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Models: The Blueprints for Laws 

Nancy Cartwrighttl 
London School of Economics and Political Science 

In this paper the claim that laws of nature are to be understood as claims about what 
necessarily or reliably happens is disputed. Laws can characterize what happens in a 
reliable way, but they do not do this easily. We do not have laws for everything occur- 
ring in the world, but only for those situations where what happens in nature is rep- 
resented by a model: models are blueprints for nomological machines, which in turn 
give rise to laws. An example from economics shows, in particular, how we use-and 
how we need to use-models to get probabilistic laws. 

1. Three Theses About Models And Laws. Margaret Morrison has 
taught us to think of models as mediators. They mediate between our 
various parcels of general and specific scientific knowledge and the 
world that that knowledge is about. Here I want to explain one of the 
principal mediating roles that models serve. Models show us, I shall 
argue, where laws of nature come from and how we can produce new 
ones. This way of putting the claim is tied to the standard, so-called 
'empiricist', account of what laws are, the account that tells us that 
laws describe what regularly and reliably happens. If that is what we 
mean by a 'law' in science, then laws are few and far between-and 
that reflects the fact that what they are supposed to represent is scarce. 
It takes very special arrangements, properly shielded, repeatedly started 
up, and running without hitch, to give rise to a law; it takes what I call 
a 'nomological machine'. My claim then is that models serve as blue- 
prints for nomological machines. 

There are three separate theses involved in this claim. The first is that 
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the general scientific knowledge that we use to construct models is not 
knowledge of laws. This is a familiar thesis from me. I began my career 
by arguing that the laws of physics lie (Cartwright 1983). That was on 
the assumption that what we call laws in physics really are laws in the 
sense I grew up with: claims about what necessarily or reliably happens. 
Ever since then I have been looking for an alternative philosophical ac- 
count of laws closer to the way law claims are expressed and more re- 
sponsive to the way they are used, an account that would give them a 
more reputable status. I shall not pursue this first thesis now. 

The second thesis is my chief focus here. It is hard to get a law in 
nature. One of the principal functions that models serve is to represent 
those very special circumstances where laws arise. This is not a new 
thesis either. I have been building up the case for it already in a number 
of places (Cartwright 1994, 1995, 1996, 1997). But the focus of my 
discussion so far has been deterministic and causal laws. Here I shall 
try to show how we use-and how we need to use-models to get 
probabilistic laws. 

The third thesis is that there are no laws to be represented outside 
the highly structured arrangements that are well characterized as 
nomological machines. I shall lay out this thesis briefly in ?3 and ?4 in 
order to highlight how important models are. Models matter because 
they represent for us just those peculiar situations where nature is 
reliable. 

2. Where Probabilities Come From. Ian Hacking, in Logic of Statistical 
Inference, taught that probabilities are characterized relative to chance 
set-ups and do not make sense without them. My discussion is an elab- 
oration of his claim. A chance set-up is a nomological machine for 
probabilistic laws, and our description of it is a model that works in 
the same way as a model for deterministic laws (like the Copernican 
model of the planetary system that gives rise to Kepler's laws). A sit- 
uation must be like the model both positively and negatively-it must 
have all the relevant characteristics featured in the model and it must 
have no significant interventions to prevent it operating as envisaged 
before we can expect repeated trials to give rise to events appropriately 
described by the corresponding probability. 

2.1. An Example from Wesley Salmon. I begin with an example fa- 
miliar to philosophers of science: Wesley Salmon's argument that 
causes can decrease as well as increase the probability of their effects 
(Salmon 1971). Salmon considered two causes of a given effect, one 
highly effective, the other much less so. When the highly effective cause 
is present, he imagined, the less effective one is absent, and vice versa. 
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Thus the probability of the effect goes down when the less effective 
cause is introduced even though it is undoubtedly the cause of the effect 
in question. That is the story in outline, but exactly what must be the 
case to guarantee that the probabilities are a) well defined and b) that 
they fall within appropriate ranges to ensure the desired inequality 
(Prob (effect/less effective cause) < Prob (effect/- less effective cause))? 

