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1 Introduction

The extension of holography [1] to field theories with dynamical exponent z > 1 is inter-

esting both for the potential application of these theories in condensed matter physics and

for its potential to enlarge our understanding of holographic dualities (for reviews see e.g.

[2–4]). Such theories have a symmetry under the scaling t → λzt, ~x → λ~x, and it was

realized in [5] that a holographic dual could be constructed by considering spacetimes with

a metric

ds2 = r2zdt2 − r2d~x2 − dr2

r2
, (1.1)
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which have an isometry under t → λzt, ~x → λ~x, r → λ−1r. In [5, 6] simple “bottom-up”

models admitting such solutions were proposed. They have since been realized as solutions

in “top-down” models obtained from string theory: the case z = 2 proves to be the simplest

to realize [7–10], but a construction allowing for general values of z was given in [11]. Some

other particular values of z were also realized in [12–14].

An interesting goal in such top-down constructions is to get a better understanding

of the non-relativistic field theories dual to such Lifshitz solutions. It is particularly in-

teresting to understand these holographic theories, as no examples of interacting theories

with Lifshitz symmetries are known. In [15], holographic RG flows relating the Lifshitz

and AdS solutions in the context of the massive IIA setup in [11] were constructed, and it

was noted that the RG flows offered a potential approach to understanding the field theory

dual to Lifshitz, as one could consider the flow from an AdS solution with a known dual to

Lifshitz. Related work on such flows and their applications includes [16–24]. A dynamical

interpolation was studied in [25]. A different approach to relating AdS to Lifshitz is [26, 27].

In this paper, we extend the work of [15] by considering flows involving the type IIB

Lifshitz solutions in [11]. We start with the five-dimensional gauged supergravity obtained

by compactifying IIB on an S5, and consider further compactifying two spatial directions

on a compact hyperbolic space, with certain gauge fluxes turned on on this space. There are

asymptotically AdS5 solutions, where the proper size of compact hyperbolic space grows

near the boundary, and AdS3 and 3-dimensional Lifshitz(denoted Li3) solutions where

it has constant size. As in [15], we consider flows relating all these solutions. We focus

particularly on the flows from AdS5, and analyze these in detail, identifying the deformation

of AdS5 which source the flow and discussing its dual field theory description.

Working in the IIB context has two advantages: the field theory dual to the asymp-

totically AdS5 solution is the familiar N = 4 SYM, and the deformation we are interested

in includes as a special case a supersymmetric twist which has been previously studied

in [28]. In the supersymmetric flow, [28] showed that the twist involves not only turning

on a flux Q but also adding a source λ for a scalar operator transforming in the 20 of the

SU(4) R-symmetry. We will see that the flows to non-supersymmetric AdS3 and Lifshitz

geometries involve changing the values of Q and λ in a coordinated way: the flow reaches

an IR fixed point on one-dimensional subspaces in the space of {Q,λ} deformations.

Surprisingly, we do not need to turn on a source which breaks Lorentz symmetry

explicitly in the UV to realize flows to Lifshitz: this Lorentz symmetry breaking will

emerge spontaneously for appropriate values of {Q,λ}.
In [28], the deformation by {Q,λ} was related to a change in the scalar Lagrangian

in the N = 4 SYM theory, and it was shown to lead to flat directions for certain scalars

in the supersymmetric case. We analyze this field theory Lagrangian deformation for our

non-supersymmetric cases and find that there is a finite range of non-supersymmetric flows

to AdS3 where the flat directions get lifted and the field theory scalars in the deformed

field theory will be stable in the UV. Disappointingly, for the flows to Li3, the field theory

deformation always leads to some runaway directions in the scalar space. These runaways

correspond to brane nucleation instabilities in the bulk geometry (discussed for example

in [29, 30]), as we show explicitly by a probe brane calculation. Thus, for the flows to
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Lifshitz, the UV field theory is unstable, and this flow does not offer us a way to define the

IR theory dual to the Lifshitz geometry. As in [15], we also find that for some values of

z the Lifshitz geometries have linearized modes which appear to violate the generalization

of the Breitenlohner-Freedman bound [31]. These two types of instabilities do not appear

to be related.

In section 2, we review the Romans 5D gauged SUGRA model [32] and review the

Lifshitz solutions in this model [11], as well as discussing the families of AdS3 solutions.

We then discuss the flows in section 3, first performing a linearized analysis about each

of the solutions to determine the qualitative character of the flows and then numerically

constructing the various flows. In section 4, we analyze the deformation away from AdS5

in the UV and discuss the dual field theory.

2 Lifshitz and AdS solutions in five-dimensional gauged supergravity

We consider a consistent truncation of the N = 4 five-dimensional gauged supergravity

theory obtained by reduction of the ten-dimensional type IIB supergravity on S5, where

we keep an SU(2) × U(1) subgroup of the SU(4) gauge group, and a single scalar φ [32].

This theory is a consistent truncation of the full higher dimensional theory, in the sense

that any solutions in the 5D theory can be uplifted to Type IIB supergravity solutions in

ten dimensions (see [33] for explicit detail).

The field content of the theory consists of the metric gµν , 5D dilaton field φ, SU(2)

gauge field A
(i)
µ , U(1) gauge field Aµ and two antisymmetric tensor fields Bα

µν . The bosonic

part of the Lagrangian is

L =− R

4
+

1

2
∂µφ∂

µφ− 1

4
ξ−4FµνFµν −

1

4
ξ2
(
F (i)
µν F

µν(i) +BµναBα
µν

)
+

1

4
εµνρσλ

(
1

g1
εαβB

α
µνDρB

β
σλ − F

(i)
µν F

(i)
ρσAλ

)
+ P (φ),

(2.1)

where ξ = e

√
2
3
φ
, the scalar field potential is

P (φ) =
g2

8

(
g2ξ
−2 + 2

√
2g1ξ

)
, (2.2)

and field strengths are

Fµν = ∂µAν − ∂νAµ,

F (i)
µν = ∂µA

(i)
ν − ∂νA(i)

µ + g2ε
ijkA(j)

µ A(k)
ν .

