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There is growing evidence that when magnetic reconnection occurs in high Lundquist number

plasmas such as in the Solar Corona or the Earth’s Magnetosphere it does so within a fragmented,

rather than a smooth current layer. Within the extent of these fragmented current regions, the

associated magnetic flux transfer and energy release occur simultaneously in many different places.

This investigation focusses on how best to quantify the rate at which reconnection occurs in such

layers. An analytical theory is developed which describes the manner in which new connections

form within fragmented current layers in the absence of magnetic nulls. It is shown that the

collective rate at which new connections form can be characterized by two measures; a total rate

which measures the true rate at which new connections are formed and a net rate which measures

the net change of connection associated with the largest value of the integral of Ejj through all of

the non-ideal regions. Two simple analytical models are presented which demonstrate how each

should be applied and what they quantify. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4918335]

I. INTRODUCTION

The process of magnetic reconnection underpins our

understanding of many astrophysical phenomena. Examples

include solar flares, geomagnetic storms, and saw tooth

crashes in tokamaks.1,2 Yet a complete understanding of this

enigmatic plasma process remains illusive, despite decades

of research.

Fundamentally, magnetic reconnection is the process

whereby excess energy in a magnetic field is liberated by the

reorganization of a magnetic field’s connectivity in the form

of plasma heating, bulk fluid motions, and particle accelera-

tion. Classically, this is envisioned to occur in a single well

defined region of high electric current, within which non-

ideal effects dominate and the plasma becomes decoupled

from the magnetic field.3–5 However, in recent years the im-

portance of instabilities which fragment reconnection regions

has been more fully appreciated. In particular, in two dimen-

sions high aspect ratio current sheets have been shown to be

highly unstable to tearing with the resulting dynamics domi-

nated by the formation and ejection of magnetic islands,6,7

whilst three dimensional (3D) simulations have emphasized

the importance of flux rope formation, braiding, and the pos-

sible development of turbulence.8–10 Observations of plasma

blobs and bursty radio emissions in the extended magnetic

field beneath erupting CME’s as well as bursty signatures of

reconnection in the Earth’s magnetotail appear to somewhat

corroborate this picture.11–14

An important diagnostic of any reconnection scenario is

the rate at which the process occurs. In two dimensions

reconnection occurs only at X-points, with the rate of recon-

nection given simply by the electric field at this position. If

the current layer is fragmented then the only topologically

stable situation is one in which only a single X-point resides

at the boundary between the global flux domains. The recon-

nection rate is then the electric field measured at this

“dominant” X-point (e.g., Ref. 15).

In 3D, the picture is more complex. When reconnection

involves 3D nulls, separatrix surfaces divide up the magnetic

field into regions of differing connectivity. The rate of recon-

nection can then be defined as the flux transfer across these

surfaces,16 or past separators which sit at the intersection of

different separatrix surfaces.17 If the non-ideal regions span-

ning the separatrix surfaces are fragmented then considering

flux transfer across segments of a separatrix surface18,19 or

along multiple separators20 if they exist allows the reconnec-

tion rate to be quantified. Unlike 2D, where X-points other

than the dominant X-point do not directly contribute to the

reconnection rate (although they may indirectly affect it), in

3D reconnection across a separatrix surface in multiple pla-

ces or at multiple separators all contribute towards the total

rate of flux transfer between the main topological domains.

This leads to the surprising result that in 3D two measures of

reconnection may be used when reconnection occurs in frag-

mented current layers. One that measures the total rate at

which flux is reconnected (taking account of recursively

reconnected magnetic flux) and a net measure of the com-

bined effects of each of the fragmented non-ideal regions.

The former is the true reconnection rate for any problem, but

the latter may be of interest when the large scale effects of a

reconnection site are being considered.

Furthermore, in 3D reconnection may also occur in the

absence of magnetic null points. In this case, the lack separa-

trix surfaces against which reconnection can be defined

requires a more general approach to the problem. The theory

of General Magnetic Reconnection (GMR) encompasses

reconnection across separatrices18,21 as well as describing

reconnection in situations without them. The theory of GMR

has shown that for a single isolated non-ideal region the rate

of reconnection is given by the maximum of
Ð

Ejjdl on all
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field lines threading the non-ideal region.21–23 However, the

question remains as to how to measure reconnection in frag-

mented current layers without the presence of separatrix

surfaces or in situations where separatrix surfaces are diffi-

cult to identify. The aim of this work is to extend the frame-

work of GMR to quantify the reconnection process in this

case.

The paper is structured as follows. In Sec. II, we review

the theory of GMR and introduce the relevant mathematical

tools. Section III contrasts the manner in which new connec-

tions are created for single and multiple reconnection

regions. Sections IV and V recap the derivation of the recon-

nection rate for an isolated region and then derive expres-

sions for the reconnection rate in fragmented current layers.

In particular, we show that as with reconnection involving

3D null points a total and a net rate may be defined. The

interpretation of each is then discussed. Section VI demon-

strates the developed theory for two simple kinematic exam-

ples. Finally, Sec. VII summarises the new results and

presents our conclusions.

II. OVERVIEW OF GENERAL MAGNETIC
RECONNECTION

GMR is most readily developed within the framework

of Euler potentials.24 A pair of Euler potentials (a and b say)

are scalar functions which locally describe regions of non-

vanishing magnetic field through the relation

B ¼ $a� $b: (1)

As long as field lines are simply connected and only enter

and leave through the boundaries of the region of interest

once, a and b are single valued and can be used to label indi-

vidual field lines. a and b are also flux coordinates and are

related to the magnetic flux through a given surface via

U ¼
ð ð

da db: (2)

Coupled with an arc length (s) satisfying ðB � $Þs ¼ B, any

position within the volume of interest can be expressed in

ða; b; sÞ space. Within this formulation the electric field can

be expressed as

E ¼ � @a
@t

$bþ @b
@t

$a� $w; (3)

where the quasi-potential w (so named as it contains a time

varying component) is related to the electrostatic potential /
via

w ¼ /þ a
@b
@t
; (4)

when the magnetic vector potential is assumed to take the

form A ¼ a$b. See Hesse and Schindler22 for a discussion of

the dependence of GMR on the choice of gauge taken for A.

