 )ρµ −
1

12
gρµF

2
4

)]
Γµη

− 1

6 · 3!
?

(
d ? F4 +

1

2
F4 ∧ F4

)
σ1σ2σ3

(
Γ σ1σ2σ3
ρ − 6 δ σ1

ρ Γσ2σ3
)
η

− 1

6!
(dF4)σ1σ2σ3σ4σ5

(
Γ σ1σ2σ3σ4σ5
ρ − 10 δ σ1

ρ Γσ2σ3σ4σ5
)
η , (3.7)

which implies, for example, that the Einstein equations follow automatically from the

combination of the Killing spinor equations, the Bianchi identity and the equations of

motion of F4. This observation will be useful in the next section.

3.2 Planar M2-M5 bound state solution

The starting point of our discussion in the next section is an exact solution of the super-

gravity equations (3.2)–(3.4) that describes a planar 1/2-BPS M2-M5 bound state [45] (see

also [46, 47])

ds2 = (HD)−
1
3

[
− (dx0)2 + (dx1)2 + (dx2)2 +D

(
(dx3)2 + (dx4)2 + (dx5)2

)
(3.8)

+H
(
dr2 + r2dΩ2

4

)]
, (3.9)

F4 = dC3 +D−1 ? dC6 (3.10)

where

C3 = − sin θ
(
H−1 − 1

)
dx0 ∧ dx1 ∧ dx2 + tan θDH−1 dx3 ∧ dx4 ∧ dx5 , (3.11)

C6 = cos θD
(
H−1 − 1

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 , (3.12)

H = 1 +
r3
H

r3
, D−1 = cos2 θ + sin2 θH−1 . (3.13)

The solution is parametrized by two constants, θ and rH , that control the energy density

ε and the M2 and M5 charge densities (Q2, Q5 respectively)

ε =
Ω(4)

16πG
r3
H , Q2 = − sin θ Q , Q5 = cos θ Q , Q =

3Ω(4)

16πG
, 8πG = κ2

11 . (3.14)

Ω(4) = 8π2/3 is the volume of the unit round 4-sphere.
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The uniformly smeared M2-brane charge along the transverse (345) plane breaks the

isotropy of the M5 brane worldvolume plane (012345) in direct correspondence with the

breaking that was noted in the non-gravitational constant H-flux solution of a single M5

brane (2.9)–(2.10) in section 2.1.

3.3 The Killing spinor equations of the planar M2-M5 bound state

As warmup for the more complicated analysis that follows it is instructive to recall how

the profile (3.9)–(3.13) solves the Killing spinor equations (3.5).

The spacetime coordinates split naturally into the four groups: (x0, x1, x2), (x3, x4, x5),

r and (y1, y2, y3, y4) for the transverse S4. Accordingly, we define the following antisym-

metric combinations of the flat space Γ-matrices

Γ|| = Γ0̂1̂2̂ , Γ⊥ = Γ3̂4̂5̂ , ΓΩ = Γŷ
1ŷ2ŷ3ŷ4

. (3.15)

These combinations together with Γr̂ obey the identity

Γ||Γ⊥ΓΩΓr̂ = 1 . (3.16)

For notational economy it is also convenient to define the functions

eS = HD , eQ = HD−2 , eR = r−6H−2D , (3.17)

f1 = − sin θ
(
H−1 − 1

)
, f2 = tan θDH−1 , f3 = cos θ D

(
H−1 − 1

)
, (3.18)

which are all functions of the radial coordinate r.

With these specifications the covariant derivatives of the spinor η are

∇µη = ∂µη +
1

12
∂νS Γνµ η , µ = 0, 1, 2 , (3.19)

∇µη = ∂µη +
1

12
∂νQΓνµ η , µ = 3, 4, 5 , (3.20)

∇yiη = ∇̃yiη +
1

12
∂νRΓνyi η , i = 1, 2, 3, 4 , (3.21)

where ∇̃ is the covariant derivative on the unit S4. In the background (3.9)–(3.13) we take

η to be an r-dependent Killing spinor on S4 [48], namely we require

∂µη = 0 (µ = 0, 1, . . . , 5) , ∇̃yiη =
C

2
e
R
6 ΓΩΓyiη , C = ±1 . (3.22)

The Killing spinor equation (3.5) can now be recast into the form

∇µη +
1

288

(
−1

2
ΓµF/ +

3

2
F/ Γµ

)
η = 0 (3.23)

where

1

288
F/ = F|| + F⊥ + FΩ , (3.24)

F|| =
1

12
e
S
2 ∂/f1 Γ|| , F⊥ =

1

12
e
Q
2 ∂/f2 Γ⊥ , FΩ =

1

12
r−2e−

R
3 D−1∂rf3 ΓΩ . (3.25)
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Writing out each of the components of (3.23) we obtain four equations(
− 1

12
∂/S + F⊥ + FΩ − 2F||

)
η = 0 , (3.26)(

− 1

12
∂/Q+ F|| + FΩ − 2F⊥

)
η = 0 , (3.27)

∂rη − Γr
(
F|| + F⊥ − 2FΩ

)
η = 0 , (3.28)

−C
2
e
R
6 ΓΩη +

(
− 1

12
∂/R+ F|| + F⊥ − 2FΩ

)
η = 0 . (3.29)

By adding equations (3.26), (3.27), (3.29), multiplying on the left by Γr, and us-

ing (3.16) we obtain the projection equation

Γ||Γ⊥η = C η . (3.30)

Since both values of C = ±1 are allowed this equation is not restrictive for η. With a similar

manipulation of the linear combination (3.26) +2×(3.27) (or equivalently from 2× (3.26)

+ (3.27)) we obtain a second projection equation(
1 +D

1
2H−

1
2 sin θ Γ|| +D

1
2 cos θ Γ||Γ⊥

)
η = 0 . (3.31)

Finally, (3.28) combined with (3.29) and (3.30) provides the differential equation

∂rη −
1

12
∂r log

(
H−2D

)
η = 0 . (3.32)

The general solution of the system (3.31)–(3.32) is expressed in terms of a constant

spinor with sixteen independent components [45], verifying the 1/2-BPS nature of the

bound state.

3.4 Comparison with the PST κ-symmetry equation

Immediate and intuitive information about the number of preserved supersymmetries is ob-

tained at the asymptotic infinity by analyzing the leading order form of the system (3.31)–

(3.32) in a 1/r-expansion around r = ∞. At leading order the spinor η is constant,

η = η0 +O(r−3), equation (3.32) is trivial and the projection equation (3.31) becomes(
1 + sin θ Γ|| + cos θ Γ||Γ⊥

)
η0 = 0 . (3.33)

The interesting, simple-minded observation is that this is the same as the κ-symmetry

equation (2.13) of a single M5 brane with the gauge-gravity identification of fields (2.12).