(2.3)

The U(1) gauge coupling g1 and SU(2) gauge coupling g2 are two independent parameters

of the theory. It was shown in [32] that these parameters can be eliminated by field

redefinitions so that there are only three physically different theories, the N = 4+ theory,

when g1g2 > 0, the N = 40 theory, when g2 = 0, and the N = 4− theory, when g1g2 < 0.

We will consider here only the N = 4+ theory, i.e. we assume g1g2 > 0. We also set

Bα
µν = 0 identically for all solutions and flows considered here.

– 3 –
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The equations of motion for the rest of the fields are then

Rµν = 2∂µφ∂νφ+
4

3
gµνP (φ)− ξ−4

(
2FµρFρν −

1

3
gµνFρσFρσ

)
− ξ2

(
2F (i)

µρF
ρ(i)
ν − 1

3
gµνF

(i)
ρσ F

ρσ(i)

)
,

�φ =
∂P

∂φ
+

√
2

3
ξ−4FµνFµν −

√
1

6
ξ2F (i)

ρσ F
(i)ρσ,

Dν

(
ξ−4Fνµ

)
=

1

4
εµνρστF (i)

νρ F
(i)
στ ,

Dν

(
ξ2F νµ(i)

)
=

1

2
εµνρστF (i)

νρ Fστ .

(2.4)

2.1 Ansatz for solutions and flows

To construct flows, we only need to consider radial dependence of the bulk fields; we assume

the holographic RG flow geometries we consider will preserve the translational invariance

in the t and x directions, and will have the topological flux through the compact hyperbolic

space. The most general ansatz we will need to consider is thus

ds2 = e2F (r)dt2 − r2dx2 − e2d(r)dr
2

r2
− e2h(r)dy

2
1 + dy2

2

y2
2

, (2.5)

the 5D dilaton φ is also only a function of r, and we assume the gauge fields have at most

nonzero r− t or r− x components. It is convenient to parametrize the fields in such a way

as to eliminate geometric factors:

F
(3)
rt =

Ã(r)

ξr
eF+D , F (3)

rx =
B(r)

ξ
eD , F (3)

y1y2 =
Q

g2y2
2

,

Frt =
A(r)ξ2

r
eF+D , Frx = B̃(r)ξ2eD ,

(2.6)

where we have also introduced shifted and rescaled variables in order to eliminate g1 and

g2 from all expressions:

D(r) = d(r) +
1

3
ln
(
g1g

2
2

)
,

H(r) = h(r) +
1

3
ln
(
g1g

2
2

)
,

ϕ(r) = ξ3(r)g1g
−1
2 ,

(2.7)
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Substituting all this into the equations (2.4) and introducing the new variable ρ = ln r

we get

Rtt

g
2
3
1 g

4
3
2

= e−2D
[
F ′ − F ′D′ + F ′2 + F ′′ + 2H ′F ′

]
=

1

6

(
ϕ−

2
3 + 2

√
2ϕ

1
3

)
+

4

3

(
A2 + Ã2

)
+

2

3

(
B̃2 +B2

)
+

2

3
ϕ

2
3Q2e−4H

Rxx

g
2
3
1 g

4
3
2

= e−2D
[
F ′ −D′ + 1 + 2H ′

]
=

1

6

(
ϕ−

2
3 + 2

√
2ϕ

1
3

)
− 2

3

(
A2 + Ã2

)
− 4

3

(
B̃2 +B2

)
+

2

3
ϕ

2
3Q2e−4H

Rrr

g
2
3
1 g

4
3
2

= e−2D
[
F ′′ + F ′2 − F ′D′ −D′ + 1− 2H ′D′ + 2H ′2 + 2H ′′

]
=
−ϕ′2

3ϕ2e2D
+

1

6

(
ϕ−

2
3 + 2

3
2ϕ

1
3

)
+

4

3

(
A2 + Ã2 − B̃2 −B2

)
+

2

3
ϕ

2
3Q2e−4H

Ry1y1

g
2
3
1 g

4
3
2

= e−2H + e−2D
[
H ′′ + 2H ′2 +H ′F ′ +H ′ −H ′D′

]
=

1

6

(
ϕ−

2
3 + 2

√
2ϕ

1
3

)
− 2

3

(
A2 + Ã2

)
+

2

3

(
B̃2 +B2

)
− 4

3
ϕ

2
3Q2e−4H

(2.8)

for the Einstein equations, where a prime now denotes ∂ρ, and

� lnϕ = −e−2D∂2
ρ lnϕ− e−2D∂ρ lnϕ

(
1 + F ′ −D′ + 2H ′

)
=

1

2

(
−ϕ−

2
3 +
√

2ϕ
1
3

)
+ 4

(
B̃2 −A2

)
− 2

(
B2 − Ã2

)
− 2ϕ

2
3Q2e−4H

(2.9)

∂ρ

(
ϕ−

2
3 rAe2H

)
= 2ϕ−

1
3 rBQeD ; ∂ρ

(
ϕ

1
3BeF+2H

)
= 2ϕ

2
3AQeF+D

∂ρ

(
ϕ

1
3 rÃe2H

)
= 2ϕ

2
3 rB̃QeD ; ∂ρ

(
ϕ−

2
3 B̃eF+2H

)
= 2ϕ−

1
3 ÃQeF+D

(2.10)

AB̃ + ÃB = 0 (2.11)

for the 5D dilaton and gauge equations.

This system appears to involve eight unknown functions, but we see that in the Lifshitz

solutions, one of the two sets of fluxes must be zero to satisfy (2.11), and therefore at most

we turn on either the tilded or the untilded fluxes but never both. Thus, in a given flow we

will have six unknown functions. These will be subject to seven equations: (2.8), (2.9), and

two equations from (2.10). As usual, one of the equations in (2.8) is redundant because of

the Bianchi identity.

2.2 AdS5 asymptotic solution

In the ansatz (2.5), we have sliced our five dimensional space-time with two dimensional

hyperbolic slices and 2+1 dimensional planar slices. As such therefore, there is no solution

for F,D, and H which is globally AdS5, however, there are solutions which asymptote
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to AdS5 at large r, where the curvature of the hyperbolic space is effectively suppressed.