For maximum applicability, a general form of Ohm’s

law is assumed where the contributing non-ideal terms are

grouped together into a single vector R such that

Eþ v� B ¼ R; (5)

where R is assumed to be localized within a small region

inside the domain of interest. By expanding R in covariant

form and inserting it into Eq. (5) along with Eqs. (1), (3),

and (4) eventually leads to an expression giving the relative

difference between the evolutions of a and b that are locally

“seen” by plasma elements on either side of the non-ideal

region22,25

da
dt

���
2
� da

dt

���
1
¼ � @N

@b
; (6)

db
dt

���
2
� db

dt

���
1
¼ @N
@a

; (7)

where N is given by

Nða; bÞ ¼ �
ð

a;b
Ejjds; (8)

¼ w2 � w1: (9)

w1 and w2 are the quasi-potential functions on either side of

the non-ideal region. Equations (6) and (7) show that plasma

elements initially on the same field line threading a localized

non-ideal region, Dr measure a different evolution of a and b
and so are not connected by the same field line at a later

time. A sketch of this idea is shown in Fig. 1. The power of

Eqs. (6) and (7) is that by considering only the relative dif-

ference in the evolutions of plasma elements, ideal flow

components are removed, leaving only the components

resulting in changes of field line connectivity and thus recon-

nection. If there is no variation in N in ab-space then the

evolutions of plasma elements are the same on both sides of

Dr. In this case plasma, elements which begin on the same

field line (and so initially have the same value of a and b)

are subject to the same change in a and b and so will be

found on the same field line at a later time. Therefore, a nec-

essary and sufficient condition for reconnection is that23,25

$a;bNða; bÞ 6¼ 0; (10)

i.e., that there be gradients in N from one field line to

another.

III. THE NATURE OF THE CONNECTIVITY CHANGE

To understand the nature of any resulting connectivity

change for a given problem, it is useful to map the problem

from 3D real space into flux coordinate (ab) space. We will

FIG. 1. Schematic of the difference in the evolutions of a and b seen by

plasma elements on either side of the non-ideal region, Dr.
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work in this space repeatedly throughout the rest of the

paper.

When the reconnection region is assumed to be localized

within a single isolated region of Ejj the contours of N in flux

coordinate space form closed loops. The Hamiltonian nature

of Eqs. (6) and (7) dictates that new connections be formed

tangential to the contours of N. Thus, when N has only a sin-

gle extremum these new connections will form in a circular

manner. Figure 2(a) shows a sketch of this concept where the

green arrows indicate the direction along which new connec-

tions form.

However, when a single reconnection region has an in-

homogeneous Ejj or multiple reconnection regions exist

within the region of interest then the mapping of N in

flux coordinate space contains multiple maxima and minima,

Fig. 2(b). In general, we restrict ourselves here to scenarios

where the multiple Ejj regions still only make up a small

fraction of the volume under consideration. This means that

N approaches zero outside of a flux tube encircling the multi-

ple reconnection sites. The new connections which form

now do so along multiple closed loops embedded within a

larger scale set of loops, Fig. 2(b) (right panel).

The way that this connection change is achieved

depends upon the global constraints of the system under

consideration. In general, the formation of new connections

along these loops is a weighted combination of two

extremes: steady state and purely time dependent connection

change.25 It is instructive to consider each in turn.

In steady state, the electric field is potential and the

magnetic field remains fixed in time. Considering again the

case when N has a single extremum, let us then assume that

E ¼ 0 on one side of the non-ideal region. The only way that

new connections can form in the manner shown in Fig. 2(a),

whilst also maintaining @B=@t ¼ 0 is by inducing a circular

plasma flow of the form shown in Fig. 3(a). Ideal flows may

be superposed on both sides, however the connection change

of the magnetic field within this ideal transporting flow will

remain the same. Hornig and Priest26 considered one such

example of this scenario.

Extending this concept to multiple reconnection regions,

each individual non-ideal region will behave locally like the

single reconnection region shown in Fig. 3(a). The key dif-

ference is that now a subset of field lines thread through mul-

tiple reconnection regions. Thus, circular plasma flows are

induced on field lines leaving a reconnection region which

then feed into other secondary regions further along the

same field line. Each secondary region superposes a circular

plasma flow on to the flow pattern associated with the field

lines which thread into it. In some cases, this will enhance

the induced flow at the exit of the patchy reconnection

volume. In others, it will act to reduce it. Figure 3(b) shows

a conceptual sketch of this idea. Thus, steady state patchy

reconnection within a localized volume gives rise to an

induced localized rotating flow with multiple internal vorti-

ces on field lines threading out of the reconnection volume.

As with the single reconnection region, any background ideal

plasma flow may be superposed on to this non-ideal flow.

In the opposite extreme of purely time dependent recon-

nection, the electric field is assumed to be zero on both sides

of the non-ideal region. This is particularly relevant to the

Solar Corona, e.g., Priest and Forbes.2 In this case, new con-

nections can only be formed by a time dependent change in

the magnetic field within Dr. The circular nature of this

connection change in situations with a single extremum in N
implies that helical magnetic fields are formed in the process,

Fig. 3(c). When the volume under consideration contains

several reconnection sites, each helical region of field may

contain a subset of field lines which threads into other helical

reconnection regions. Fig. 3(d) depicts this idea. This shows

FIG. 2. Schematic showing the quasi-potential N mapped into flux coordi-

nate space. (a) A single non-ideal region with one maxima of N. (b) Multiple

non-ideal regions with multiple maxima and minima in N. Arrows show the

direction along which new connections form.

