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Abstract  The quantitative analysis of morphologic characteristics of bedrock fault surfaces 10 

may be a useful approach to study faulting history and identify paleo-earthquakes. It is an 11 

effective complement to trenching techniques, especially to identify paleo-earthquakes in a 12 

bedrock area where trenching technique cannot be applied. In this paper, we calculate the 2D 13 

fractal dimension of three bedrock fault surfaces on the Huoshan piedmont fault in the Shanxi 14 

Graben, China using the isotropic empirical variogram. We show that the fractal dimension 15 

varies systematically with height above the base of the fault surface exposures, indicating a 16 

segmentation of the fault surface morphology. We interpret this segmentation as being due to 17 

different exposure duration of parallel fault surface bands, caused by periodical earthquakes, 18 

and discontinuous weathering. We take the average of fractal dimensions of each band as a 19 

characteristic value to describe its surface morphology, which can be used to estimate the 20 

exposure duration of the fault surface band and then the occurrence time of the earthquake that 21 

exposed the band. Combined with previous trenching results, we fit an empirical relationship 22 

between the exposure duration and the morphological characteristic value on the fault: D = 23 

0.049 T + 2.246. The average width of those fault surface bands can also be regarded as an 24 

approximate vertical coseismic displacement of characteristic earthquake similar to the 25 

Hongdong M8 earthquake of 1303. Based on the segmentation of quantitative morphology of 26 

the three fault surfaces on the Huoshan piedmont fault, we identify three earthquake events. 27 

The coseismic vertical displacement of the characteristic earthquake on the Huoshan piedmont 28 

fault is estimated to be 3-4 m, the average width of these fault surface bands. Gaps with a width 29 

of 0.1-0.3 m between two adjacent bands, in which the fractal value increases gradually with 30 

fault surface height, are inferred to be caused by weathering between two earthquakes or 31 

interseismic slip on the fault. 32 

Keywords: Morphology of bedrock fault surface, Paleo-earthquake, Isotropic empirical 33 

variogram, Huoshan piedmont fault 34 
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1 Introduction 36 

Seismic risk evaluation of active fault zones is mainly based on the seismic records, 37 

including both historical and pre-historical earthquakes (Wallace, 1981), a reasonable seismic 38 

risk evaluation then mainly relies on the integrity of seismic records (Parsons et al., 2000). Due 39 

to the lack of sufficiently long historical or instrumental seismic data sets, paleoseismic 40 

investigations aimed to identify paleo-earthquake preserved in the geological and geomorphic 41 

records is necessary to prolong seismic records (McCalpin, 2009). Trenching is an important 42 

technique widely applied to the paleoseismology and has achieved outstanding results (e.g. 43 

Young et al., 2002; Ran et al., 2010；Galli et al., 2008), as can often identify past major 44 

earthquakes that have ruptured the ground surface at a particular site. However, this method has 45 

some weaknesses; for example, interpretation of offset strata and fault-rupture related features is 46 

sometimes debatable, and suitable offset materials that can be dated are required to bracket the 47 

event times, usually leaving large uncertainties (e.g. Hilley and Young, 2008). Moreover, it can be 48 

applied to a fault in bedrock site only in selected cases (Galli and Bosi, 2003; Galli et al., 2006; 49 

2012; Galli and Peronace, 2014). Therefore, it is necessary to seek some other techniques to 50 

study paleoseismology on faults in bedrock.  51 

Bedrock fault scarps may be interpreted as the cumulative result of repeated surface 52 

faulting in many active tectonic terrains, and potentially preserve a valuable paleoseismic record 53 

(Mayer 1984; Stewart, 1993). In the last decade, bedrock fault scarps have become an attractive 54 

complement for paleoseismological studies because the exposure duration of a bedrock fault 55 

scarp can be inferred by methods based on the accumulation of cosmogenic nuclides (Zreda 56 

and Noller, 1998; Benedetti et al., 2000; Mitchell et al., 2001). Nevertheless, if one want to infer 57 

both the age and slip of the last few major earthquakes on the fault using the cosmogenic 58 

nuclides technique to a bedrock fault surface, hundreds of samples should be taken 59 

continuously on the bedrock fault surface (e.g. in Schlagenhauf A., 2009). This is a very 60 
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expensive work both in manpower and material. 61 

Geologists have noted long before that the features of the bedrock surfaces gradually 62 

changed in texture or roughness with exposure duration due to external influences and several 63 

geomorphic process (i.e. weathering, karstification, bioerosin) when the fault surface are 64 

exposed. As a result, abrupt changes in the features of fault surfaces may appear as parallel 65 

bands on the same fault surface exposed in different times. Sharp weathering contrast on fault 66 

surface has been used to delimit recent exposure increments through visual observation in field 67 

(e.g. Wallace 1984, Stewart, 1993), or through photographic study (Giaccio et al., 2002), but 68 

without conclusive results. Recently, terrestrial laser scanning (t-LiDAR) has been widely 69 

applied to acquire accurate morphologic features of bedrock fault surfaces in neotectonic and 70 

geological earthquake studies (e.g. Sagy et al., 2007; Candela et al., 2009; Brodsky et al, 2011; 71 

Renard et al., 2012). Few use of t-LiDAR has been undertaken to characterize the weathered 72 

fault surface and identify sequentially exposed bands on fault surfaces (e.g. Wei et al., 2013). 73 