These solutions will have

F ∼ ρ , D ∼ D0 , H ∼ H0 + ρ (2.12)

as ρ → ∞, and will have a constant 5D dilaton, ϕ ∼ ϕ0, and vanishing gauge fluxes,

A ∼ B ∼ Ã ∼ B̃ ∼ 0 to leading order. Substituting this in (2.8), (2.9), (2.10), the leading

order equations fix

4e−2D0 =
1

6

(
ϕ
− 2

3
0 + 2

√
2ϕ

1
3
0

)
,

0 =
1

2

(
−ϕ−

2
3

0 +
√

2ϕ
1
3
0

)
,

(2.13)

which can easily be solved to find

ϕ0 =
1√
2

D0 =
4

3
ln 2. (2.14)

These asymptotically AdS5 solutions exist for any values of H0 and the topological charge

Q.

2.3 AdS3 ×H2 solution

In [28], a supersymmetric AdS3×H2 solution was considered. Here we regard this as part

of a one-parameter family of AdS3 ×H2 solutions in the ansatz (2.5). In appendix A, we

consider a more general two-parameter family of AdS3 solutions by turning on two fluxes.

We will get an AdS3 ×H2 spacetime from the metric (2.5) by taking constant values

for H = H0 and D0, and setting F (ρ) = ρ. It is easy to check that the system has such

a solution for constant 5D dilaton field ϕ0 and vanishing bulk gauge fluxes A = Ã = B =

B̃ = 0 if

e−2D0 =
ϕ

1
3
0

2
√

2
, e−2H0 =

1

2ϕ
2
3
0

, Q2 = ϕ0

√
2− 1. (2.15)

Therefore, we have a family of AdS3 solutions, parametrized by the value of 5D dilaton

field ϕ0, which should be in the range ϕ0 ∈ [ 1√
2
,∞). These solutions are illustrated by a

grey line in figure 1.

2.4 Li3 ×H2 solution

We now review the Lifshitz solutions obtained in [11]. As noted above, such solutions are

obtained by taking either the tilded or untilded fluxes to vanish. The solutions are obtained

from our ansatz by setting F (ρ) = zρ, and taking constant functions H = H0 and D = D0

as in the AdS3 solutions.

– 6 –
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2.4.1 Tilded Lifshitz solution z ≥ 1

If we turn on a tilded pair of gauge fluxes Ã = Ã0, B̃ = B̃0 for some constant values Ã0

and B̃0, (A = B ≡ 0) then (2.8), (2.9), (2.10) are satisfied if

ϕ0 =

√
2(z + 1)

2z2 + 3z − 2
, Ã2

0 =
z(z − 1)

2
e−2D0 ,

e−2D0 =
[
2(z + 1)2(2z2 + 3z − 2)

]− 1
3 , B̃2

0 =
z − 1

2
e−2D0 ,

e−2H0 =
3

2
ze−2D0 , Q2 =

2z2 + 3z − 2

9z
.

(2.16)

This family of solutions is parametrized by the value of the dynamical exponent z, which

in this case should be greater than one, and is shown in figure 1 as a blue line.

2.4.2 Untilded Lifshitz solution 1 ≤ z ≤ 2

If we turn on the other pair of fluxes, i.e. untilded gauge fluxes A = A0, B = B0 for some

constant values A0 and B0, (Ã = B̃ ≡ 0) then (2.8), (2.9), (2.10) are satisfied if

ϕ0 =

√
2z(z + 1)

−2z2 + 3z + 2
, A2

0 =
z(z − 1)

2
e−2D0 ,

e−2D0 =
[
2z2(z + 1)2(−2z2 + 3z + 2)

]− 1
3 , B2

0 =
z − 1

2
e−2D0 ,

e−2H0 =
3

2
ze−2D0 , Q2 =

−2z2 + 3z + 2

9z
.

(2.17)

This second family of solutions is again parametrized by z, but this must now lie in the

range 1 ≤ z ≤ 2 which gives positive Q2. These solutions are shown as a red line in the(
Q2, ϕ0

)
plane in figure 1.

3 RG flow solutions

We now turn to the construction of flows interpolating between the solutions reviewed in

the previous section. Such interpolating solutions correspond to RG flows in the dual field

theory, with the solution at small r corresponding to the IR limit of the RG flow, and

the solution at large r corresponding the the UV limit of the RG flow. The study of such

holographic flows was initiated in [34, 35].

Analogous flows were previously constructed for the Type IIA theory in [15]. As in

that case, the charge Q will be conserved along the flows; flows will move horizontally in

figure 1. Therefore the solutions that can be related by flows are the L̃i3 and AdS3 for

large enough values of Q, and AdS3 and Li3 for smaller values of Q. There is also the

possibility of having flows which start from the asymptotically AdS5 solution in the UV,

which exists for any value of the charge Q, and approach any of these AdS3 or Lifshitz

solutions in the IR.

– 7 –
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0 1 2 3
0

1

2

3

j

Q2

Li3

Li

~
3

AdS3

Figure 1. The values of Q,ϕ0 for the AdS3, L̃i3 and Li3 solutions. The AdS3 family is parametrized

by ϕ0, which determines Q2 =
√

2ϕ0 − 1. The Lifshitz families are parametrized by z, which

determines Q and ϕ0. Also shown are flows between the solutions, which must occur at constant

Q, with an arrow depicting the direction of the flow.

3.1 Linearized analysis

Before we proceed to the construction of the actual flows, we will perform a linearized

perturbation analysis around each of the fixed-point solutions, to determine which direction

we would expect the flows to go in (that is, which solution should be in the IR and which

in the UV). This corresponds to computing the dimensions of the deforming operators in

the dual field theories. We then construct the interpolating solutions numerically.

3.1.1 Linearisation around AdS5

The expansion around the asymptotically AdS5 solution is a little more conceptually in-

volved than the others, because AdS5 is not an exact solution of the equations of motion,

but only an asymptotic solution. We can avoid these subtleties by imagining that we take

the radius of curvature of the compact hyperbolic space to zero by taking h0 → ∞, and

neglecting terms in the equations of motion involving e−2h0 . This will give us the linearized

form of the equations of motion around the pure AdS5 solution which will allow us to read

off the scaling of the linearized solutions. These scalings will remain valid for the linearized

modes in the asymptotically AdS5 solution with finite h0 to leading order at large r, as the

physical volume of the compact hyperbolic space diverges as r →∞.