The main purpose of the ensuing sections is to exhibit how a similar analysis at infinity

of more generic M5 brane configurations produces a supergravity-induced κ-symmetry-type

equation and how this compares with the original κ-symmetry equation of the abelian PST

theory.
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4 Ansatz for extremal M2-M5 deformations

After a general SO(1, 5) rotation of the M5 brane worldvolume coordinates

σa →Ma
b σ

b , a = 0, 1, . . . , 5 , M ∈ SO(1, 5) (4.1)

the solution (3.9)–(3.13) takes the form

ds2 =
(
e−

S
3 ĥab + e−

Q
3 ⊥̂ab

)
dσadσb + e−

R
3 (r−2dr2 + dΩ2

4) , (4.2)

C3 = − sin θ
(
H−1 − 1

)
ω3 − tan θDH−1 ∗6 ω3 , C6 = cos θ D

(
H−1 − 1

)
ω6 . (4.3)

We used the SO(1, 5) matrix elements Ma
b to define three unit orthonormal vectors u, v, w

with components

ua = M0
a , va = M1

a , wa = M2
a . (4.4)

This identification implies the orthonormality conditions (indices are lowered and raised

with the six-dimensional Minkowski metric ηab)

uau
a = −1 , vav

a = waw
a = 1 , uav

a = 0 , uaw
a = 0 , vaw

a = 0 . (4.5)

The tensors appearing in (4.2), (4.3) are expressed in terms of these vectors as follows

ĥab = −uaub + vavb + wawb , ⊥̂ab = ηab − ĥab , (4.6)

ω3 = u ∧ v ∧ w , ω6 =
√
−det η dσ0 ∧ dσ1 ∧ dσ2 ∧ dσ3 ∧ dσ4 ∧ dσ5 . (4.7)

The Hodge dual ∗6 is taken with respect to the 6d metric ηab.

The appearance of the vectors u, v, w is a consequence of the breaking of the SO(1, 5)

Lorentz symmetry induced by the presence of the smeared M2 brane charge. Accordingly,

the tensors ĥab and ω3 are respectively a projector and a volume three-form along the M2

brane directions, and ⊥̂ab is the orthogonal projector.

Our goal is to determine the general supersymmetric deformations of the solution (4.2),

(4.3) in a long-wavelength expansion scheme. In the spirit of the fluid-gravity correspon-

dence in AdS [12], or the general blackfold approach [9, 10], such a scheme arises es-

sentially by promoting the parameters that control the zeroth order solution to slowly

varying functions of the coordinates σa and appropriately correcting the form of the solu-

tion order-by-order in the expansion to satisfy the supergravity equations of motion. The

detailed construction of the perturbative solution requires the implementation of a techni-

cally complicated matched-asymptotic-expansion scheme where the supergravity equations

are solved independently order-by-order in a near-zone and a far-zone region and then

matched over a large intermediate region, called the overlap-zone (see [13] for a detailed

implementation of this scheme on black rings in neutral, pure Einstein gravity). In the

case at hand, deformations with a characteristic long-wavelength scale R � rH define a

near-zone that lies radially in the region r � R and a far-zone that lies in the region

r � rH . rH is the scale appearing in (3.13). The large overlap region lies at distances r

such that rH � r � R.
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4.1 Effective degrees of freedom

In this scheme the promoted parameters become naturally the degrees of freedom of an

effective six-dimensional worldvolume theory, which is thought to reside in the overlap

zone. For deformations of the solution (4.2), (4.3) these parameters are

rH , θ , u , v , w , Xµ . (4.8)

The scalars Xµ are degrees of freedom related to the breaking of the trasverse SO(5)

symmetry and parametrize the promotion of the worldvolume metric ηab to the general

induced metric

γab = g(0)
µν ∂aX

µ∂bX
ν . (4.9)

g
(0)
µν is the asymptotic value of the bulk metric; here g

(0)
µν = ηµν .

In total, this effective worldvolume description of the gravitational dynamics gives rise

to a formulation in terms of 25 degrees of freedom: 2 from (rH , θ) that control the M2 and

M5 charges, 3 × 6 − 3 × 2 = 12 from the unit orthonormal vectors u, v, w, and 11 from

the scalars Xµ. As we noted above (see paragraph after eq. (2.5)), the same number of

parameters appears in the abelian PST effective action (2.1) and κ-symmetry matrix (2.7)

(including a vector built out of the auxiliary field ϕ of PST that enforces the self-duality

of the 2-form gauge field). Besides the transverse scalars that have an obviously common

origin in both the gauge and gravity descriptions, the rest of the degrees of freedom have

a dramatically different looking form on each side.

4.2 Near-zone supergravity deformation

We proceed to set up a specific ansatz for the first order deformation of the supergravity

fields. For the purposes of this paper, we will focus exclusively on the form of this ansatz in

the near-zone region. Our proposal is motivated by analogous deformations of black brane

solutions in pure Einstein gravity (see [13, 32, 33]). It will be shown to be non-trivially

consistent with known or expected properties.

Following [33] (suitably extended to include all the fields of eleven-dimensional super-

gravity) we propose the following first order deformation of the bosonic fields (4.2), (4.3)

(δδ is a dummy variable that keeps track of the deformation order)

ds2 =
(
e−

S
3 ĥab + e−

Q
3 ⊥̂ab

)
dσadσb + e−

R
3
(
r−2dr2 + dΩ2

4

)
+ δδ hµν(x) dxµdxν +O(δδ2) ,

(4.10)

F4 = dC3 +D−1 ? dC6 + δδ G4 +O(δδ2) (4.11)

with

C3 = − sin θ
(
H−1 − 1

)
ω3 − tan θDH−1 ∗6 ω3 , C6 = cos θ D

(
H−1 − 1

)
ω6 . (4.12)

There are two new elements in these expressions, compared to the seed profile (4.2),

(4.3). First, we have promoted all the previously constant parameters (4.8) to σa-dependent

fields. The functions S,Q,R are still defined in terms of H,D as in (3.17), (3.13), but they

– 12 –



J
H
E
P
0
5
(
2
0
1
4
)
0
2
3

are now functions of both r and σa since rH = rH(σa), θ = θ(σa). The vectors u, v, w are

also functions of σa on an effective curved worldvolume with induced metric γab (4.9). The

projectors ĥab, ⊥̂ab and the forms ω3, ω6 are now

ĥab = −uaub + vavb + wawb , ⊥̂ab = γab − ĥab , (4.13)

ω3 = u ∧ v ∧ w , ω6 =
√
−det γ dσ0 ∧ dσ1 ∧ dσ2 ∧ dσ3 ∧ dσ4 ∧ dσ5

(4.14)

and the Hodge dual ∗6 is taken with respect to the 6d induced metric γab.

The second modification includes the metric and 4-form corrections hµν and G4. These

are of the same order, O(δδ), as the σ-derivatives of log rH , cos θ, u, v, w and the derivatives

of the velocities ∂aX
µ. They need to be included in order to satisfy the supergravity

equations at first order.

As in ref. [33] the main strategy is to work locally around an arbitrary point on the

effective worldvolume. We assume that all the σa-dependent fields are slowly-varying fields

of the worldvolume coordinates, we expand them in a derivative expansion and work linearly

in the perturbations. In this local linearization of the perturbations, the fluctuations split

naturally into two decoupled sets that can be analyzed independently.

The first set includes the intrinsic fluctuations, namely fluctuations that are neutral

under the ‘R-symmetry’ generators of the SO(5) that rotates the five-dimensional space

transverse to the brane. These are fluctuations of rH , θ, u, v, w and the induced metric.

The metric fluctuations are subleading to the first order that we will be considering and

can be neglected.

The second set includes the extrinsic fluctuations. These are fluctuations of the trans-

verse scalars X⊥, which, by definition, are charged under the transverse SO(5).

The resulting perturbed bosonic fields are then inserted into the supergravity equations

of motion (3.2)–(3.4) which are solved perturbatively to determine the deformed solution

in the near-zone region.

At the level of supersymmetry the above deformations induce a corresponding pertur-

bative expansion of the Killing spinor equations (3.5). At first order the Majorana spinor

η is perturbed independently by the intrinsic and extrinsic fluctuations. One of the main

goals of this paper is to exhibit the details of this perturbation. The intrinsic perturbative

Killing spinor equations will be discussed in section 5 and the extrinsic ones in section 6.