FIG. 3. The two extremes of connectivity change. Steady state reconnection

for a single non-ideal region (a) and multiple non-ideal regions (b). Purely

time dependent reconnection for a single non-ideal region (c) and multiple

regions (d). Orange denotes non-ideal regions where w2 � w1 is positive and

blue where it is negative. Solid arrows show the direction in which new con-

nection form, whilst dashed arrows show induced plasma flows.
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that patchy time dependent reconnection can generate (or

relax) braided magnetic fields which are thought to be impor-

tant in the context of coronal heating.27,28

In any given 3D reconnection scenario, a combination

of both manners of connection change are likely to occur.

IV. QUANTIFYING RECONNECTION FOR A SINGLE
RECONNECTION REGION

If a given magnetic field contains separatrix surfaces

and separator lines, then these topological structures can be

used as a reference against which the rate of flux transfer

may be measured. For instance, when reconnection occurs

along a separator the rate of reconnection is simply given by

the integral of Ejj along the separator line.17 However, in the

absence of such structures a more general theory is required.

Hesse, Forbes, and Birn25 developed such a theory for an

isolated single reconnection region, Dr, extending those of

previous works.22,23 Using a similar approach, we now

reproduce their results before generalizing the theory to

quantify reconnection with multiple reconnection sites.

Without an obvious reference surface against which to

measure Hesse, Forbes, and Birn25 considered an arbitrary

flux surface (i.e., a surface comprised of magnetic field lines)

which intersects the single region of parallel electric field

and contains the field line along which the integral of Ejj is

maximal. When mapped into ab-space this surface appears

as a line, which they call the c line. Figure 4(a) shows a

sketch of this concept, where the contours depict the quasi-

potential N.

Now, this flux surface is comprised of field lines embed-

ded in the ideal regions on either side of Dr. Generally, in

each ideal region the evolution is comprised of a background

ideal transporting component (which by definition is the

same on both sides) and a non-ideal reconnecting com-

ponent. Without loss of generality, we now focus on the

non-ideal component by fixing the evolution of field lines

threading into the non-ideal region to zero, i.e., �1 ¼ ðda=dtj1;
db=dtj1Þ ¼ ð0; 0Þ. This is equivalent to using a coordinate

system which moves with the plasma on field lines entering

the non-ideal region, allowing the connection change to be

entirely characterized by the evolution of the field lines thread-

ing out of the non-ideal region which evolve according to

�2 ¼ ðda=dtj2; db=dtj2Þ.

If c is then defined at some arbitrary time (t ¼ t1), then

at some later time (t ¼ t1 þ Dt) the differing evolution on

either side of the non-ideal region splits c into two new flux

surfaces. In ab space these appear as two lines, shown in

solid blue and dashed black in Fig. 4(b). Note that as

�1 ¼ ð0; 0Þ, one of these lines is coincident with the original

c line. The two new surfaces overlap at the edge of the non-

ideal region and at Nmax (where ra;bN ¼ 0) since at these

places �1 ¼ �2 ¼ ð0; 0Þ.
The magnetic flux reconnected up to this time is simply

given by the flux bounded within one of the two flux tubes

formed by these two new flux surfaces, denoted SLðtÞ and

SRðtÞ (Fig. 4(c)). In terms of the two limiting scenarios of

purely steady state and time dependent reconnection, this

flux represents the amount of flux swept past c by the

induced plasma flows and the newly established magnetic

flux normal to c, respectively. Each flux tube must have the

same cross sectional area

SðtÞ ¼ SLðtÞ ¼ SRðtÞ; (11)

due to the rotational nature of the connection change. In flux

coordinate space, this area is equal to the magnetic flux

within each flux tube, recall the nature of the Euler potentials

(Eq. (2)). The rate of reconnection is then defined to be the

rate at which S(t) (representing either SLðtÞ or SRðtÞ) grows at

t ¼ t1,

dU
dt
¼ lim

t!t1

d

dt

ð
S

dadb

� �
¼ lim

t!t1

þ
@S

� � n ds

� �
; (12)

where � ¼ �1 on one side of S and � ¼ �2 on the other. n is

the outward normal of the boundary @S. As t! t1, the

boundary of S collapses to become the section of the c line

on one side of the peak in N, referred to hereafter as c1. The

integral around the boundary of S at t ¼ t1 then becomes the

superposition of integrals along c1, i.e.,

lim
t!t1

þ
@S

� � n ds

� �
¼
ð

c1

�2 � n dl�
ð

c1

�1 � n dl;

¼
ð

c1

�2 � n dl; (13)

where l is the arc length along c1. In coordinate space, the

local normal to c1 is given by

FIG. 4. The evolution of a flux surface c traversing the non-ideal region and passing through the maxima of N (viewed in flux coordinate space). (a) c (dashed

line) over plotting contours of N for a single non-ideal region at t ¼ t1. The green point denotes the maxima of N whilst the arrows show the direction of con-

nection change. (b) The evolution of the c surface either side of a single non-ideal region at some later time, t ¼ t1 þ Dt. (c) The associated swept out areas of

flux (SLðtÞ and SRðtÞ).
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n ¼ � @b
@l
;
@a
@l

� �
; (14)

whilst Eqs. (6) and (7) give that

�2 � �1 ¼ �2;

¼ � @N
@b

;
@N
@a

� �
: (15)

Combining Eqs. (12)–(15) gives the reconnection rate as

dU
dt
¼
ð

c1

@N
@b

@b
@l
þ @N
@a

@a
@l

� �
dl;

¼
ð

c1

dN
dl

dl ¼ �Nmax; (16)

¼
ð

a;b
Ejjds

 !
max

: (17)

Thus, for an isolated region of Ejj with a single maximum of

N the reconnection rate is given by the value of this maxi-

mum. This can be interpreted as the rate at which flux is

transferred in one direction across any arbitrarily defined

flux surface c which intersects the non-ideal region and

includes the field line upon which the maximum of N occurs.