For that we need an arena-a closed container, then a mechanism 
for ensuring both that there is a fixed joint probability (or range of 
fixed probabilities with a fixed probability for mixing) for the presence 
and absence of the two kinds of causes in the container, and that under 
these probabilities there is sufficient anticorrelation, given the levels of 
effectiveness, to guarantee the decrease in probability. There must be 
no other source of the effect in the container or introduced with either 
of the elements. There must be nothing present in correlation with 
either of the causes that annihilates the effect as it is produced. Etc. 
Etc. Figure 1 is a model of the kind of arrangement that is required: a 
model for a chance set-up or a probability-generating machine. Salmon 
himself used radioactive materials as causes, the effect being the pres- 
ence or absence of a decay product. (Figure 1.) My experiment is de- 
signed by Towfic Shomar, who chose different causes to make the de- 
sign simple.' The point is that without an arrangement like the one 
modeled (or some other very specific arrangement of appropriate de- 
sign) there are no probabilities to be had; with a sloppy design, or no 
design at all, Salmon's claims cannot be exemplified. 

2.2. How Probability Theory Attaches to the World. Turning from 
this specific example, we can ask, "In general how do probabilities 
attach to the world?" The answer is via models, just as on my account 
the laws of quantum mechanics apply to concrete situations, and on 
Ronald Giere's (1988), those of classical mechanics. Assigning a prob- 
ability to a situation is like assigning a force function or a Hamiltonian. 
Set distributions are associated with set descriptions. The distributions 
listed in the table of contents of Harry E. McAllister's (1975) Elements 
of Business and Economic Statistics, shown in Figure 2, are typical. 
(Compare, for instance, Kyburg 1969, Mulholland and Jones 1968, or 
Robinson 1985.) Further familiar distributions appear later: the t-dis- 
tribution, the Chi-square distribution and the F-distribution. 

1. Focusing on the need for a design like Shomar's for Salmon's original choice of 
radioactive materials shows how odd the so-called quantum probabilities are. They are 
not real probabilities for events that happen, or happen on 'measurement', for mea- 
surement itself is a chance set-up and the probabilities to be expected will depend jointly 
on the quantum state and the structure of the set-up. 
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alpha 

C 

Alpha - Source 

Figure 1A Figure 1B 

Figure 1C 
Alpha - Source 

Figure 1. Consider a radioactive source with a half life such that an alpha particle is on 
average radiated once every 15 minutes. The source is installed in a cylindrical container 
opened to a spherical chamber containing a proton. If the radioactive material radiates an 
alpha particle, the expulsion forces between the alpha particle and the proton push the proton 
out into the cylindrical box at the other side of the source (see Figure 1A). If the alpha 
particle is influenced by magnetic field, it will travel through the path toward exit C (as in 
Figure 1B). Assume that a magnetic field going into the page is turned on in the chamber 
for 15 minutes and is cut off for 15 minutes. At the moment the magnetic field is off it will 
cause the upper cylinder to become positivily charged and that will force the proton back 
into the chamber (as in Figure 1C). 

We can assume that the positive charge at the upper cylinder will influence the system 
for no more than half a minute, allowing the proton influenced by the alpha particle to enter. 

So, we have the following probabilities: 
Let c = df the presence of an alpha particle, 
e = df the proton is forced into the top cylinder, 
m = df magnetic field in the chamber. 
Then we have 
P (e/c) > P (e/-c) 
P (e/c) is very high (- 0.9) 
P (c &m) = 0 
P (e/m) is very low (- 0.1) 
So we can conclude that 
P (e/m) < P (e/ - m), 
because P (e/ - m) = P (e/c) even though m causes e. 
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Ch. 6 Probability Distributions 
6.1 Introduction 
6.2 The Hypergeometric Probability Distributions 
6.3 The Binomial Probability Distributions 
6.4 The Poisson Probability Distributions 

Parameters of the Poisson 
Use of the Poisson 
Expected Gain of the Poisson Probability Distributions 

6.5 The Normal Probability Distributions 
Converting other Normal Distributions to the Statistical Normal 
Distribution 
Applications of Converted Normal Distributions 

6.6 The Exponential Poisson Distributions 
6.7 Approximation with Substitute Distributions 

The Binomial as an Approximation to the Hypergeometric 
The Poisson as an Approximation to the Hypergeometric and the 
Binomial 
The Normal Curve Approximation to the Hypergeometric and the 
Binomial 
An Overall Comparison of Approximation Results 

Figure 2. Harry E. McAllister, Elements of Business and Economic Statistics. Wiley, NY: 
1975. 

As in physics, where the description of a situation that appears in 
the mediating model must be specially prepared before the situation 
can be fitted to the theory (e.g., once you call something a harmonic 
oscillator, then mechanics can get a grip on it), so too in probability 
theory. As we know, the description of events as independent and as 
equally likely or of samples as random are key. We can illustrate with 
the simple binomial distribution, which McAllister describes this way: 
"A large class of problems applicable to situations in business and 
economics deals with events that can be classified according to two 
possible outcomes ... If, in addition to having two possible outcomes, 
the outcome of one particular trial is independent of other trials and 
if the probability ... is constant for other trials, the binomial proba- 
bility distribution can be applied" (McAllister 1975, 111). 