4.3 Bosonic blackfold equations

The implementation of the above scheme on the bosonic supergravity equations (3.2)–

(3.4) produces a set of partial differential equations involving the effective degrees of free-

dom (4.8) and the field perturbations hµν , G4 in (4.10)–(4.11). A subset of these equations

are constraint equations; they do not involve second derivatives of the radial coordinate,

and do not involve the corrections hµν , G4. These equations can be analyzed most easily

in the asymptotic infinity of the overlap zone (R � r � rH), where they yield a set of

dynamical equations for the effective degrees of freedom (4.8) only, the so-called blackfold

equations.
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For the M2-M5 bound state in flat space the leading-order blackfold equations are6 (a

supergravity derivation of these equations has been performed in [49])

DaT
ab = 0 , d (J3 + ∗6J3) = 0 , dJ6 = 0 , (4.15)

K ρ
ab T

ab = 0 (4.16)

where T ab, J3 and J6 are respectively the stress-energy tensor, M2 brane current, and M5

brane current of the effective worldvolume theory. K ρ
ab is the extrinsic curvature tensor for

the induced metric γab (see [10] for detailed expressions) and Da the worldvolume covariant

derivative. All these quantities are functionals of the fields (4.8)

T ab = Q̃ r3
H

(
sin2 θ ĥab + cos2 θ γab

)
, (4.17)

J3 = −Q̃ sin θ r3
H ω3 , J6 = Q̃ cos θ r3

H ω6 , Q̃ =
3Ω(4)

4G
. (4.18)

The first set of equations (4.15) comes from the analysis of the intrinsic fluctuations

and the second (4.16) from the extrinsic. More specifically, the first equation in (4.15)

and equation (4.16) originate from the analysis of a particular combination of the metric

equations (3.2). Similarly, the conservation of the self-dual part of the current J3 in (4.15)

comes from a component of the gauge-field equation (3.3). The final equation in (4.15)

comes from the Bianchi identity (3.4).

We notice that the six-current conservation, dJ6 = 0, gives a simple constant of motion

cos θ r3
H = constant . (4.19)

Hence, when inserted into the remaining equations we obtain

Da

(
sin2 θ

cos θ
ĥab + cos θ γab

)
= 0 , (4.20)

sin2 θ ĥabK ρ
ab + cos2 θ γabK ρ

ab = 0 , (4.21)

d [tan θ (ω3 + ∗6 ω3)] = 0 . (4.22)

This system of dynamical equations for the 25 effective worldvolume fields of the blackfold

expansion should be compared to the equations of motion of the PST action (2.1). Accu-

mulating evidence from explicit solutions of the DBI/PST theory and supergravity (e.g. the

BIon [21, 22] and self-dual string soliton solutions [23]) suggests that the extremal equa-

tions of the supergravity/blackfold theory are equivalent to the equations of the abelian

DBI/PST theory. The precise connection between the two, however, is not immediately

obvious at the level of the bosonic equations.

The generic configuration obeying (4.19)–(4.22) is extremal but not supersymmetric.

For example, it can be an extremal, time-independent configuration (see [25] for a sta-

tionary extremal configuration of the M2-M5-KKW system). In order to determine the

6This set of equations has already appeared in [23, 25], where it was employed in the analysis of solutions

that describe configurations of M2 branes ending orthogonally on M5 branes. In [23, 25] the M2 brane

current conservation equation d(J3 + ∗6J3) = 0 was mistakenly reported as d ∗6 J3 = 0. However, for the

solutions analyzed in [23, 25] the missing term dJ3 is automatically zero and does not affect the results.
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supersymmetric subset of solutions we need to analyze the supergravity Killing spinor

equations (3.5). Implementing the long-wavelength expansion of section 4.2 on the Killing

spinor equations we will soon derive the supergravity analog of the κ-symmetry equa-

tion (2.6). Ultimately, this is expected to allow us to determine which of the extremal

blackfold configurations are supersymmetric and how many supersymmetries are preserved

by the full supergravity solution.

We note that according to the identity (3.7) the independent subset of dynamical equa-

tions for supersymmetric configurations are, e.g., the Killing spinor equations, the equations

of motion of the gauge field C3 and its Bianchi identity. The statement that appears to

emerge out of this identity in the effective blackfold theory is that the set
{

supergravity-

induced κ-symmetry-like condition ⊕ charge current equations
}

implies the validity of the

complete set of the bosonic blackfold equations (4.15), (4.16). More specifically, since the

equations in the above parenthesis are the ‘constraint’ part of the independent subset of

supergravity equations, it is natural to anticipate that by satisfying them we guarrantee

also a solution of the full first order supergravity equations. Assuming this is correct, we

deduce via (3.7) that the Einstein equations are also satisfied. That would imply that the

corresponding extra constraint equations involving the effective stress-energy momentum

conservation are also satisfied.

5 Killing spinor equations: intrinsic deformations of M2-M5

The intrinsic perturbations are monopole deformations with respect to the transverse four-

sphere. We do not perturb the transverse scalars X⊥, and working locally around a point

(call it σ = 0) in Riemann normal coordinates we can also take the induced metric to be

flat γab = ηab [33]. The expansion is organized by the number of worldvolume derivatives,

counted here by the power of the dummy variable δδ. Working up to O(δδ) we set

rH(σ) = rH(0) + δδ σa∂arH +O(δδ2) , θ(σ) = θ(0) + δδ σa∂aθ +O(δδ2) , (5.1)

u0(σ) = 1 +O(δδ2) , ub(σ) = δδ σa∂au
b , b = 1, 2, 3, 4, 5 , (5.2)

v1(σ) = 1 +O(δδ2) , vb(σ) = δδ σa∂av
b , b = 0, 2, 3, 4, 5 , (5.3)

w2(σ) = 1 +O(δδ2) , wb(σ) = δδ σa∂aw
b , b = 0, 1, 3, 4, 5 . (5.4)

Three additional relations are satisfied by the first derivative corrections of the worldvolume

vectors u, v, w as a result of the orthonormality conditions

uava = 0 ⇒ ∂av0 = ∂au1 , (5.5)

uawa = 0 ⇒ ∂aw0 = ∂au2 , (5.6)

vawa = 0 ⇒ ∂aw1 = −∂av2 . (5.7)

The corrections hµν and G4 are σ-independent monopoles on the transverse sphere.
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These data fix the form of the first order perturbation of the bosonic fields (4.10), (4.11),

which we repeat here for convenience

ds2 =
(
e−

S
3 ĥab + e−

Q
3 ⊥̂ab

)
dσadσb + e−

R
3
(
r−2dr2 + dΩ2

4

)
+ δδ hµν dx

µdxν +O(δδ2) , (5.8)

F4 = dC3 +D−1 ? dC6 + δδ G4 +O(δδ2) , (5.9)

C3 = − sin θ
(
H−1 − 1

)
ω3 − tan θDH−1 ∗6 ω3 , C6 = cos θD

(
H−1 − 1

)
ω6 . (5.10)

Notice that these expressions contain implicit O(δδ) contributions that arise from the σ-

expansion of the functions S,Q,R, ĥab, C3, C6.

The supersymmetric subset of these deformations obeys the Killing spinor equa-

tions (3.5). For such configurations the Killing spinor η, which at zeroth order is a function

of the radial coordinate r parametrized by the constants rH , θ, is perturbed accordingly to

η(r, σ, yi) = η0 + δδ σa∂aη(r, 0, yi) + δδ ζ(r, yi) +O(δδ2) = χ(r, σ)⊗ ξ(yi) . (5.11)

We used the notation η0 ≡ η(r, 0, yi) and ζ(r, yi) is the fermionic analog of the corrections

hµν , G4 that are needed to satisfy the full set of Killing spinor equations. ξ is a Killing

spinor on the unit S4 (3.22) with C = ±1.