V. GENERALIZATION TO MULTIPLE RECONNECTION
SITES

When there are multiple reconnection sites or inhomo-

geneity of Ejj within a single site there is likely to be multiple

peaks in N. We now aim to develop expressions which quan-

tify the rate of reconnection in this case and explain their

interpretations.

A. Expressions for reconnection rate

As discussed in Sec. III, when there are multiple peaks

in N new connections are formed along multiple embedded

closed paths in the ab plane. Near positive extrema (peaks)

of N the direction that this new connection formation takes is

clockwise, whereas for negative extrema (troughs) it is anti-

clockwise, Fig. 2(b). The places where there is no connection

change occur where $a;bNða; bÞ ¼ 0. These correspond to

the field lines not threading into any non-ideal region (the

neighboring ideal field) and special field lines along which

the net difference in connection change along their length is

zero, i.e., field lines along which the induced connection

change from multiple reconnection sites cancels out. These

special field lines sit at the critical points (“X-points” and

“O-points”) of the divergence free field defining the direction

of new connection formation

�2 ¼ � @N
@b

;
@N
@a

� �
: (18)

In terms of the quasi-potential the “O-points” correspond to

peaks and troughs of N, whereas the “X-points” occur at sad-

dle points. Figure 5(a) shows a sketch of this idea, where the

green and pink circles show the position of the “O-points”

and “X-points,” respectively. The key idea here is that just

like X-points divide up two dimensional magnetic fields into

distinct topological regions, so also the rotational formation of

new connections described by �2 is partitioned into localized

rotational regions (with “O-points” at their centers) by a series

of “X-points.” The different topological regions of the �2 field

are shown in different colors in Fig. 5 to better illustrate them.

To construct expressions for the reconnection rate, we

begin in the same manner as Sec. IV and consider a flux sur-

face bounded by the field line along which Nmax occurs and

some other field line in the nearby ideal region. Figure 5(b)

shows this surface as a dotted line in flux coordinate space.

Now, the only topological regions of �2 that are straddled by

this surface are the region within which Nmax is situated

(light blue) and the regions within which the surrounding

outer loops of connect change occur (white and orange

regions). The connection change within these regions gives

the net rate at which new connections form in a rotational

manner around the field line on which Nmax occurs. The

same analysis as Sec. IV may then be applied to this flux sur-

face, quantifying this net rate as

dU
dt

� �
net

¼ �Nmax ¼
ð

a;b
Ejjds

 !
max

: (19)

Thus, the maximum of the integral of Ejj across a fragmented

reconnection region measures a net rate of rotational connec-

tion change and neglects the connection change associated

with other extrema of N.

To quantify the true rate of reconnection requires that the

connection change associated with each of these other extrema

also be taken account of. This can be achieved by considering

a flux surface for each additional extrema bounded on one side

by the field line at which the extrema occurs and on the other

by the field line situated at the nearest associated saddle point

(s.p.) of N, by which is meant the first saddle point which is

reached as one expands outward in shells of constant N from a

given extrema that is not already associated with a different

extrema that has already undergone the same procedure.

Figure 5(b) illustrates this idea with a series of dashed lines in

flux coordinate space. For each of these additional flux surfa-

ces, one can also apply the same analysis as Sec. IV to give

the rate of connection change across the surface as

dU
dt

� �
local

¼
ð

dN
dl

dl;

¼ Nlocal extrema � Nassociateds:p:: (20)

The total reconnection rate associated with all of the non-

ideal regions is then given by the sum of the local connection

change occurring around each additional extrema in addition

to the net rotational connection change occurring around the

largest extrema, i.e.,

dU
dt

� �
tot

¼ jNmaxjþ
X

i

jNlocalextrema;i�Nassociateds:p:;ij; (21)

where absolute values have been used to account for when N
has both maxima and minima.
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The above shows that when reconnection occurs in frag-

mented reconnection regions the rate of reconnection can be

quantified by two different measurements. The first, ðdU=dtÞtot

describes the true rate at which new connections are formed

collectively by the fragmented layer. The second, ðdU=dtÞnet,

gives the net rate of flux transfer associated with the maximal

value of N on field lines crossing the volume. Both measure-

ments are equivalent when there is only one peak in N.

B. Interpretation in terms of flux transferred across a
single large flux surface

The above analysis shows that reconnection in fragmented

current layers can be considered as representing the rate at

which magnetic flux is reconnected across multiple bounded

flux surfaces. We now show that provided N is smooth and

continuous, ðdU=dtÞtot and ðdU=dtÞnet can also be interpreted

as the total and net rate of flux transfer across a large scale flux

surface (c) spanning the entire reconnection volume.

From the above analysis, one would expect that such a

flux surface must contain the field lines along which each of

the extrema and saddle points of the N profile occur.

However, the order in which each extrema and saddle points

are connected by c is crucial. In particular, c must be defined

such that extrema of the same type (maxima or minima) are

connected via any adjoining saddle points forming chains.