Again as in physics, in learning probability theory we are taught a 
handful of typical or paradigmatic examples to which, ceterisparibus, 
the prepared descriptions of the model may be applied (e.g., vibrating 
strings, pendula, and the modes of electromagnetic fields may all be 
treated as harmonic oscillators), so probability theory too has its stock 
examples that show what kinds of more concrete descriptions are likely 
to support the theoretical descriptions that must be satisfied before the 
theory can apply. "Uses of the Poisson distribution," McAllister in- 
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forms us, ". .. include the broad area of theory involving random ar- 
rivals such as customers at a drive-in bank, customers at a check-out 
counter and telephone calls coming into a particular switchboard" 
(1975, 120). Mulholland and Jones repeat the example of telephone 
calls in a given period, adding particle emission and the number of 
minute particles in one milliliter of fluid, as well as a caution: "But 
there must be a random distribution. If the objects have a tendency to 
cluster, e.g., larvae eggs, then the Poisson distribution is not applica- 
ble" (1968, 167). 

The hypergeometric distribution tends to have three kinds of illus- 
trations: defective items (especially in industrial quality control), cards 
(especially bridge hands), and fish sampling (without replacement of 
course). And so forth. In each case a given distribution will apply only 
to situations that have certain very specific-and, generally, highly 
theoretical-features. Because the requisite features are so theoretical, 
it is best to supply whatever advice possible about what kinds of situ- 
ations are likely to possess these features. But these are just rough 
indications and it is the features themselves that matter: situations that 
have them-and have no further features that foil them-should give 
rise to the corresponding probability; and without them, we get no 
probabilities at all. 

2.3. An Economics Example. So far we have looked at the chance 
set-ups with well-known arrangements of characteristics that feature in 
probability theory and the corresponding distributions that they give 
rise to. I would like now to look at an example from an empirical 
science, in particular economics. Most economic models are geared to 
produce totally regular behavior, represented, on the standard account, 
by deterministic laws. My example here is of a model designed to guar- 
antee that a probabilistic law obtains. 

The paper we will look at is titled "Loss of Skill during Unemploy- 
ment and the Persistence of Unemployment Shocks" by Christopher 
Pissarides (1992). I choose it because, out of a series of employment 
search models in which the number of jobs available depends on work- 
ers' skills and search intensities, Pissarides' is the first to derive results 
of the kind I shall describe about the probabilities of unemployment 
in a simple way. The idea investigated in the paper is that loss of skill 
during unemployment leads to less job creation by employers which 
leads to continuing unemployment. The method is to produce a model 
in which 

ft = the probability of a worker getting a job at period t 
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(i) depends on the probability of getting a job at the previous 
period (ft-1) if there is skill loss during unemployment-i.e., 
shows persistence; and 

(ii) does not depend on f/t- if not. 

The model supposes that there is such a probability and puts a num- 
ber of constraints on it in order to derive a further constraint on its 
dynamics: 

(i) aft/Oft_1 > O, given skill loss 
(ii) dft/Oft_1 = 0, given no loss of skill. 

The point for us is to notice how finely tuned the details of the model 
plus the constraints on the probability must be in order to fix even a 
well-defined constraint on the dynamics of ft, let alone ft itself. 

The model is for two overlapping generations each in the job market 
for two periods only: workers come in generations, and jobs are avail- 
able for one period only so that at the end of each period every worker 
is, at least for the moment, unemployed. 'Short-term unemployed' re- 
fers to 'young' workers just entering the job market at a given time 
with skills acquired through training plus those employed, and thus 
practising their skills, in the previous period; 'long-term unemployed' 
refers to those from the older generation who were not employed in 
the previous period. The probability f, of a worker getting a job in the 
between-period search depends critically on x, the number of times a 
job and worker meet and are matched so that a hire would take place 
if the job and the worker were both available. By assumption, x at t is 
a determinate function of the number of jobs available at t (Jr) and the 
number of workers available at t (2L). Wages in the model are deter- 
mined by a static Nash bargain which in the situation dictates that the 
worker and employer share the output equally and guarantees that all 
matches of available workers and jobs lead to hiring. The central fea- 
tures of the first model are listed in Figure 3. Variations on the basic 
model that relax the assumptions that all workers search in the same 
way and thus have the same probability for a job match are developed 
in later sections of the paper. 