– 8 –
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We write the solution as

∂ρF = 1 + y0(ρ), D = D0 + y1(ρ), A = y8(ρ),

H = ρ+H0 + y2(ρ), ∂ρH = 1 + y4(ρ), B = y9(ρ),

ϕ = ϕ0 + y3(ρ), ∂ρϕ = 0 + y5(ρ),

(3.1)

and linearize in the yi, taking H0 →∞. At linear order we will not see the constraint (2.11),

but we recall that we will only consider solutions with either (y6, y7) or (y8, y9), but not all

four at the same time. The other equations in (2.8), (2.9), (2.10) then give us a system of

first-order equations,

ẏ0 = −4y0, ẏ1 = y0 − 8y1 + 2y4, ẏ2 = y4,

ẏ3 = y5, ẏ4 = −4y4, ẏ5 = −4y3 − 4y5,

ẏ6 = −3y6, ẏ7 = −3y7, ẏ8 = −3y8, ẏ9 = −3y9,

(3.2)

and a constraint equation,

y1 =
y0 + 2y4

4
. (3.3)

We can easily verify that this constraint is consistent with the first-order system. Imposing

the constraint, and keeping one of the two pairs of gauge fluxes, we will have a seven-

dimensional space of linearized solutions. For example, for the case where we keep (y8, y9),

the linearized solutions are

∂ρF = 1 + C0e
−4ρ, ϕ = ϕ0 + λρe−2ρ + ηe−2ρ,

D = D0 +
1

4
(C0 + 2C4)e−4ρ, A = C8e

−3ρ,

H = ρ+H0 + C2 −
1

4
C4e

−4ρ, B = C9e
−3ρ.

(3.4)

These solutions correspond to infinitesimal VEVs and sources for corresponding operators.

The constants C0, C4 are the energy density and an anisotropic pressure; the corresponding

sources are deformations of the boundary metric. These are C2 and a constant F0 in F ,

which we can freely add since the equations of motion only involve ∂ρF . Both C2 and F0 are

pure gauge degrees of freedom; the former corresponds to shifting the background H0, and

the latter is a pure diffeomorphism. The parameters C8 and C9 are charge densities for the

gauge fields; the corresponding sources are constant components of the vector potentials,

which are pure gauge, and are also absent from our ansatz since we wrote it in terms of the

field strengths. Finally λ and η are the source and VEV for the operator corresponding to

the 5D dilaton. This operator is particularly interesting to us as we will see that the flows

from AdS5 to the AdS3 and Lifshitz solutions will involve turning on this source. As this

is a relevant deformation, we would expect flows from AdS5 in the UV, approaching the

other solutions in the IR.

Since they do not enter into the equations of motion in our ansatz, the constant part

of F and the constant part of the gauge potentials will not play any role in the flows we

consider. This is a remarkable fact; it implies that in the flows from AdS5 to Lifshitz, the

only physical source we can find turned on at the AdS5 end of the flow is λ. This does not

break the Lorentz invariance. Thus, when we have a flow to Lifshitz, the breaking of the

Lorentz invariance along the flow is spontaneous.

– 9 –
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3.1.2 Linearisation around AdS3 solutions

We expect to have flows relating AdS3 to both L̃i3 and Li3 spacetimes, therefore it is

interesting to consider perturbations for both tilded and untilded fluxes in this case. Hence,

we have the following linear perturbation from the AdS3 solution

X = X0 + y, (3.5)

where X0 =
(
F ′, D,H, ϕ,H ′, ϕ′, Ã, B̃, A,B

)
= (1, D0, H0, ϕ0, 0, 0, 0, 0, 0, 0) is the fixed

point solution corresponding to the AdS3 × H2 spacetime and y(ρ) is a vector of per-

turbations. Linearising the equations of motion around the fixed point gives us a linear

system

ẏ = AAdS3 · y, (3.6)

together with a constraint equation analogous to (3.3). The matrix AAdS3 is a 10 × 10

matrix dependent on the background field values, however, as with the AdS5 case, we may

only switch on either the tilded or untilded fluxes, which both have exactly the same form

of perturbation equations. In addition, the Bianchi identity implies a zero mode, thus our

effective perturbations are reduced to a seven-dimensional system

ẏred = Ared · yred, (3.7)

where yred = (δF ′, δH, δϕ, δH ′, δϕ′, δA(δÃ), δB(δB̃)), and writing c =
√

2/ϕ0:

Ared =



−2 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 16−2c
3

√
2c
9 (c− 2) −2 0 0 0

0 4
√

2
c (c− 2) 2−4c

3 0 −2 0 0

0 0 0 0 0 −1
√

4− 2c

0 0 0 0 0
√

4− 2c −1


(3.8)

In this format we see the perturbation of the flux decouples from the geometry, and the

equation for δF ′ also decouples. This matrix has a set of eigenvalues {∆i},

∆i = −2 ; −1±
√

4− c±
√

9− 2c+ c2 ; −1±
√

4− 2c , (3.9)

with corresponding eigenvectors {vi}, thus the solution of the linear system (3.7) is

yred =
∑
i

vie
∆iρ. (3.10)

The eigenvalues are plotted in figure 2, and we see that as in [15], some of the eigenvalues

are complex for some values of ϕ0, signalling a potential instability of these solutions. We

will return to this issue at the end of our analysis.

Clearly, the ∆ = −2 eigenvalue corresponds to a pure geometry fluctuation, and ac-

tually corresponds to the fluctuation from a mass. The final pair of eigenvalues ∆± =

– 10 –
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Figure 2. Plots of real and imaginary parts of the eigenvalues of the linear perturbations from the

AdS3 solution as functions of the background value of the 5D dilaton field ϕ0.

−1±
√

4− 2
√

2
ϕ0

switch on flux, hence corresponding operators on the field theory side are

relevant when ∆+ < 0, i.e. for 1√
2
< ϕ0 <

2
√

2
3 .