A straightforward computation reveals that the O(δδ) Killing spinor equations split

into two groups. The first comes from the σ-independent part

∂aη + Π̄
(a)
1 η0 = 0 , (5.12)

∂rζ + Π̄3 η0 + Π4 ζ = 0 , (5.13)(
C Π̄

(m)
5 + Π̄

(m)
7

)
η0 +

(
C Π

(m)
6 + Π

(m)
8

)
ζ = 0 , (5.14)

where m is an S4 index. The form of the operators Π̄
(a)
1 , Π̄3, . . . is summarized in ap-

pendix A.1 .

The second group comes from the σ-linear piece of the Killing spinor equations

Π
(b)
1,a η0 + Π

(b)
2 ∂aη = 0 , (5.15)

∂r∂aη + Π3,a η0 + Π4 ∂aη = 0 , (5.16)(
C Π

(m)
5,a + Π

(m)
7,a

)
η0 +

(
C Π

(m)
6 + Π

(m)
8

)
∂aη = 0 . (5.17)

The form of the operators Π
(b)
1,a,Π

(b)
2 , . . . is summarized in appendix A.1 . In contrast to

the first group these equations do not involve the corrections hµν , G4, and therefore have

the right features to play the Killing spinor counterpart of the bosonic constraint equations

that give rise to the blackfold equations.

5.1 κ-symmetry condition for intrinsic perturbations

In section 3.3 we described how the analysis of the a = 0, 1, . . . , 5 components of the su-

pergravity Killing spinor equation for the zeroth-order solution produces at the asymptotic

infinity a κ-symmetry-like projection equation (3.33) that can be mapped to the abelian
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PST κ-symmetry equation (2.12), (2.13). For the perturbed system the analogous compo-

nents of the Killing spinor equation are (5.12), (5.15). We proceed to show how the σ-linear

subset (5.15) produces a condition that will be mapped later to a perturbative version of

the abelian PST κ-symmetry equation (2.6), (2.7). We have checked that the remaining

σ-linear equations (5.16), (5.17) do not give rise to additional constraints on the Killing

spinor at leading order in the 1/r expansion that we are considering.

In what follows it will be convenient to establish the notation a|| for worldvolume

indices in the range (0, 1, 2) and a⊥ for indices in the range (3, 4, 5).

Expanding the operators Π
(b)
2 , Π

(b)
1,a around the asymptotic infinity in the overlap region

we find that the leading behavior is O(r−4). Specifically,

Π
(b||)
2 =

r3
H(0)

4r4
Γb̂||

Γr̂

(
1 + sin2 θ(0) + 2 sin θ(0) Γ||

+ sin θ(0) cos θ(0) Γ⊥ + cos θ(0) Γr̂ΓΩ

)
+O(r−7) , (5.18)

Π
(b⊥)
2 =

r3
H(0)

4r4
Γb̂⊥Γr̂

(
1− 2 sin2 θ(0)− sin θ(0) Γ||

− 2 sin θ(0) cos θ(0) Γ⊥ + cos θ(0) Γr̂ΓΩ

)
+O(r−7) , (5.19)

and

Π
(b||)
1,a η0 =

1

4r4
δ
b̂||
b||

Γb̂||
Γr̂ ×{

∂a
(
(1 + sin2 θ)r3

H

)
+ ∂a

(
cos θ r3

H

)
Γ||Γ⊥ + 2∂a

(
sin θ r3

H

)
Γ||

+ ∂a
(
sin θ cos θ r3

H

)
Γ⊥ +

(
1 + C cos θ(0)

)(
− 2 + C cos θ(0)

)
r3
H(0)×

×
∑
c⊥

δc⊥ĉ⊥

(
−∂auc⊥Γ0̂ĉ⊥ + ∂avc⊥Γ1̂ĉ⊥ + ∂awc⊥Γ2̂ĉ⊥

)}
η0

+O(r−7) , (5.20)

Π
(b⊥)
1,a η0 =

1

4r4
δb̂⊥b⊥Γb̂⊥Γr̂ ×{

∂a
(
(1− 2 sin2 θ)r3

H

)
+ ∂a

(
cos θ r3

H

)
Γ||Γ⊥ − ∂a

(
sin θ r3

H

)
Γ||

− 2∂a
(
cos θ sin θ r3

H

)
Γ⊥ +

(
1 + C cos θ(0)

)(
1− 2C cos θ(0)

)
r3
H(0)×

×
∑
c⊥

δc⊥ĉ⊥

(
−∂auc⊥Γ0̂ĉ⊥ + ∂avc⊥Γ1̂ĉ⊥ + ∂awc⊥Γ2̂ĉ⊥

)}
η0

+O(r−7) . (5.21)

Significant simplifications to the final expressions of Π
(b)
1,a η0 were possible with the repeated

use of the zeroth order equations (3.30), (3.33)

Γ||Γ⊥ η0 = C η0 ,
(
1 + C cos θ(0) + sin θ(0) Γ||

)
η0 = 0 . (5.22)
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We notice that the explicit dependence on the index b|| and b⊥ has disappeared in the

quantities Γb̂||Π
(b||)
1,a η0, Γb̂⊥Π

(b⊥)
1,a η0. Then, by taking, for example, the linear combination7

2Γr̂Γ
b̂|| × ((5.15) with b = b||) + Γr̂Γ

b̂⊥ × ((5.15) with b = b⊥)

(and isolating the leading O(r−4) terms) we discover the single independent condition from

these equations

Π1,a η0 + Π2 ∂aη = 0 (5.23)

where

Π1,a = ∂ar
3
H + ∂a

(
cos θ r3

H

)
Γ||Γ⊥ + ∂a

(
sin θ r3

H

)
Γ||

−
(

1 + C cos θ(0)
)
r3
H(0)

∑
c⊥

δc⊥ĉ⊥

(
−∂auc⊥Γ0̂ĉ⊥ + ∂avc⊥Γ1̂ĉ⊥ + ∂awc⊥Γ2̂ĉ⊥

)
, (5.24)

Π2 = r3
H(0)

(
1 + sin θ(0)Γ|| + cos θ(0)Γ||Γ⊥

)
. (5.25)

Recall that Π2 η0 = 0 is the zeroth order Killing spinor equation (3.33). A simple consis-

tency check of (5.23)–(5.25) is performed in appendix B.1. We have also checked that these

equations reproduce the expected 1/4-BPS supersymmetry of the self-dual string soliton

solution of ref. [23].

The last central observation is that (5.23) can be recast as a perturbative version of

the abelian PST κ-symmetry equation (2.6), (2.7) with a specific mapping between gauge

and gravity variables. For starters, let us set

ε(σ) = f(σ) η(σ) (5.26)

for the relation between the spinors appearing in equations (2.6) and (5.23). The relative,

generally σ-dependent, factor f(σ) will be fixed in a moment. Expanding around σ = 0 we

then have locally

ε(σ) = f(0) η0 + δδ σa (f(0) ∂aη + ∂af η0) +O(δδ2) . (5.27)

Now consider an intrinsic fluctuation of the abelian PST κ-symmetry matrix around

the zeroth order profile (2.9), (2.10). In this deformation the originally constant fields

va, H̃ab become slowly-varying along the worldvolume, but the transverse scalars are kept

constant and the worldvolume metric flat. Then, Γκ perturbs to

Γκ(σ) = Γκ(0) + δδ σa Γκ,a +O(δδ2) (5.28)

where Γκ(0) is given by (2.11) and

Γκ,a = ∂aΓκ = ∂a

 vbtc√
−det(η + H̃)

Γbc +

+∂a

 vbH̃cd

2
√
−det(η + H̃)

Γbcd − ∂a

 1√
−det(η + H̃)

Γ||Γ⊥ . (5.29)

7We remind that the same combinations were considered at zeroth order.
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Notice that there is no Γ⊥ contribution in this expression. In addition, two possible con-

tributions to the last term from derivatives of the vector v cancel each other out.