The end of a chain of maxima can be connected with the end

of a chain of minima if the connection is from the maxima to

minima, or saddle point to saddle point. Alternatively, the

ends of chains of maxima or minima may instead be con-

nected with the surrounding ideal field. Figures 6(a)–6(c)

shows three examples. In the degenerate case of when a local

maxima of N forms a ring, any two points on the ring may be

chosen in place of two saddle points, Fig. 6(d).

We point out that the selection of this flux surface is not

unique and differs depending upon how different chains of

maxima and minima are connected. Figures 6(a) and 6(b) illus-

trate this idea by the differing dotted sections of c. However, it

should be noted that the net and total rates of reconnection for

the system are fixed quantities at any given time, and so do not

change for different choices of c. The non-unique nature of c
reflects the fact that there may be multiple flux surfaces across

which the net and gross rate of flux transfer match the rates

defined for the whole system, as we now go on to show.

The dashed line depicted in Fig. 7(a) shows a flux sur-

face which connects the extrema and saddle points of the

previously considered N profile in the way described above

at some arbitrary time (t ¼ t1). By choosing c in this way,

the flux transfer between the critical points of N alternates

along c. This is shown in Fig. 7(b) which depicts the

FIG. 5. The evolution of bounded flux surfaces in a field with multiple reconnection regions (viewed in flux coordinate space). (a) Differently colored regions

indicate the different topological regions associated with the connection change. Green circles denote maxima/minima and pink circles saddle points of N. (b)

Dotted line: a flux surface bounded by the field line along which N is maximum and another in the nearby ideal region, used to calculate ðdU=dtÞnet (see text).

Dashed lines: flux surfaces bounded by field lines that have local extrema in N and field lines at the nearest associated saddle point, used to calculate ðdU=dtÞtot

(see text). (c) The associated swept out areas of flux for each bounded flux surface.

FIG. 6. Examples of flux surfaces (c) chosen so that the extrema and saddle points of N are connected in a certain way (see text for details). Green and pink

dots denote extrema and saddle points, respectively. Arrows depict the direction of connection change. Dashed lines show sections of c forming chains of max-

ima and minima. Dotted lines show sections of c connecting these chains with each other or the background ideal field. (a) and (b) The same N profile with two

different choices for c. (c) A choice for c in a more complex field. (d) A choice for c in a degenerate N field with a circular maxima (pink dashed line).
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variation of N along c as a function of the arc length (l). The

positions of the extrema are shown with “O’s” and the saddle

points with “X’s,” whilst the direction of flux transfer across

c between them is indicated by “Li” or “Ri,” where i 2 ½1; 4�.
At some later time (t ¼ t1 þ Dt), the differing field evo-

lutions on either side of the multiple non-ideal regions forms

a chain of flux tubes with cross sectional areas of SL;iðtÞ or

SR;iðtÞ associated with Li and Ri, respectively. Note that the

rotational nature of �2 means that the sum of each set of area

elements must be the same, i.e.,

SðtÞ ¼
X

i

ð
SL;i

dadb

( )
¼
X

i

ð
SR;i

dadb

( )
: (22)

Now, if we compare the area segments swept out by the

series of bounded flux regions discussed earlier (Fig. 5(c)) to

those generated by this continuous surface (Fig. 7(b)) we

find that they match SL;iðtÞ. This shows that the total rate of

reconnection can be interpreted as the rate of growth as t!
t1 of the collective area S(t) associated with flux swept in the

same direction (all to the left or all to the right) across c, i.e.,

dU
dt

� �
total

¼ lim
t!t1

d

dt
S tð Þ

� �
: (23)

A similar conclusion can also be drawn for other choices of c
connecting the chains of maxima and minima.

Similarly, the net rate can be interpreted as the rate of

growth as t! t1 of the difference in the areas associated

with flux swept in one (or the other) direction on one side of

Nmax, i.e.,

dU
dt

� �
net

¼ lim
t!t1

d

dt
Sd tð Þ

� �
; (24)

where

SdðtÞ ¼
X

j

ð
SL;j

dadb

( )
�
X

k

ð
SR;k

dadb

( )
; (25)

and j and k sum over the area segments formed along the

portion of c on one (or other) side of Nmax.

It should be noted that the existence of such a large scale

c surface is not necessary for the application of Eqs. (19) and

(21), and indeed if N is sufficiently complex or contains dis-

continuities such a surface may not be definable. However, we

have shown that at least when N is smooth and relatively sim-

ple the intuitive idea that the reconnection rate should measure

the rate at which flux is reconnected across some large scale

flux surface (akin to that of a true separatrix when reconnection

occurs between distinct topological regions) still holds.

C. Quantifying reconnection across and arbitrary
flux surface

Finally, we now consider the case where rather than

wanting to know the true rate of reconnection, one is inter-

ested in knowing the rate at which flux is reconnected past a

particular flux surface. An example of such a surface would

be one associated with an observed flare ribbon on the photo-

sphere. Another would be if the global topology is such that

field lines from a separatrix surface or surfaces pass through

the domain of interest and one wishes to know the rate of

flux transfer between two different topological domains.

Equations (19) and (21) are easily generalized to this

scenario. Consider some arbitrary flux surface spanning a

fragmented reconnection region with multiple peaks in N,

Fig. 8(a). Along the length of c, a number of local maxima

and minima of N occur. Between each of these local

extrema, flux is transferred in one or other direction depend-

ing upon the sign of the gradient of NðlÞ, Fig. 8(b). In anal-

ogy to Secs. V A and V B, the net rate at which flux is

transferred across this surface is given by

dU
dt

� �
net;c
¼ �Nmax;c ¼

ð
a;b

Ejjds

 !
max;c

; (26)

where the subscript c denotes measurement of each quantity

along the c line. Similarly, the total rate of flux transfer

across this particular flux surface is given by

dU
dt

� �
tot;c
¼ jNmax;cj þ

X
i

jNlocal max;i � Nadjacent min;ijc: (27)

Depending upon the path take by the c line as it crosses N in

flux coordinate space the value of ðdN=dtÞtot;c can be greater

or less than the value measured by Eq. (21). For instance, if c
is chosen so that it crosses N many times, then it would be

FIG. 7. Interpretation of reconnection rate in terms of a global flux surface.