Note that ϕ0 = 2
√

2
3 corresponds exactly to the point where all AdS3, L̃i3 and Li3

solutions coincide. Hence, for 1√
2
< ϕ0 <

2
√

2
3 we will have a relevant operator near AdS3.

If we excite the untilded fluxes, we can then expect a flow from the AdS3 solution in the

UV to the Li3 solution in the IR. For ϕ0 >
2
√

2
3 we will have an irrelevant operator near

AdS3. So if we excite the tilded fluxes, we can expect to have flows from the L̃i3 spacetime

in the UV to the AdS3 spacetime in IR. These expected flows are presented in figure 1.

We will construct these flows numerically below.

In addition to the flux deformations, we see from figure 2 that there is one deformation

which is always irrelevant. This should correspond to the flow approaching AdS3 from the

asymptotically AdS5 solution.

3.1.3 Linearisation around L̃i3 solutions

In this case we must set the untilded fluxes to zero identically to satisfy (2.11). We write

the variables as

X = X0 + y, (3.11)

where X0 =
(
F ′, D,H, ϕ,H ′, ϕ′, Ã, B̃

)
=
(
z,D0, H0, ϕ0, 0, 0, Ã0, B̃0

)
are the background

values and y are the linear perturbations. This gives a linear system

ẏ = A
L̃i3
· y (3.12)

together with a constraint equation analogous to (3.3). The entries of the matrix A
L̃i3

are parametrized by the value of dynamical exponent z, and although the corresponding

eigenvalues can be found analytically (in terms of square roots of solutions to a cubic) their

form is not particularly illuminating thus we present them only graphically in figure 3. The

eigenvalues occur in pairs with the sum of each pair equal to −(z + 1). We see that we

have complex eigenvalues for all values of z along this family. We also note that there is a

– 11 –
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Figure 3. Plots of the real and imaginary parts of the eigenvalues of the linear perturbations

from the L̃i3 solutions, divided by z + 1, as functions of the background values of the dynamical

exponent z.

single irrelevant mode, corresponding to the expected flow approaching this solution from

the asymptotically AdS5 solution.

3.1.4 Linearisation around Li3 solutions

This is similar to the previous case, although now it is the tilded fluxes which must be

set equal to zero. We again have an 8-dimensional system of linear perturbations, with

background values X0 = (F ′, D,H, ϕ,H ′, ϕ′, A,B) = (z,D0, H0, ϕ0, 0, 0, A0, B0), and a

linear system with a matrix ALi3 and a constraint. We will again have seven linearly

independent modes, with eigenvalues coming in pairs, with the sum of the eigenvalues in

each pair equal to −(z + 1). The resulting eigenvalues are presented in figure 4. Here we

see complex eigenvalues for a range of values of z near 1, but there is a range near 2 where

all the eigenvalues are real and the solutions may be stable. We also note that there are

two irrelevant modes, corresponding to the expected flows approaching this solution from

asymptotically AdS5 and AdS3 solutions.

3.2 Numerical Flows

Here we present the result of numerical solutions of the full non-linear system of equations

of motion for the interpolating solutions between different fixed points in UV (r →∞) and

IR (r → 0). We discuss first the flows between AdS3 and Li3 spacetimes and then consider

the flows from the asymptotically AdS5 solution in the UV.

3.2.1 Flows between AdS3 and Li3 spacetimes

From the linearized analysis, we expect flows from AdS3 in the UV to Li3 in the IR and

flows from L̃i3 in the UV to AdS3 in the IR, as depicted in figure 1. We constructed

examples of these flows numerically, using a shooting method. The shooting is carried out

starting from the IR fixed point at small r, integrating numerically to larger r. Shooting is

required to obtain the flows between AdS3 and Li3 because the IR fixed point always has

two positive eigenvalues, and the generic flow will go to the asymptotically AdS5 solution.

Hence possible directions of shooting lie in the plane spanned by the two corresponding

– 12 –
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Figure 4. Plots of the real and imaginary parts of the eigenvalues of linear perturbations from the

Li3 solutions, divided by z+ 1, as functions of the background values of the dynamical exponent z,

in this case 1 ≤ z ≤ 2.
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Figure 5. Solution interpolating between Li3 with z = 3/2 and AdS3, with Q2 = 4
27 .

unstable directions and can be parametrized by the single angle variable, say, ζ. We find

the value of ζ giving the desired flow by bisection of an initial interval of values of ζ.

• Q2 ∈
[
0, 1

3

]
: Flows from AdS3 to Li3

We present an example of such a solution in figure 5: this case interpolates between

the untilded Lifshitz solution with z = 3/2 for small r (IR) and the AdS3 solution for large

r (UV) . The plot of F ′ shows that it starts from the value 3/2 and goes to 1, the other

plots show how fluxes of the gauge fields go to zero at large r.

• Q2 > 1
3 : Flows from L̃i3 to AdS3

We present an example of such a solution in figure 6: this case interpolates between

AdS3 for small r (IR) and the L̃i3 solution with z = 2 for large r (UV) . The plot of ∂ρF

shows that it starts from 1 and goes to the value 2, the other plots show how fluxes of the

gauge fields grow, approaching constant values at large r.

3.2.2 Flows from AdS5

The flows which approach the asymptotically AdS5 solution in the UV and end at AdS3

or Li3 in IR are easy to construct numerically, integrating outward from the IR. We find

– 13 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
3

0 5 10 15 20
Ρ

1

1.2

1.4

1.6

1.8

2

F,Ρ

0 5 10 15 20
Ρ

0.1

0.2

0.3

0.4
A
�

B
�

0 5 10 15 20
Ρ

0.4

0.6

0.8

1.