The details of the argument that matter to us can be summarized in 
three steps. (I follow Pissarides' numbering of formulas, but use primes 
on a number to indicate formulas not in the text but that follow in 
logical sequence the numbered formula.) 

A. A firm's expected profit, n,, from opening a job at t is 
(4) t, = [1+ ft-, + (1 - ft-)y] (L ft/Jt). 
where y = 1 represents no skill loss, y < 1 the opposite. 

S298 

http://www.jstor.org/page/info/about/policies/terms.jsp


MODELS: THE BLUEPRINTS FOR LAWS 

Loss-of-skill during unemployment: Model 1 

1. Discrete time. 
2. Two overlapping generations. 

a. Each of fixed size, L. 
b. Each generation is in the job market exactly two periods. 

3. Each job lasts one period only and must be refilled at the beginning of 
every period. 

4. The number of jobs, J, available at beginning of period t is 
endogenous. 

5. Workers in each of their two life periods are either employed or 
unemployed. 

6. a. Output for young workers and old, previously employed workers 
= 2. 

b. Output for old, previously unemployed workers = 2y, O-0 cy 1. 
(y< 1 represents skill loss during unemployment.) 

7. Unemployed workers have 0 output, no utility, no income. (This is 
relevant to calculating wages and profits.) 

8. In each period all workers and some jobs are available for matching. 
9. Each job must be matched at the beginning of a period to be filled in 

that period. 
10. In each period workers and jobs meet at most one partner. 
11. The number of matches between a job and a worker is designated by 

x, where 
a. x is at least twice differentiable. 
b. dx > 0, d2x < 0. 
c. x is homogeneous of degree 1. 
d. x (0,2L) = x(Jt, 0) = 0. 
e. x (Jt,2L) < max (Jt,2L). 

12. There is a probability that a worker meets a job at the beginning of 
period t, designated by f. 
a. ft does not depend on what a worker does nor on whether the 

worker is employed or unemployed. 
b. ft is a function only of Jt and L. 

13. There is a probability that a job meets a worker at the beginning of 
period t. 
a. This probability is independent of what jobs do. 
b. This probability is a function only of Jt and L. 

14. The cost of opening a job and securing the output described in 6 = 
1/k (whether the job is filled or not). 

15. Wages are determined by a Nash bargain. 
16. Workers and employers optimize expected utility. 

Figure 3. 

It is crucial that ft-_ appears in this formula. It enters because the 
expected profit depends on the probability of a job meeting a short- 
and a long-term unemployed worker, which in turn depends on the 
number of long-term unemployed workers available and hence on the 
probability of employment at t - 1. 
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B. The number of jobs will adjust so that no firm can make a 
profit by opening one more, which, given that the cost of open- 
ing a job is l/k, leads to 
(5') , = 1lk 
and thus, using (4) to 
(7) J = Lk [l+ y+(l - y) ft-] f. 

C. As a part of the previous argument it also follows that Jt > x 
(Jt, 2L). In addition 

ft = min {x (Jt, 2L), Jt, 2L}/2L 
since the number of hires cannot be greater than the number 
of jobs or workers available nor the number of meetings that 
take place. Coupling these with the assumption that the ho- 
mogeneous function x is of degree 1 gives 
(8) ft = min {x (J/2L, 1), 1}. 
When f, = 1-full employment-there are no problems. So 
consider 
(8') ft = x (Jt/2L, 1). 
To do so, substitute (7) into (8') to get 
(9') ft = x [(k/2){1 + y + (1 - y) ft _}ft, 1] = x (0,1) 
letting(D = df(k/2){1 + y + (1 - y) ft-} ft. 

We are now in a position to draw the two sought-for conclusions, 
beginning with the second: 

(ii) The case where there is no skill loss during unemployment is 
represented by y = 1. (Short- and long-term workers are equally 
productive. See Assumption 6, Figure 3.) Then 

ft = x(kft, 1), 

from which we see that ft does not depend on ft- . Hence with no skill 
loss there is no unemployment persistence in this model. 

(i) When there is skill loss, y < 1. Differentiating (9') with respect 
to ft- in this case gives 

(11) [1 - {dx/dI} {k/2} {1 +y + (1 -y)ft-i}] 
[Oftlaft -] = (k/2)(1 - y)ft (dx/d<D). 

Then by the homogeneity of x (a(), 

Oftlaft_ 0o. 