Combining the expansions (5.27), (5.28), we find that the κ-symmetry equation (2.6)

is, by definition, satisfied at zeroth order. At first order we obtain(
f(0) Γκ,a + (Γκ(0)− 1) ∂af

)
η0 + f(0) (Γκ(0)− 1) ∂aη = 0 . (5.30)

We conclude that a map between the perturbative field theory Killing spinor equa-

tion (5.30) and the supergravity induced one (5.23) is possible if we can set8

Π1,aη0 =
(
f(0) Γκ,a + (Γκ(0)− 1) ∂af

)
η0 , Π2 = f(0) (Γκ(0)− 1) . (5.31)

One of the first checks is the absence of Γ⊥ terms both in (5.23) and (5.30). Other terms,

e.g. terms proportional to the identity, also work properly. All potentially harmful terms

that can spoil the match (5.31) cancel out at the end of the computation. Equations (5.31)

can be satisfied by requiring the gauge-gravity map

∂af = −∂a
(
r3
H

)
, (5.32)

∂a

 1√
−det(η + H̃)

 = ∂a (cos θ) , (5.33)

∂a

(
− 1

3!
εa||b||c||va||H̃b||c||

)
= ∂a (tan θ(σ)) , (5.34)

sin θ(0) ∂avc⊥ +
1

2
ε b⊥d⊥
c⊥

∂aH̃b⊥d⊥ = − sin θ(0) ∂auc⊥ , (5.35)

∂aH̃2c⊥ = tan θ(0) ∂avc⊥ , (5.36)

∂aH̃1c⊥ = − tan θ(0) ∂awc⊥ . (5.37)

We observe that there are some field components on both sides that do not appear

in this map, i.e. are not needed in order to match the κ-symmetry conditions. On the

abelian PST side these fields are two of the b⊥ components of ∂aH̃0b⊥ . On the supergrav-

ity/blackfold side the derivatives ∂aub|| , ∂avb|| , ∂awb|| (of which only two are independent,

see (5.5)–(5.7)) do not appear. As we noted at the end of subsection 4.3, however, it is

anticipated that the full set of bosonic blackfold equations follows from the combination

of the Killing spinor equations and the charge current conservation equations. In general,

the ‘missing’ components will appear in these equations explicitly. Analogous statements

apply to the abelian PST side [3].

6 Killing spinor equations: extrinsic deformations of M2-M5

A similar analysis can be performed for extrinsic deformations of the planar M2-M5 solu-

tion. In this case the intrinsic variables —rH , θ and the vectors u, v, w — remain unper-

turbed. The deformation activates the transverse scalars X⊥ and perturbs accordingly the

8Since η0 is a special spinor obeying the zeroth order Killing spinor equation, it is important in the first

equality to keep the action on it explicit. Then, by using the zeroth order equations we can manipulate the

form of the first order equations appropriately.
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induced worldvolume metric. As explained in detail in [33], it is convenient to work in a

local adapted coordinate system employing Fermi normal coordinates. This system assigns

coordinates (σa, zi), (i = 6, . . . , 10), to the point that lies a unit affine distance along the

geodesic with tangent ∂
∂zi

orthogonally to the worldvolume at σa. Then, perturbations

around a locally flat worldvolume patch are induced by the extrinsic curvature tensor K i
ab

along each of the transverse directions zi. The linear independence of these perturba-

tions for each i implies that we can set all but one to zero and study them independently.

Accordingly, we introduce a director cosine

zi = r cosφ (6.1)

for a fixed i and denote for convenience K i
ab ≡ Kab. Following [33] we can then bring the

first order dipole deformation of the metric (in the near-zone region) into the form

ds2 =
(
e−

S
3 ĥab + e−

Q
3 ⊥̂ab − 2 δδ Kab r cosφ

)
dσadσb

+e−
R
3
(
r−2dr2 + dφ2 + sin2 φdΩ2

3

)
+ δδ hµν(r, φ) dxµdxν +O(δδ2) . (6.2)

The projector ĥab is not perturbed. For convenience, in what follows we set ĥ =

diag(−1, 1, 1, 0, 0, 0). The orthogonal projector is ⊥̂ab = ηab − ĥab. The functions S, Q, R

are not perturbed and are given by the zeroth order expressions (3.17).

For the perturbed 4-form field strength we propose the ansatz

F4 = dC3 +D−1 ? dC6 + δδ G4(r, φ) +O(δδ2) (6.3)

where again

C3 = − sin θ
(
H−1 − 1

)
ω3 − tan θDH−1 ∗6 ω3 , C6 = cos θ D

(
H−1 − 1

)
ω6 . (6.4)

The form ω3 (4.14) is not perturbed, but ω6 (4.14) is perturbed in accordance with the

worldvolume metric deformation

γab = ηab − 2 δδ Kab r cosφ . (6.5)

Similarly, ∗6 is perturbed according to (6.5).

Compared to the previous section of intrinsic perturbations, now the bosonic correc-

tions hµν and G4 are dipole perturbations in the transverse sphere.

For supersymmetric configurations the Killing spinor η receives a corresponding dipole

perturbation

η(r, σ, φ, ϑm) = η0 + δδ η1

= η0 + δδ cosφ
(
λ(r, ϑm) + rKab(σ) ξab(r, ϑm)

)
+O(δδ2)

= η0 + χ(r, φ)⊗ ψ(ϑm) . (6.6)

ϑm (m = 1, 2, 3) are coordinates on the unit S3. η0 is the zeroth order Killing spinor and

η1 its first order correction. In analogy to the previous discussion, we have separated the
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contributions to η1 into a piece ξab induced directly by the extrinsic curvature, and a second

piece λ needed to satisfy the full set of Killing spinor equations. λ is also first order and

proportional to Kab but does not vanish as r → 0. Since we break the transverse SO(5)

symmetry, but retain an SO(4) subset, we are now expressing the spinor correction η1 as

a tensor product with a unit S3 Killing spinor ψ, whose covariant derivative on S3 is by

definition

∇mψ =
iC̃

2
Γmψ , C̃ = ±1 . (6.7)

In this particular equation Γm = em̂mΓm̂ where em̂m is the vielbein in the unit S3. We note

that η0 is instead an S4 Killing spinor with an a priori independent sign C (3.22).

Inserting this ansatz into the Killing spinor equations (3.5) we find the following set

of perturbative spinor equations

Σ
(a)
1 η0 + Σ

(a)
2 η1 = 0 , (6.8)

∂rη1 + Σ3 η0 + Σ4η1 = 0 , (6.9)

∂φη1 + Σ5 η0 + Σ6 η1 = 0 , (6.10)(
C Σ

(m)
7 + Σ

(m)
9

)
η0 +

(
C̃ Σ

(m)
8 + Σ

(m)
10

)
η1 = 0 . (6.11)

The more explicit form of the operators Σi is summarized in appendix A.2. When we

implement on η1 the ansatz of the second line in (6.6) we find as in section 5 that the

equations split into two groups, which are required to hold independently. The first group

does not receive any contributions from terms linear in rKab, but involves explicitly the

corrections hµν , G4 and λ. The second group depends linearly on rKab, but not on the

corrections hµν , G4, λ. We proceed to analyze some of the implications of the second group.