1.2

H

j

Figure 6. Solution interpolating between AdS3 and L̃i3 with z = 2, with Q2 = 2
3 .

that the endpoint of the flow from AdS5 is uniquely determined by the pair {Q,λ}, where

λ is the coefficient in front of the slow fall-off mode in the expansion of the 5D dilaton field

near the AdS5 solution,

ϕ =
1√
2

+
λ

r2
ln r +

η

r2
+ . . . . (3.13)

On the field theory side, λ corresponds to the source of an operator O2, as discussed in

Maldacena and Nunez [28], however, for future reference we note that the deformation

parameter used there, λ̄, is related to our λ via

λ̄ =

√
2

3
e2h0λ (3.14)

This operator (together with the curvature of the H2 and the flux Q) induces the RG flow

on the field theory side. As noted previously, the fact that these flows only involve turning

on a source for this operator implies that the flows to Lifshitz spacetimes break the Lorentz

invariance spontaneously.

The values of λ̄ for which we flow to the different solutions are presented schematically

in figure 7. If we move along the AdS3 (grey) line in the direction of increasing of Q, then

the corresponding value of λ̄ is also increasing. For Q = 0 λ̄ = 0, while for Q = 1 λ̄ = 1
6 ; this

latter value corresponds to the supersymmetric flow of [28]. If we move along the L̃i3 (blue)

line up (in the direction of increasing Q and also increasing z), then the corresponding value

of λ̄ is decreasing, in such a way that for Q =
√

2
3 (z = 2) λ̄ = 0.1 Above this point λ̄ < 0.

If we move along the Li3 (red) line down (in the direction of decreasing Q, but increasing

z), then the corresponding value of λ̄ is increasing. Numerically, λ̄→ 1
6 as z → 2 (Q→ 0).

We will discuss the field theoretic implications of the values of λ̄ in the next section, but

first comment on stability of the supergravity solutions.

3.3 Stability to condensation of supergravity fields

In the analysis of the linearized perturbations, we encountered some complex eigenvalues

for some values of parameters, as in the analysis of the IIA case in [15]. For a decou-

pled scalar, such complex eigenvalues appear when the scalar violates the Breitenlohner-

Freedman bound, and there is then an instability to condensation of the scalar. We would

1This is a numerical result, but it seems very reasonable, because in Lifshitz theories, a theory with

z = 2 always was a special case.
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Figure 7. Plots of AdS3, L̃i3 and Li3 solutions, indicating the corresponding value of λ̄ in the

asymptotically AdS5 UV region in the flow solutions. The arrows indicate the direction of increas-

ing λ̄.

expect that there will be a similar instability to condensation of the modes with complex

eigenvalues in our case, although we will not attempt to carry out a time-dependent anal-

ysis to demonstrate this instability explicitly. Certainly the appearance of the complex

eigenvalues obstructs the usual interpretation of the eigenvalue as the dimension of the

corresponding operator in the field theory.

Also, it was noted in [36] that purely from a bulk spacetime perspective, when such

complex eigenvalues appear for a scalar field there is no boundary condition which preserves

the inner product which is invariant under the Lifshitz scaling isometry. Thus, we expect

that in the cases with complex eigenvalues, we simply cannot choose boundary conditions

such that our bulk solution is dual to an anisotropic scaling invariant field theory with a

conserved inner product.

A nice field theory dual description of the fixed points with complex eigenvalues is

thus unlikely to exist. This leaves as potentially interesting cases a range of the AdS3 fixed

points and a range of the untilded Li3 fixed points with z near 2. This is an interesting

range of Lifshitz solutions, and an improvement of the IIA case, where the Lifshitz solutions

with no complex eigenvalues were at larger values of z.
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4 The UV field theory

Our interest in studying flows, particularly those from asymptotically AdS5 spacetimes, is

mainly that they might help us to understand the field theories dual to these spacetimes. In

this section, we consider some stability issues that can obstruct our ability to learn about

the field theory from these flows. For field theory on a flat space, the scalars in the adjoint

of SU(N) have flat directions corresponding to the Coulomb branch. However in our class

of spacetimes, we are compactifying two of the directions on which the field theory lives on

a space of negative curvature. One might therefore expect the curvature coupling of the

field theory scalars to produce a runaway instability for the diagonal components of these

scalar matrices. From the bulk spacetime point of view, the diagonal components of the

scalars are positions of branes, so this runaway would be a brane nucleation instability.

The story is of course more complicated, because in addition to the negative curvature

space, we are introducing a flux F
(3)
y1y2 = q/y2

2 on these directions, and also adding a source

for the operator dual to the 5D dilaton φ. In the supersymmetric case analysed in [28],

the effects of these deformations combine to preserve a twisted supersymmetry. The whole

RG flow is supersymmetric, so on the field theory side the deformation of N = 4 SYM

is preserving some supersymmetry. One would then not expect the field theory to have a

scalar instability, and indeed the terms combine to leave us with flat directions for some of

the field theory scalars [28]. Similarly, from the bulk perspective, the addition of the flux

and deformation of the S5 (encoded in the 5D dilaton) will modify both the DBI and WZ

components of a probe brane action, which could stabilise the brane.

We now present analyses from both points of view — using the Maldacena-Nunez

approach to contruct the field theory, then confirming our results by a direct probe brane

calculation.

4.1 UV field theory analysis

Let us analyze the field theory deformation for our general family of flows. The field

theory includes six real scalars, transforming in the vector representation of the SO(6)

R-symmetry group and the adjoint of SU(N). The consistent truncation we work with

preserves an SU(2) × U(1) subgroup of SO(6), so it is convenient to organize the scalars

into three complex scalar fields W1,W2 and W3, where W1 and W2 transform under the

SU(2) and W3 transforms under the U(1). The bulk 5D dilaton φ corresponds to an

operator O2 which is a symmetric traceless combination of the scalars transforming in the

20 of SO(6) [28],

O2 = Tr

{
2

3
|W3|2 −

1

3

(
|W1|2 + |W2|2

)}
. (4.1)

The deformation we consider has a negative curvature in the y1, y2 directions and a flux

of the τ3 component of the SU(2) gauge field through those directions, and a source for

O2 with a coefficient λ̄. This corresponds to a deformation of the scalar part of the field

theory Lagrangian to

S =

∫
d4x

{
1

2
|DµW1|2 +

1

2
|DµW2|2 +

1

2
|∂µW3|2 −

R

12

∑
i

|Wi|2 +
3

4
λ̄RO2

}
, (4.2)
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where Dµ = ∂µ+iAµ is the gauge-covariant derivative with respect to the component of the

SU(2) gauge field we turn on, and R is the Ricci scalar of the two dimensional hyperbolic

spacetime (note R = − |R| < 0). Substituting in Ay1 = q/y2, we have

S =

∫
d4x

{
1

2

∑
i

|∂µWi|2 − |R|
(
λ̄

2
− 1

12

)
|W3|2

− |R|
[
Q2

8
−
(
λ̄

4
+

1

12

)](
|W1|2 + |W2|2

)}
,

(4.3)

where the normalization of the Q2 term and the coefficient of λ̄ have been fixed by reference

to the supersymmetric case, which corresponds to λ̄ = 1
6 and Q = 1.