(a) Dashed line shows a flux surface (c) which traverses all of the non-ideal

regions and includes the field lines at which the extrema and saddle points of

N are found. (b) Variation of N as a function of arc length l along the c line

in flux coordinate space. Li and Ri denote the direction of flux transfer across

c (where i 2 ½1; 4�) and the X’s and O’s show the positions of the saddle

points and extrema of N, respectively. (c) The evolution of the c surface ei-

ther side of the multiple non-ideal regions and (d) the associated swept out

areas of flux, SL;iðtÞ and SR;iðtÞ corresponding to the different sections of flux

transfer across c (Li and Ri).
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likely that ðdN=dtÞtot;c > ðdN=dtÞtot. However, by definition

the net rate of transfer will at most be the same as the net

rate of rotational connection change around the field line

with N ¼ Nmax, so that ðdN=dtÞnet;c � ðdN=dtÞnet.

VI. EXAMPLE: MULTIPLE RECONNECTION SITES IN A
STRAIGHT FIELD

To illustrate the theory, we now present two simple

kinematic models of an idealized fragmented current layer.

Starting with an initial magnetic field (at t¼ 0) of the form

B ¼ B0 ẑ; (28)

we assume some non-ideal process occurs to produce multi-

ple non-ideal regions such that

R ¼
Xn

i¼0

jie
�ðx�x0;iÞ2=l2x;i�ðy�y0;iÞ2=l2y;i�ðz�z0;iÞ2=l2z;i ẑ; (29)

where (lx;i; ly;i; lz;i), (x0;i; y0;i; z0;i), and ji control the dimen-

sions, position, and the strength, respectively, of each non-

ideal region. We choose three non-ideal regions (n¼ 3),

one larger central region and two smaller identical offset regions,

see Fig. 9. The chosen parameter values are given in Table I.

Depending upon the constraints placed upon the system, recon-

nection solutions describing purely time dependent, steady state

or a combination of both scenarios can be constructed. In what

follows we will consider the two extreme cases and verify in

each case the validity of Eqs. (19) and (21).

A. Time dependent reconnection

In this extreme, we impose that the sections of field lines

threading into and out of the non-ideal region are held fixed

such that the electric field vanishes on each side of the non-

ideal region. This is equivalent to assuming that the plasma

velocity v ¼ 0 everywhere. Ohm’s law then gives directly

that E ¼ R, i.e.,

E ¼
X3

i¼0

jie
�ðx�x0;iÞ2=l2x;i�ðy�y0;iÞ2=l2y;i�ðz�z0;iÞ2=l2z;i ẑ: (30)

Faraday’s law, @B=@t ¼ r� E then dictates that at later

times the magnetic field evolves such that

B ¼ B0 ẑ þ
X3

i¼0

r� Ai;fluxring; (31)

where i sums over each non-ideal region and

Ai;fluxring ¼ tjie
�ðx�x0;iÞ2=l2x;i�ðy�y0;iÞ2=l2y;i�ðz�z0;iÞ2=l2z;i ẑ: (32)

At t¼ 0, the magnetic field is initially straight, but as time

progresses each flux ring introduces an ever increasing twist

FIG. 8. Reconnection of flux across a specific flux surface. (a) Dashed line

depicts c in flux coordinate space. The contours depict N and the colors

denote the topological regions associated with �2. (b) N as a function of arc

length l along c. Li and Ri (where i 2 ½1; 3�) denote the direction of flux

transfer across c.

FIG. 9. Iso-surfaces at 10% of the maximum of jRj, showing the three local-

ized non-ideal regions at t¼ 0 in both models. In red, a selection of field

lines plotted from footpoints along ðx; zÞ ¼ ð0; 2Þ.

TABLE I. Model parameters.

i ji lx;i ly;i lz;i x0;i y0;i z0;i

1 �0.1 0.2 0.2 0.2 0.0 0.0 0.0

2 �0.1 0.1 0.1 0.1 0.0 0.35 �1.0

3 �0.1 0.1 0.1 0.1 0.0 �0.35 �1.0
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to the field. Note that in this simple example we are only

considering small periods in time, t. At t¼ 0, the straight

magnetic field can be described with the two Euler potentials

a ¼ x and b ¼ y. Since each non-ideal region is negligibly

strong in the vicinity of the others Nða; bÞ ¼ Nðx; yÞ can be

constructed from the superpositions of
Ðþ1
�1 Ejjdl ¼

Ðþ1
�1 Ezdz

across each region giving

N x; yð Þ ¼
ffiffiffi
p
p Xn

i¼0

ji

lz;i
e� x�x0;ið Þ2=l2x;i� y�y0;ið Þ2=l2y;i þ f x; yð Þ; (33)

where f(x, y) is an arbitrary function. In what follows we will

trace field lines from z ¼ þ2 to z¼ –2 so for convenience we

set Nðx; yÞ ¼ 0 at z¼þ1 to give

N x; yð Þ ¼ �
ffiffiffi
p
p Xn

i¼0

ji

lz;i
e� x�x0;ið Þ2=l2x;i� y�y0;ið Þ2=l2y;i : (34)

Figure 10(a) shows a contour plot of N at t¼ 0 mapped on to

the xy-plane. The profile contains three distinct peaks (O-

points) with two saddle points (X-points) between them. By

symmetry the X-points and O-points of �2 � �1 ¼ �2 lie

along x¼ 0, so we choose this as our c line.