6.1 κ-symmetry condition for extrinsic perturbations

In direct analogy with the approach followed in section 5, we concentrate on the (rKab)-

dependent part of the first set of perturbative Killing spinor equations (6.8). Expanding

the operators Σ
(a)
1 , Σ

(a)
2 around the asymptotic infinity in the overlap region we find the

leading order equations

Kab

(
Σ
ab(c)
1 η0 + Σ

(c)
2 ξab

)
= 0 (6.12)

where

Kbc Σ
bc(a||)
1 η0 = cosφ

r3
H

r3
δ
â||
a||Γâ||Γr̂

[
− 3

2
sin θ cos θ Γ̂ +

1

4
K
(
sin θ cos θ Γ⊥ − cos θ Γ||Γ⊥

)
−1

4
sin θ ηddKda(ω3)dbcΓ

abc − 1

8
sin θ cos θ ηddKda(∗ηω3)dbcΓ

abc

]
η0 +O(r−6) , (6.13)

Kbc Σ
bc(a⊥)
1 η0 = cosφ

r3
H

r3
δâ⊥a⊥Γâ⊥Γr̂

[
3 sin θ cos θ Γ̂ +

1

4
K
(
−2 sin θ cos θ Γ⊥ − cos θ Γ||Γ⊥

)
+

1

8
sin θ ηddKda(ω3)dbcΓ

abc +
1

4
sin θ cos θ ηddKda(∗ηω3)dbcΓ

abc

]
η0 +O(r−6) , (6.14)

and

Σ
(c)
2 = r cosφΠ

(c)
2 . (6.15)
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Π
(c)
2 is the operator that appears already in equations (5.18), (5.19). In (6.13), (6.14) we

used the notation

K ≡ ηabKab , Γ̂ ≡ 1

3!
εabcd1d2d3 (ω3)e1e2e3 η

d1e1ηd2e2Kd3e3 Γabc . (6.16)

Superficially, the leading order contributions to Kbc Σ
bc(a)
1 η0 are order O(r). The total

cancellation of these dangerous contributions is due to the identity (see appendix B.2 for

an explicit derivation) (
cosφΓr̂ − sinφΓφ̂

)
η0 = 0 (6.17)

which follows essentially from the fact that η0 is an S4 Killing spinor. Further impor-

tant cancellations occur at the next order O(r−3) because of (6.17) and the zeroth order

equation (3.33).

As in section 5.1 we consider the linear combination

2Γr̂Γ
â|| × ((6.12) with a = a||) + Γr̂Γ

â⊥ × ((6.12) with a = a⊥) .

Isolating the leading O(r−3) terms we arrive at a single (a||, a⊥)-independent equation of

the form

Kab

(
Σab

1 η0 + Π2 ξ
ab
)

= 0 , (6.18)

with

Kab Σab
1 = −r3

H

(
K cos θ Γ||Γ⊥ +

1

2
sin θ ηddKda(ω3)dbcΓ

abc

)
, (6.19)

Π2 = r3
H

(
1 + sin θ Γ|| + cos θ Γ||Γ⊥

)
. (6.20)

We can now show that this equation is the same as the κ-symmetry equation (2.6)

of the abelian PST theory perturbed around the constant-H flux solution (2.9), (2.10).

For extrinsic deformations (restricted to a specific transverse space direction i for which

Xi = X) the PST Killing spinor ε perturbs to

ε = ε0 + δδ XKab ε
ab +O(δδ2) = −r3

H

(
η0 − δδ XKab ξ

ab +O(δδ2)
)

(6.21)

where in the second equality we used the map

ε0 = −r3
H η0 , εab = r3

H ξ
ab . (6.22)

At the same time, the κ-symmetry matrix Γκ (2.7) perturbs to

Γκ(X) = Γ(0)
κ + δδ δΓκ + . . . . (6.23)

The zeroth order term is Γ
(0)
κ = −

(
sin θ Γ|| + cos θ Γ||Γ⊥

)
(see (2.11), (2.12)). The first

order term δΓκ is induced by the metric perturbation

δγab = γab − ηab = −2 δδ XKab , (6.24)
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at fixed ‘intrinsic’ fields va, H̃ab. Using the profile of the zeroth order solution along with

the definitions (2.12), and the variation identities

δ

 1√
−det(γ + H̃)

 = −1

2

1√
−det(γ + H̃)

γabδγab = cos θX K ,

δ

 √
−det γ

2
√
−det(γ + H̃)

vaH̃bc e
a
âe
b
b̂
ecĉ Γâb̂ĉ

 = −1

2
sin θ ηddXKda(ω3)dbcΓ

abc (6.25)

we obtain

δΓκ = −1

2
sin θ ηddKda(ω3)dbcΓ

abc − cos θK Γ||Γ⊥ . (6.26)

Assembling all the elements, the κ-symmetry equation (2.6) becomes

r3
H

[
−
(
K cos θ Γ||Γ⊥ +

1

2
sin θ ηddKda(ω3)dbcΓ

abc

)
η0

+
(
1 + sin θ Γ|| + cos θ Γ||Γ⊥

)
Kabξ

ab

]
= 0 (6.27)

reproducing the supergravity equations (6.18)–(6.20).

7 Open issues and outlook

In this paper, following the lore of the blackfold approach [9], we have addressed the

problem of long-wavelength supersymmetric deformations of M5 brane solutions in eleven-

dimensional supegravity. Initiating a study of the leading order perturbation of the super-

gravity Killing spinor equations, we have shown that part of these equations gives rise to

a perturbative κ-symmetry-like condition for the blackfold effective worldvolume theory.

This equation exhibits the same structure as the κ-symmetry equation of the abelian PST

theory of a single M5 brane. Requiring a match between the two we have obtained a non-

linear map between the fields of the PST theory and the supergravity-derived fields of the

blackfold effective theory.

It would be very interesting to obtain a more covariant form of this map extending the

local analysis of this paper and including the charge current conservation equations. This

map would have several consequences. First, it would suggest an intriguing rewriting of

the PST theory in a fluid-dynamical language. Could this lead to a fruitful reformulation

of the theory on M5 branes? Second, it would provide deeper insight into the blackfold

equations. New supersymmetric solutions can be envisioned by converting the second order

bosonic blackfold equations to first order ones. Third, on a more conceptual level, this map

would help elucidate a potential gauge-gravity equivalence for the full brane system in flat

space.

The other important open problem is the full solution of the first order perturbed

supergravity equations. For that purpose one has to consider the complete set of Killing

spinor equations in the near-zone, extend the analysis to the far-zone (r � rH) and finally
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perform the match in the overlap zone (rH � r � R). This would establish a concrete

relation between supersymmetric solutions of the leading order blackfold equations and

full first-order corrected regular supergravity solutions. We anticipate this is a one-to-one

relation [9]. Progress in this problem may entail an educated use of the underlying G-

structure [44] of the seed solution and its deformation. This prospect is currently under

investigation. The higher orders of the expansion scheme are also of interest. The more

constrained structures of supersymmetric solutions may lead in this context to a more

tractable setup compared to the general non-supersymmetric, finite temperature situation.

Finally, although here we focused on M-theory and eleven-dimensional supergravity,

it is natural to expect that analogous statements carry over to the brane solutions of

other higher-dimensional supergravities. Branes in the ten-dimensional type IIA/B (and

connections to the DBI theory) are an obvious context for future study.
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A Summary of perturbative Killing spinor equations

In this appendix we summarize the full set of intrinsic and extrinsic perturbations of the

Killing spinor equations (3.5). We present the raw structure of the equations omitting

details that are not used in the main text.