4.2 Probe brane calculation

We now want to explore this field theory from the bulk perspective. Holographically, R-

symmetry scalar fields correspond to inserting a brane with its four infinite dimensions

parallel to an r =const. section of the 5D space, and at a given position on the (possibly

distorted) S5. The effective action of such a probe brane is given by the sum of a geometric

DBI term, and a topological WZ term:

S = −T3g
−1
s

∫
e−Φ

√
−det[γAB + FAB]d4ζ + T3

∫
C4 (4.4)

where ζA are the intrinsic coordinates on the brane worldvolume; γAB the induced metric;

FAB = BAB + 2πα′FAB, the pullback of the 2-form field to the brane (zero in this back-

ground) and worldvolume gauge field (which we also set to zero); finally, C4 is the pullback

of the 4-form gauge potential onto the brane.

In order to compute this action, we first need the background geometry. The twisting

introduced previously corresponds to a distortion of the S5 in the reduction of the IIB

SUGRA as described in [33].2 Lifting the 5D solutions of (2.5), (2.6) to 10D, and writing

S = sinχ ∆ = ξ2S2 + ξ−1C2

C = cosχ U = ξS2 + ξ−2C2 + ξ
(4.5)

gives:3

ds2 =∆
1
2

(
e2Fdt2 − r2dx2 − e2ddr

2

r2
− e2hdy

2
1 + dy2

2

y2
2

)
− ξ−1∆−

1
2

[
∆dχ2 + ξ−1S2 (dη − 2A) +

1

4
ξ2C2

∑
i

(
h(i)
)2
] (4.6)

F5 =2Uε5 + 3S C ξ−1 ?5 dξ ∧ dχ+
C2

2
√

2
ξ2 ?5 F

(3)
2 ∧ σ(1) ∧ σ(2)

− S C√
2
ξ2 ?5 F

(3)
2 ∧ h(3) ∧ dχ− 2SCξ−4 ?5 F2 ∧ dχ ∧ (dη − 2A) ,

(4.7)

2Note that there are some factors of two between the variables used here and those of [33]: (φ)LPT = φ/2,

(gi)LPT = gi/2, and ALPT = 2A, where A stands for either the U(1) or SO(3) gauge field.
3We have set g1 = g2/

√
2 = 2 to match the conventions of [28],Gregory:2010gx
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the other form fields, the string dilaton and axion vanish. Here, h(i) are the left invariant

forms on S3 (σ(i)) modified by the SO(3) gauge fields:

h(i) = σ(i) − 2
√

2A(i) . (4.8)

For constant ξ, we may reparametrize the squashed S5 as

W1 = ξ cosχ cos
θ

2
eiφ+ψ

2

W2 = ξ cosχ sin
θ

2
eiφ−ψ

2

W3 = ξ−1/2 sinχ eiη

(4.9)

which, together with the obvious definitions of the gauge covariant differentiation for W1,2

and W3 give the metric of the additional dimensions as

ds5 = −ξ−1∆−
1
2
[
|DW1|2 + |DW2|2 + |DW3|2

]
(4.10)

As ξ changes from unity, we can see how the S5 becomes distorted while maintaining

an SO(3) × U(1) symmetry. Our 5D dilaton is thus a shape modulus for the S5. Since

ξ ≡ 1 for AdS5, it is now transparent how to deal with the degrees of freedom of the

probe brane: we simply replace the ‘ξ’ in (4.9) with a radial variable r(ζ), and allow the

remaining angular degrees of freedom of the brane to also depend on the brane coordinates

ζA. We will then expand the action for a slowly moving brane at large r in the asymptotic

AdS5 solution.

We start with the DBI part of the action

SDBI ∝ −
∫
d4ζ
√
−det γAB (4.11)

where

γAB =
∂Xa

∂ζA
∂Xb

∂ζB
gab (4.12)

with Xµ = [t, x, r(ζ), y1, y2, χ(ζ), η(ζ), θ(ζ), φ(ζ), ψ(ζ)] being the brane’s spacetime co-

ordinates in terms of the intrinsic coordinates ζ, for which we choose the gauge ζA =

(t, x, y1, y2). Thus

γAB = γ0
AB −

1

r2

[
DAW1DBW1 +DAW2DBW2 +DAW3DBW3

]
(4.13)

where γ0
AB = ∆

1
2 · diag

(
e2F ,−r2,− e2h

y22
,− e2h

y22

)
, the 1/r2 factor arising because we have

replaced ξ with r in (4.9). Hence,√
−det γAB '

√
−det γ0

ab

(
1− 1

2r2
γ0ABDAWiDBWi

)
(4.14)

(where we understand the covariant derivative in the sum to be the one relevant to the

particular Wi). Since we are only interested in the leading order behaviour as we change

Wi, we only require γ0AB to leading order in Wi, i.e. at the AdS5 limit:

γ0AB
∣∣
AdS5

=
1

r2
· diag

(
1,−1,−y2

2e
−2h0 ,−y2

2e
−2h0

)
(4.15)
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hence

SDBI ∝ −
∫
d4ζ

r∆

y2
2

eF+2h

(
1− 1

2r4

∑
i

|DµWi|2
)

(4.16)

For the WZ term, note that although the 4-form potential is rather involved for a

general flow, we only require the leading order part parallel to the probe brane worldvolume,

which can be found by integrating the U function in (4.5). Putting this together, we see

that

Seff ∼
∫
d4ζ

{
−∆(ξ, χ) · reF+2h

(
1− 1

2r4

∑
i

|DµWi|2
)

+ 2

∫
eF+d+2hU(ξ, χ)dr

}
(4.17)

We now expand this action in the asymptotic AdS5 region, but with one difference

to the procedure followed in § 3.1.1: we need to consider a linear expansion in the case

of finite volume of the 2D hyperbolic space, i.e. finite h0. The full asymptotic solution

together with corrected expansion up to r−2 order reads

F = ln r , d = −e
−2h0

6r2
,

h = ln r + h0 +
e−2h0

4r2
, ξ = 1 +

√
2

3

λ ln r

r2
+

√
2

3

µ

r2
.