The variation of the quasi-potential along this line Nðx
¼ 0; yÞ is shown in Fig. 10(b). The peaks occur at y ¼ a; c,

and e, with the saddle points located at y¼ b and d. Applying

Eq. (21) gives the total reconnection rate of this system as

dU
dt

� �
tot

¼ Nmax þ
X

i

jNlocal extrema;i � Nassociateds:p:;ij

¼ Nc þ jNa � Nbj þ jNe � Ndj
� 0:04711; (35)

with a net rate of flux transfer given by

dU
dt

� �
net

¼ Nmax � 0:03545: (36)

In this extreme, these values represent the total and net

rate, respectively, at which magnetic field is generated nor-

mal to the c surface collectively by the non-ideal regions.

We now go on to verify these values by comparing them

with values obtained numerically from a flux counting proce-

dure, explained below. A large number of field lines were

traced from a grid on z¼ 2 as far as z¼�2. At both posi-

tions, the magnetic field has reached its asymptotic value of

B ¼ B0 ẑ. This is done for the field at some time, t ¼ t1 and

some later time t ¼ t1 þ Dt. The amount of flux transfer

(DU) in this period is obtained by comparing the final posi-

tions (on z¼� 2) at both times and summing the number of

field lines to have crossed the c line, weighted by their area

element on the starting grid and the field strength perpendic-

ular to the surface of starting points, i.e.,

DU ¼
X

N

B0DxDy; (37)

where N is the number of field lines under consideration.

The rate of reconnection is then estimated as

dU
dt
� DU

Dt
: (38)

To obtain ðdU=dtÞtot, all field lines found to have crossed c
in Dt are counted and the value halved so as not to double

count the flux transfer (recall that the connection change is

circular and so will cross the c line twice). ðdU=dtÞnet is

approximated by counting only the net transfer across a half

segment of the c line.

The mapping of field lines on z¼�2 at t¼ 1, color

coded according to whether they start above or below c on

the other side of the non-ideal region (z¼ 2) is shown in Fig.

11(a). Figure 11(b) shows the regions within which field

lines have changed connectivity compared with the mapping

at t¼ 0. White areas depict where flux has reconnected

across c from x< 0 to x> 0, and black regions where flux

has been reconnected in the other direction. Grey shows

FIG. 10. (a) Contours of Nðx; yÞ mapped on to flux coordinate space. (b) N
along the line x¼ 0, passing through the five critical points.

FIG. 11. (a) Connectivity map at t¼ 1 for the time dependent model. Black

show field lines with starting points below x¼ 0 and white those with start-

ing points above. (b) Connectivity plot of the field lines to have changed

connection between t¼ 0 and t¼ 1. Black regions have moved from x< 0 to

x> 0, white have moved from x> 0 to x< 0 and grey regions have stayed

the same.
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regions where field lines have not crossed c. Figure 12 shows

a 3D visualization of the field at t¼ 1, where the iso-

contours depict the shape and position of each non-ideal

region. Applying the flux counting procedure we obtain that

dU
dt

� �
tot

� 0:04857;
dU
dt

� �
net

� 0:03607 (39)

for a grid of 4002 starting points. Aside from a small varia-

tion due to the discrete nature of the method, these results

agree closely with the value obtained by applying Eqs. (21)

and (19).

Finally, consider now the instantaneous reconnection

rate at the later time (t¼ 1). At t¼ 1, each non-ideal region

now adds a non-zero twist to the field line mapping. The

overlapping nature of the mappings distorts the shape of N
and therefore the positions of the extrema and saddle points,

Fig. 13. As a result the conceptual flux surface c against

which reconnection rate is being measured by Eq. (21)

moves to pass through these points at this later time.

B. Steady sate reconnection

For comparison, we now consider the opposite extreme

of steady state reconnection for the same initial magnetic

field and non-ideal term (R). In steady state, the electric field

can be expressed in the form of a potential

E ¼ �r/ ¼ �v� Bþ R; (40)

giving that

/ ¼ �
ð

R � B=jBjdsþ /0

¼ �
ð

Ejjdsþ /0

¼ Nþ /0: (41)

For illustration we set /0 ¼ 0 which removes background

ideal motions. Thus,

E ¼ �rN: (42)

This electric field differs from R, with a non-zero part out-

side of the non-ideal region which induces a perpendicular

plasma flow of the form

v? ¼
E� B

B2
: (43)

The magnetic field in this case remains straight for all time,

and the quasi-potential is simply the same as the time

dependent case at t¼ 0, i.e.,

N x; yð Þ ¼
ffiffiffi
p
p X3

i¼0

ji

lz;i
e� x�x0;ið Þ2=l2x;i� y�y0;ið Þ2=l2y;i : (44)

Figure 14 shows the induced plasma flows on one side

of the reconnection regions when the electric field is

assumed to be zero at z¼ 2. The generated flux transporting

flows follow the contours of the quasi-potential, producing

three overlapping vortices. As the contours of N now form

the stream lines of the perpendicular plasma flow, the zeros

FIG. 12. Iso-surfaces at 10% of the maximum of jRj, showing the three

localized non-ideal regions at t¼ 1 in the time dependent model. In red, a

selection of field lines plotted from footpoints along ðx; zÞ ¼ ð0; 2Þ, demon-

strating the injection of twist into the field and the overlap of the field line

mappings.