"Thus", as Pissarides concludes, "the dynamics of ftare characterized 
by persistence" (1992, 1377). 
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The trick in the derivation is to get f, to be a determinate function 
(via x) of a product of f, and f_ .- x itself is a function of Jt and L. In 
this model the product form in x is achieved by getting Jt, which is itself 
determined by profits to be earned from offering a job, to depend on 
the product of ft and f,-,. This comes about because Jt depends on the 
probability of a job being filled by a short- (or long-) term worker, 
which in turn is equal to the probability of a worker being short- (or 
long-) term unemployed-into which f t-_ enters-times the probability 
of a short- or long-term worker getting a job, which is indifferently ft 
for both. 

The derivation of persistence, where it occurs, in the rest of the mod- 
els in the paper also depends on the fact that the relevant probability 
analogous to ftin Model 1 is, through the matching function x, a func- 
tion of the product of ft ft-1. The second model looks to see what 
happens when the number of jobs is fixed but effort of search varies 
between the long- and short-term unemployed. In this case the product 
enters not into the constant factor J of which x is a function, but rather 
into the second factor, which is not now workers available but units of 
search effort provided by workers seeking employment. The resulting 
persistence here is negative (6f/t6ft_- < 0) which is taken to reflect the 
process in which low employment increases the numbers of long-term 
unemployed and thereby lowers the search units supplied, which in turn 
raises the probability of hire per worker which leads to higher search 
intensity and thus to more hires. 

In the third model, where jobs are again endogenous but firms expect 
the same profit from the short- and the long-term unemployed, the 
product appears in the term St for search units available and through 
that in Jt = kftSt. Since ft here is x (J, St)/St for x homogeneous of 
degree 1, it disappears again. The last model, where jobs are endoge- 
nous and profits differ, is more complicated. The product appears in 
St and also in Jt, which is no longer a multiple of St, so the product 
ends up in both the numerator and denominator of x. Thus, though 
the dynamics of ft are constrained to exhibit persistence, the nature of 
that persistence is not determinate and could differ depending on what 
further conditions are added to the model to fix the characteristics of 
the matching function, x, which is simply hypothesized to exist. 

3. Lessons of the Economics Model. I repeat the lesson I wish to draw 
from looking at Pissarides' search model. Turn again to Figure 3. It 
takes a lot of assumptions to define this model and, as we have seen, 
the exact arrangement matters if consequences are to be fixed about 
whether there is persistence in the dynamics of unemployment proba- 
bility or not; those arrangements are clearly not enough to fix the exact 
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nature of the persistence, let alone the full probability itself. In Model 
1, where job openings are endogenous, the dependence of jobs on work- 
ers' histories must be engineered just so, so that J, will be a function of 
the product ft ft-1. In Model 2, where the product could not possibly 
enter through Jt, the facts about how workers search must be aligned 
just right to get the product into St. And so forth. 

My claim is that it takes hyperfine-tuning like this to get a proba- 
bility. Once we review how probabilities are associated with very 
special kinds of models before they are linked to the world, both in 
probability theory itself and in empirical theories like physics and eco- 
nomics, we will no longer be tempted to suppose that just any situation 
can be described by some probability distribution or other. It takes a 
very special kind of situation with the arrangements set just right-and 
not interfered with-before a probabilistic law can arise. 

As I noted at the beginning, what is special about these situations 
can be pointed to by labeling them nomological machines: they are sit- 
uations with a fixed arrangement of parts where the abstract notions 
of operation, repetition, and interference have concrete realizations ap- 
propriate to a particular law and where, should they operate repeatedly 
without interference, the outcome produced would accord with that 
law. (I discuss nomological machines in more detail in "Ceteris Paribus 
Laws and Socio-Economic Machines" (Cartwright 1995).) 

4. Conclusion. I should like to conclude by pointing out a cherished 
philosophical thesis that the toy physics model we constructed follow- 
ing Wesley Salmon, the catalogue of models from probability theory, 
and economics models like the loss-of-skills model I have just described 
all argue against. The thesis is well expressed by John Stuart Mill: 

The universe, so far as known to us, is so constituted that whatever 
is true in any one case is true in all cases of a certain description: 
the only difficulty is to find what description. (1843, vol. 1, 337) 

Mill's claim supposes that laws are a dime a dozen: in any situation 
whatever happens has some description and some law that covers it 
under that description. But the way in which laws are attached to the 
world in highly articulated sciences like physics, probability theory, and 
economics defies this claim. Here I have argued the case with respect 
to probabilistic laws. Probabilities characterize the outcomes of chance 
set-ups and chance set-ups are very special kinds of things. What is 
true of probabilistic laws is analogously true of laws in general: it takes 
the very special circumstances of a nomological machine before what 
is true in one case will reliably happen in other cases of some matching 
description. 
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