(4.18)

Substituting these expressions into (4.17), and performing the integral for U , we see

that all terms proportional to µ and λ ln r cancel leaving

Seff ∼
∫
d4ζ

{
1

2
e2h0

∑
i

|DµWi|2 −
λ

3
√

2
e2h0

(
2S2 − C2

)
r2 +

1

6
r2

}
(4.19)

It is easy to see that we can identify(
2S2 − C2

)
r2 = 3O2 , r2 =

∑
i

|Wi|2 (4.20)

and noting the relation between our λ and λ̄, (3.14), as well as the curvature of the 2D

hyperbolic space, R = −2e−2h0 , we get

Seff ∝
∫
d4ζ e2h0

{
1

2

∑
i

|DµWi|2 −
3

4
λ̄RO2 +

1

12
R
∑
i

|Wi|2
}

(4.21)

which coincides with the expression for the field theory effective action (4.2) precisely.4

4.3 Stability and Lifshitz dual field theories

Having obtained the field theory action, (4.3), we now analyse the scalar stability. In order

to have stable potential for the W3 field, we should have

1

2
λ̄− 1

12
≥ 0⇒ λ̄ ≥ 1

6
, (4.22)

4Indeed, the uplift of the AdS flows can be generalised in the context of solutions in D = 10, 11 dual to

N = 2 SCFT’s, as studied in [39, 40]. (We thank Jerome Gauntlett for pointing this out.)
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While for the twisted fields W1 and W2 we should have

Q2

8
−
(

1

4
λ̄+

1

12

)
≥ 0. (4.23)

For the supersymmetric case, both these bounds are automatically saturated (by our choice

of normalization in matching operator sources to bulk modes), reproducing the flat direc-

tions of [28].

For AdS3 solutions we know that in the AdS3 region Q2 = ϕ
√

2−1, and, by numerical

analysis we determine λ̄ as a function of the value of ϕ in the AdS3 region. The stability

criterion for the W3 field, λ̄ ≥ 1/6, which corresponds to ϕ ≥
√

2. Meanwhile, (4.23)

provides an upper bound on ϕ, as λ̄ increases more rapidly than Q2 along the family of

AdS3 flows. Numerically, we find that the AdS3 solutions with

ϕ ∈
[√

2,∼ 3.26
]

(4.24)

result from an RG flow from a field theory in the UV where the field theory deformation

is not introducing a field theory scalar instability. The corresponding region for the charge

Q is

Q2 ∈ [1,∼ 3.61] . (4.25)

Disappointingly, for the Lifshitz solutions we found numerically that none of the solu-

tions involve flows with λ̄ ≥ 1/6. The flows on the untilded branch do approach λ̄ → 1/6

when z → 2, but Q → 0 in this limit, so even if we are nearly satisfying the stability

condition for W3 in the limit, the condition for W1 and W2 is badly violated. Thus, none

of our Lifshitz solutions is obtained as an RG flow from a stable UV field theory, and we

cannot use these RG flows to define the field theory dual to the IR fixed points.

This UV instability does not necessarily imply that the IR fixed points are ill-defined,

just that this approach to constructing them has failed. There are solutions on the Li3
branch for which we did not have evidence of a supergravity instability which are still

candidates for having a dual field theory; but we will have to look elsewhere for a top-down

definition of this field theory.
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A Additional AdS solutions

In the main text we assumed that the topologically charged part of the fluxes, i.e. the

flux through the compact hyperbolic space, only involved the SU(2) gauge field, as this

is the only possibility for the Lifshitz solutions [11]. However, more generally the abelian

field could also have a topological flux. Here we will briefly discuss constructing more

general AdS3 geometries using this freedom. These solutions were also obtained in a more

systematic analysis in [37, 38].

Introducing the following more general ansatz for the gauge fields

Fy1y2 =
q1

y2
2

, (A.1)

F
(3)
y1y2 =

q2

y2
2

,

together with the standard ansatz for the metric (2.5) with r-independent constants d0 and

h0 and F (ρ) = ρ, gives rise to the following system of equations

2e−2D0 =
1

6

(
ϕ
− 2

3
0 + 2

√
2ϕ

1
3
0

)
+

2

3
ϕ

2
3Q2

2e
−4H0 +

2

3
ϕ−

4
3Q2

1e
−4H0 , (A.2)

e−2H0 =
1

6

(
ϕ
− 2

3
0 + 2

√
2ϕ

1
3
0

)
− 4

3
ϕ

2
3
0Q

2
2e
−4H0 − 4

3
ϕ
− 4

3
0 Q2

1e
−4H0 ,

0 =
1

2

(
−ϕ−

2
3

0 +
√

2ϕ
1
3
0

)
− 2ϕ

2
3
0Q

2
2e
−4H0 + 4ϕ

− 4
3

0 Q2
1e
−4H0 ,

where Q1 = q1g1. Solving this system gives us a two-parameter family of AdS3 solutions,

e−2D0 = fD (Q1, Q2) , (A.3)

e−2H0 = fH (Q1, Q2) ,

ϕ0 = fϕ (Q1, Q2) ,

which will coincide with (2.15) if we put Q1 = 0, g1 = 2, g2 = 2
√

2 and Q2 = Q. These

solutions are supersymmetric if

Q1 +Q2 = 1. (A.4)

Field theory duals for two points in this family (Q1 = 1 and Q2 = 1) were discussed

through twisting in [28]. There it was also pointed out that the field theory description of

the general supersymmetric solution of (A.2) would involve some fields acquiring fractional

spins during twisting.
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