A.1 Intrinsic perturbations

The intrinsic deformation of the metric gµν and four-form flux F4 appears in eqs. (5.8)–

(5.10). For the metric correction hµν it is convenient to choose the gauge

hrr = 0 , hµyi = 0 (A.1)

where yi (i = 1, 2, 3, 4) are coordinates of the transverse S4. Then, (5.8) takes the more

specific form

ds2 =
(
e−

S
3 ĥab + e−

Q
3 ⊥̂ab + δδ hab

)
dσadσb + 2 δδ hradrdσ

a

+r−2e−
R
3 dr2 + e−

R
3 (1 + δδ hΩ) dΩ2

4 +O(δδ2)

= ds2
0 + δδ ds2

1 +O(δδ2) . (A.2)
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Do not confuse the projector ĥab with the metric perturbation hab. The components hab,

hra, hΩ are functions of the radial coordinate r only. When the functions S,Q,R, ĥab
are expanded in σ-derivatives the total O(δδ) contribution is collected in the first order

correction ds2
1. Accordingly, the vielbein components eµ̂ν , and the components of the spin

connection ω ν̂ρ̂
µ are shifted to

eµ̂ν = (e0)µ̂ν + δδ (e1)µ̂ν +O(δδ2) , (A.3)

ω ν̂ρ̂
µ = ηρ̂µ̂eνµ̂∂[νe

ν̂
µ] − η

ν̂µ̂eνµ̂∂[νe
ρ̂
µ] + ηρ̂µ̂ην̂σ̂ητ̂ λ̂e

ν
µ̂e
σ
σ̂e
τ̂
µ∂[νe

λ̂
σ]

=
(
ω ν̂ρ̂
µ

)
0

+ δδ
(
ω ν̂ρ̂
µ

)
1

+O(δδ2) . (A.4)

We remind that the covariant derivatives of spinors are

∇µ = ∂µ +
1

4
ω ν̂ρ̂
µ Γν̂ρ̂ = ∂µ +

1

4

(
ω ν̂ρ̂
µ

)
0

Γν̂ρ̂ +
1

4

(
ω ν̂ρ̂
µ

)
1

Γν̂ρ̂ δδ +O(δδ2) . (A.5)

After the implementation of the σ-expansion on the forms C3 and C6 in (5.9), (5.10),

the four-form flux F4 expands similarly to

F4 = (F4)0 + δδ (F4)1 +O(δδ2) . (A.6)

For the slash

F/ = Γν1ν2ν3ν4Fν1ν2ν3ν4 (A.7)

we obtain

F/ = F/0 + δδ F/1 +O(δδ2) (A.8)

where

F/0 = (P0)ν1ν2ν3ν4
µ̂1µ̂2µ̂3µ̂4

Γµ̂1µ̂2µ̂3µ̂4(Fν1ν2ν3ν4)0 , (A.9)

F/1 = (P0)ν1ν2ν3ν4
µ̂1µ̂2µ̂3µ̂4

Γµ̂1µ̂2µ̂3µ̂4(Fν1ν2ν3ν4)1 + 4 (P1)ν1ν2ν3ν4
µ̂1µ̂2µ̂3µ̂4

Γµ̂1µ̂2µ̂3µ̂4(Fν1ν2ν3ν4)0 . (A.10)

We used the shorthand notation

(P0)ν1ν2ν3ν4
µ̂1µ̂2µ̂3µ̂4

≡ (e0)ν1
µ̂1

(e0)ν2
µ̂2

(e0)ν3
µ̂3

(e0)ν4
µ̂4
, (A.11)

(P1)ν1ν2ν3ν4
µ̂1µ̂2µ̂3µ̂4

≡ (e0)ν1
µ̂1

(e0)ν2
µ̂2

(e0)ν3
µ̂3

(e1)ν4
µ̂4

. (A.12)

These expressions, together with the expansion of the Killing spinor (5.11)

η = η0 + δδ η1 +O(δδ2) , (A.13)

are then inserted into the Killing spinor equations (3.5)

∇µη +
1

288

(
−1

2
ΓµF/ +

3

2
F/ Γµ

)
η = 0 (A.14)

to obtain a set of O(δδ) equations of the form

Π
(a)
1 η0 + Π

(a)
2 η1 = 0 , (A.15)

∂rη1 + Π3 η0 + Π4 η1 = 0 , (A.16)(
C Π

(m)
5 + Π

(m)
7

)
η0 +

(
C Π

(m)
6 + Π

(m)
8

)
η1 = 0 , (A.17)
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where m is an S4 index and

Π
(a)
1 =

1

4

(
ω ν̂ρ̂
a

)
1

Γν̂ρ̂

+
1

288

(
−1

2

(
(e0)µ̂aΓµ̂F/1 + (e1)µ̂aΓµ̂F/0

)
+

3

2

(
F/0(e1)µ̂aΓµ̂ + F/1(e0)µ̂aΓµ̂

))
, (A.18)

Π
(a)
2 =

1

4

(
ω ν̂ρ̂
a

)
0

Γν̂ρ̂ +
1

288

(
−1

2
(e0)µ̂aΓµ̂F/0 +

3

2
F/0(e0)µ̂aΓµ̂

)
, (A.19)

Π3 =
1

4

(
ω ν̂ρ̂
r

)
1

Γν̂ρ̂

+
1

288

(
−1

2

(
(e0)µ̂rΓµ̂F/1 + (e1)µ̂rΓµ̂F/0

)
+

3

2

(
F/0(e1)µ̂rΓµ̂ + F/1(e0)µ̂rΓµ̂

))
, (A.20)

Π4 =
1

4

(
ω ν̂ρ̂
r

)
0

Γν̂ρ̂ +
1

288

(
−1

2
(e0)µ̂rΓµ̂F/0 +

3

2
F/0(e0)µ̂rΓµ̂

)
, (A.21)

Π
(m)
5 = e

R(0)
6

(
−hΩ (e0)m̂m +

1

6
σc∂cR (e0)m̂m + (e1)m̂m

)
ΓΩΓm̂ , (A.22)

Π
(m)
6 = e

R(0)
6 (e0)m̂mΓΩΓm̂ , (A.23)

Π
(m)
7 =

1

6
∂rR(0) (e0)r̂r(e1)m̂m Γr̂Γm̂

+
1

6

(
∂rR(0) (e1)µ̂r + σc∂c∂

rR (e0)µ̂r + ∂aR (e0)µ̂a

)
Γµ̂Γm̂(e0)m̂m

−1

2
∂rhΩ (e0)r̂r(e0)m̂m Γr̂Γm̂

+
1

288

(
− (e0)m̂mΓm̂F/1 − (e1)m̂mΓm̂F/0 + 3

(
F/0(e1)m̂mΓm̂ + F/1(e0)m̂mΓm̂

))
, (A.24)

Π
(m)
8 =

1

6
∂rR(0) (e0)r̂r(e0)m̂m Γr̂Γm̂ +

1

288

(
− (e0)m̂mΓm̂F/0 + 3F/0(e0)m̂mΓm̂

)
. (A.25)

By further implementing the ansatz (5.11) for η1 and collecting the σ-linear part of

the operators Πodd,

Πodd(σ, r, y
i) = Π̄odd(r, y

i) + σa Πodd,a(r, y
i) , (A.26)

we find trivially that the equations (A.15)–(A.17) split into the two independent

groups (5.12)–(5.14) and (5.15)–(5.17). In section 5.1 we focused on the σ-linear part

of the Killing spinor equations (A.15).

A.2 Extrinsic perturbations

The analysis of the extrinsic perturbations proceeds in a similar fashion. The metric

deformation is now given by eq. (6.2). It is convenient to choose a gauge where

hµν(r, φ)dxµdxν = cosφ

(
h̃ab(r) dσ

adσb + e−
R
3

(
h̃r(r)

dr2

r2
+ h̃Ω(r)

(
dφ2 + sin2 φdΩ2

3

)))
.