FIG. 13. The quasi-potential calculated numerically at t¼ 1.
FIG. 14. (a) Nðx; yÞ in the steady state example. (b) The induced perpendicular

plasma flow v? at z¼�2.
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in the flow pattern are co-located with the peaks and saddle

points in N, Fig. 15. As the quasi-potential N is the same as

the time dependent scenario at t¼ 0, the two measures of

reconnection rate are then also

dU
dt

� �
tot

� 0:04711 &
dU
dt

� �
net

� 0:03545; (45)

where c can be chosen to lie along x¼ 0. In this extreme,

these quantities are measures of the total and net rate at

which flux is swept past x¼ 0 by the induced plasma flow on

one side of the collective non-ideal regions, i.e.,

dU
dt

� �
tot

¼
ð1
�1

B0jv? x ¼ 0; z ¼ �2ð Þjþ=� dy; (46)

dU
dt

� �
net

¼
ð1

0

B0v? x ¼ 0; z ¼ �2ð Þ dy; (47)

where j::jþ=� denotes integration over either the positive or

negative values only. An approximate expression for this

flux transporting flow evaluated on c (x¼ 0) at z¼�2 is

v?;c ¼ vx x ¼ 0; z ¼ �2ð Þ ¼ EyBz=B2 � � @N
@y

B0=B2
0; (48)

when substituted into Eq. (46) and integrated over the

regions of negative velocity leads to

dU
dt

� �
tot

¼ Ne � Ndð Þ þ Nc � Nbð Þ þ Na � 0ð Þ;

¼ Nc þ jNa � Nbj þ jNe � Ndj: (49)

Note that integrating over the positive value gives the same

result. Substituting the above expression for v?;c into Eq.

(47) then also gives that

dU
dt

� �
net

¼ Nc: (50)

Equations (49) and (50) are simply Eqs. (21) and (19)

applied to this particular N profile.

Thus, we have verified the two rates of reconnection for

our idealized fragmented reconnection region in each of the

two extreme cases of steady state and purely time dependent

reconnection and by extension the continuum of cases in-

between.

VII. DISCUSSION AND CONCLUSIONS

The aim of this paper was to extend the theory of gen-

eral magnetic reconnection to situations with fragmented

current layers within a localized volume. We considered the

manner in which new connections may be formed, derived

expressions for the rate at which this occurs and verified

these expressions with two simple examples.

In terms of facilitating the formation of new connec-

tions, we showed that in the extreme of steady state recon-

nection a large scale rotational non-ideal flow with internal

vortices is produced, whilst purely time dependent reconnec-

tion leads to spontaneously braided magnetic fields.

However, it should be emphasized that the reverse is also

true. That is, the existence of non-ideal regions is guaranteed

by the right evolution of the magnetic field (given the neces-

sary non-ideal plasma conditions). In particular, if a mag-

netic field is initially braided with the field lines entering and

leaving the volume held fixed, then multiple current layers

must form to remove this braiding. This scenario is readily

observed by numerical experiments examining the non-ideal

relaxation of braided magnetic fields (e.g., Refs. 10 and 29).

By considering the closed paths along which these new

connections formed we also showed that when current layers

are fragmented two rates of reconnection can be defined which

describe the process. ðdU=dtÞtot which measures the true rate

at which new connections are formed collectively by the mul-

tiple non-ideal regions and a second, ðdU=dtÞnet measuring the

net rate at which changes in the global field occurs. When

applied to a single reconnection region both rates are equal.

We chose to define ðdU=dtÞtot such that it measures the

total rate at which flux is locally and globally cycled when

viewed in flux coordinate space. This requires evaluating the

quasi-potential at the saddle points of N as well as the

extrema. We chose this rather than a simple sum over each

extrema as summing over only the extrema overestimates

the rate flux is cycled (although if each non-ideal region

has little overlap this may give a close approximation, e.g.,

Ref. 10). This occurs as each extrema taken on its own meas-

ures the net rate of transfer of flux between itself and the

background ideal field. Therefore, summing over all extrema

double counts the flux being cycled around outer loops, such

as those depicted in orange and yellow in Fig. 5. By involv-

ing the quasi-potential measured at the saddle points, this

double counting is avoided.

It is also worth emphasizing that our total reconnection

rate ðdU=dtÞtot does not measure the sum of the reconnection

rates of each individual reconnection region within the volume.

FIG. 15. (a) Velocity perpendicular to the c line (x¼ 0) in the steady state

example. (b) Variation of N along the c line. Note that the zeros in the veloc-

ity field correspond to peaks or troughs of N.
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The only way that this could be quantified would be to con-

sider the local quasi-potential drop across each non-ideal

region in turn. However, each region would have to be sur-

rounded by ideal magnetic field for this to be meaningful. In

fragmented current layers, this is rarely the case as different

current sheets partially overlap when merging or breaking

apart. Considering the collective behavior as we have done

here is the only way to properly quantify such a system.

Given that we have introduced two different rates to

describe this collective behavior, which should be used to

characterise a given reconnection process? It depends upon

what is most of interest for the problem at hand. For

instance, if one is considering the scaling of energy release

compared with reconnection rate then the total rate is the bet-

ter choice. It would also be the more relevant choice in situa-

tions where the rate at which flux is swept up by a

fragmented reconnection region is of interest, as is thought

to be related to photospheric brightening in solar flares (e.g.,

Refs. 25 and 30). However, the net rate may be more useful

when the multiple reconnection regions are fluctuating and

transient (as occurs during an increasing turbulent evolution

of the magnetic field) and there are some simple large scale

symmetries against which flux transfer is wished to be know

(e.g., Refs. 31 and 32).

Ultimately, the non-ideal physics associated with the

plasma, any gradients in the mapping of the magnetic field

and the way in which excess magnetic energy is built up will

dictate where non-ideal regions form and if they subse-

quently fragment. The present analysis serves as a way of

interpreting how the subsequent reconnection proceeds and

how best to quantify it.
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