(A.27)

For further details about this choice we refer the reader to [33] and references therein. The

four-form flux F4 and the Killing spinor η are perturbed as in (6.3), (6.6).
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A useful fact about covariant derivatives of spinors along the S3 directions is that they

can be written in terms of covariant derivatives on the unit S3 as follows

∇mη = ∇(S3)
m η − 1

4∂
ν
(

log
(
e−

R
3 sin2 φ

(
1 + δδ h̃Ω cosφ

)))
Γνmη . (A.28)

Here m is an S3 index. Since η1 is an S3 Killing spinor (6.7) we find

δδ∇mη1 =
iC̃

2 sinφ
e
R
6 Γm δδ η1 +

1

2
e
R
3

(
1

6
r2∂rRΓrm − Γφm

)
δδ η1 +O(δδ2) . (A.29)

The covariant derivative of η0, which is an S4 Killing spinor, can be deduced using the

relation9

∇(S4)
m η0 = ∇(S3)

m η0 −
1

2
cotφΓ

(S4)
φm η0 . (A.30)

Together with the defining relation of S4 Killing spinors we obtain

∇(S3)
m η0 =

1

2
e
R
6

(
1− 1

2
δδ h̃Ω

)(
C ΓΩΓm − cotφΓφ̂Γm

)
η0 . (A.31)

Repeating the steps of the previous subsection A.1 (appropriately adapted) we find

that the Killing spinor equations (A.14) take the form

Σ
(a)
1 η0 + Σ

(a)
2 η1 = 0 , (A.32)

∂rη1 + Σ3 η0 + Σ4 η1 = 0 , (A.33)

∂φη1 + Σ5 η0 + Σ6 η1 = 0 , (A.34)(
C Σ

(m)
7 + Σ

(m)
9

)
η0 +

(
C̃ Σ

(m)
8 + Σ

(m)
10

)
η1 = 0 . (A.35)

m is again an S3 index. The general expression of the operators Σ
(a)
1 ,Σ

(a)
2 ,Σ3,Σ4 is the

9Γ
(S4)
µ denotes a curved index Γ-matrix in S4.
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same as in (A.18)–(A.21). The remaining operators are

Σ5 =
1

4

(
ω ν̂ρ̂
φ

)
1

Γν̂ρ̂ +
1

288

(
−1

2

(
(e0)φ̂φΓφ̂F/1 + (e1)φ̂φΓφ̂F/0

)
+

3

2

(
F/0(e1)φ̂φΓφ̂ + F/1(e0)φ̂φΓφ̂

))
, (A.36)

Σ6 =
1

4

(
ω ν̂ρ̂
φ

)
0

Γν̂ρ̂ +
1

288

(
−1

2
(e0)φ̂φ Γφ̂F/0 +

3

2
F/0(e0)φ̂φ Γφ̂

)
, (A.37)

Σ
(m)
7 =

1

2
e
R
6 ΓΩΓm̂

(
(e1)m̂m −

1

2
h̃Ω(e0)m̂m

)
, (A.38)

Σ
(m)
8 =

i

2 sinφ
e
R
6 Γm̂(e0)m̂m , (A.39)

Σ
(m)
9 = −1

2
e
R
6 cotφΓφ̂Γm̂

(
(e1)m̂m −

1

2
h̃Ω(e0)m̂m

)
−1

4
∂ν log

(
e−

R
3 sin2 φ

)(
(e1)νν̂(e0)m̂m + (e0)νν̂(e1)m̂m

)
Γν̂Γm̂

−1

4
∂ν

(
h̃Ω cosφ

)
(e0)νν̂(e0)m̂m Γν̂Γµ̂

+
1

288

(
−1

2

(
(e0)m̂mΓm̂F/1 + (e1)m̂mΓm̂F/0

)
+

3

2

(
F/0(e1)m̂mΓm̂ + F/1(e0)m̂mΓm̂

))
,(A.40)

Σ
(m)
10 =

1

2
e
R
6

(
1

6
r∂rRΓr̂ − Γφ̂

)
Γm̂(e0)m̂m +

1

288

(
−1

2
(e0)m̂mΓm̂F/0+

3

2
F/0(e0)m̂mΓm̂

)
. (A.41)

Implementing the ansatz (6.6) and collecting separately the pieces that depend linearly

on rKab we find that eqs. (A.32)–(A.35) split into two independent groups. In section 6.1

we focused on a specific part, (6.12), of the (rKab)-linear group.

B Useful identities

B.1 Consistency check of (5.23)

The pertubative Killing spinor equations (5.23) imply

Π2 ∂aη = −Π1,a η0 ⇒
(

1

2r3
H

Π2 − 1

)
Π1,a η0 = 0 (B.1)

where we multiplied simultaneously both sides by Π2, used the identity

Π2
2 = 2r3

HΠ2 , (B.2)

and re-applied the equation (5.23). In this appendix we examine the validity of the consis-

tency equation (B.1).

For convenience let us write

Π1,a = Qa +Ra (B.3)

with

Qa = ∂ar
3
H + ∂a(sin θr

3
H)Γ|| + ∂a(cos θr3

H)Γ||Γ⊥ , (B.4)

Ra = −(1 + C cos θ) r3
H(0)

∑
c⊥

(
−∂auc⊥Γ0̂ĉ⊥ + ∂avc⊥Γ1̂ĉ⊥ + ∂awc⊥Γ2̂ĉ⊥

)
. (B.5)
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With a bit of algebra one can show that(
1

2r3
H

Π2 − 1

)
Qa η0 =

C sin θ ∂aθ

2(1 + C cos θ)
Π2 η0 = 0 (B.6)

and(
1

2r3
H

Π2 − 1
)
Ra η0 = 1

2 sin θ
∑

c⊥

(
−∂buc⊥Γ0̂ĉ⊥ + ∂bvc⊥Γ1̂ĉ⊥ + ∂bwc⊥Γ2̂ĉ⊥

)
Γ||Π2 η0 = 0 .

(B.7)

We conclude that the consistency equation (B.1) is satisfied automatically as it should.

B.2 An identity for Killing spinors on S4

In this appendix we prove the identity (6.17) that was employed in section 6.1. Following

section 3.3 we consider a spinor η in eleven dimensions whose four-sphere part is a Killing

spinor on the unit S4. By definition, the covariant derivatives of η on S4 obeys the identity

∇jη =
C

2
ΓΩΓj η , C = ±1 . (B.8)

ΓΩ is the chirality operator on S4 and Γj = eĵjΓĵ with eĵj the vielbein on the unit S4. In

addition, we require the identity (3.30), equivalently

Γr̂ΓΩ η = C η . (B.9)

In hyperspherical coordinates, where the metric of the unit four-sphere is

dΩ2
4 = dφ2 + sin2 φdΩ2

3 , (B.10)

η takes the form [48]

η = e
C
2
φΓΩΓφ̂ η̃ , such that ∂φη̃ = 0 . (B.11)

A convenient standard identity of Γ-matrix exponentials reads

e
C
2
φΓΩΓφ̂ = cos

(
φ

2

)
· 1 + C sin

(
φ

2

)
ΓΩΓφ̂ . (B.12)

Combining (B.9) with the more explicit form (B.11) it is straightforward to show that[
cos

(
φ

2

)
Γr̂ − sin

(
φ

2

)
Γφ̂

]
η = 0 . (B.13)

Applying this equation at angle 2φ and using η(2φ) = e
C
2
φΓΩΓφ̂η(φ) we arrive easily at the

required identity (6.17) (
cosφΓr̂ − sinφΓφ̂

)
η = 0 . (B.14)
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