Only recently, through t-LiDAR data Wiatr et al. (2015) suggests evidences for repeated faulting 74 

of the Pisia fault, Greece, with 30-60 cm of displacement at one site based on the fact that the 75 

roughness increases with scarp height on naturally exhumed bedrock fault scarps.  76 

Previous studies of bedrock fault surface with t-LiDAR have shown that the morphology of 77 

fault surfaces is self-affine and fractal. Fractal dimension is suitable to characterize the 78 

roughness in various scale for t-LiDAR data of bedrock surfaces (reviewed in Candela et al., 79 

2009). Our approach applies the fractal analysis on the natural bedrock fault surface to identify 80 

possible weathered bands of fault surface which can be related to seismically-exhumed fault 81 

surface, and then identify paleoseismic events. Besides identifying differently weathered bands, 82 

another important purpose of our research is searching for mathematic model to relate the 83 

digital morphologic feature of fault surface to the exposure duration, which has not been done 84 

by previous research works. Therefore, it is necessary to quantify the morphology of bedrock 85 

fault surface using a special mathematic method fitting to weathering feature. It is the 86 
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groundwork not only to identify differently weathered bands of paleoseismological interests but 87 

also to relate the digital morphologic feature of fault surface to the exposure duration. For this 88 

aim, we focus here on the Huoshan piedmont fault (HF), which is an active normal fault 89 

extending along the eastern boundary of the Shanxi Graben, China (Figure 1). The M 8.0 90 

Hongdong earthquake of 1303 was produced by the fault, and several other destructive 91 

earthquakes have been disclosed by trenching (Xu and Deng, 1990; Xu, 2013). Moreover, along 92 

the fault zone there are a lot of fault scarps, which supply plentiful samples to be selected to our 93 

research. 94 

Firstly, we scan three bedrock fault surfaces with a t-LiDAR. Secondly, we describe the fault 95 

surface morphology by its fractal dimension as calculated by the isotropic empirical variogram 96 

method and a cellular fractal model. We ascribe the characteristic morphologic fractal values of 97 

each fault surface band to individual earthquake events, and analyze the relationship between 98 

the fault surface morphology and the exposure duration, and further paleoseismologic 99 

information recorded in the bedrock fault surface. 100 

2 Target fault and 3D data of fault surface 101 

2.1 Seismotectonic framework 102 

The HF, located on the eastern flank of the central Shanxi Graben at the eastern boundary 103 

of the Ordos block, China (Figure 1a, b), is an active boundary fault between the Huoshan 104 

Range and its piedmont basin. It extends 116 km to the NNE from Subao town, Hongdong 105 

county to Longfeng town, Jiexiu county, and dips to the NW at 65-75° (Xu et al., 2011). In the 106 

footwall, the Huoshan Range is an asymmetrical tight anticline with a core of Archean gneiss. 107 

Since the Pliocene, this anticline has been tilted along the fault forming a fault block mountain. 108 

The hanging wall is filled by sediments that range from Pliocene to Late Pleistocene (Figure 1c). 109 

Previous research demonstrated that active faulting occurred from the end of the Pliocene 110 

through the Holocene (Xu and Deng, 1990; Zhang et al., 1998; Wen, 2000; Xie et al., 2004). The 111 

HF has been identified as the seismogenic fault responsible for the 1303 M 8.0 Hongdong 112 
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earthquake (Figure 1b), which is the first M 8 earthquake hypothesized from historical 113 

descriptions in China (Liu and Meng, 1975; Wang et al., 1996). The HF is marked by 114 

well-developed triangular facets and bedrock fault scarps caused by dominantly normal-slip 115 

faulting. Trenching investigation on the southern segment of the HF found 4 paleo-earthquakes 116 

(Xu and Deng, 1990; Xu, 2013). The oldest one occurred between 28580-26380a BP, whereas, 117 

the other three occurred in the Holocene, 4620-5455a BP, 2555-3475a BP and the 1303 M 8.0 118 

Hongdong earthquake, showing an average recurrence interval of about 2000a. 119 

We chose to focus on three bedrock fault surface exposures near Liwan town (Huozhou city, 120 

Figure 1c), which are all located in the epicentral area of the 1303 Hongdong earthquake, and 121 

are all carved on Archean gneiss of the Huoshan fault footwall. Therefore, the three fault 122 

surfaces have similar faulting histories and are likely to have similar weathering resistance.  123 

Field observation also found several weathered horizontal bands on fault surfaces, different 124 

morphologic features in different height due to different weathering degree. The fault surface 125 

presents smooth with some striations and steps on the bottom due to faulting, rough with some 126 

weathered pits and grid fissures on the middle, more rough and more wide cracks due to erosion 127 

and plant root growth on the upper, while on the top of the fault scarp covered by weathered 128 

debris and shrub.  129 

2.2 Scanned fault surface and Data Acquisition 130 

We scanned the three fault surfaces (Figure 2) using a t-LiDAR, a Trimble GX 3D (Figure 2, 131 

upper of c), which is an automatic survey instrument with high resolution and a 300 m maximum 132 

scan radius, and the space between two adjacent scan points ranges from 1.6 mm to 5 mm 133 

according to the distance between the scanner and the fault surface from 5 m to 300 m. We 134 

scanned only those areas of the fault surface with no vegetation or sediment cover. The scan 135 

results are three point clouds in which each scan point is described by its 3D geometric 136 

coordinates, and average space between adjacent points is 2 mm across the three point clouds. 137 

We interpolated the scan data into a DEM with an equal cell size of 2 mm using natural neighbor 138 
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method (Figure 2). The lower three of Figure 2 show the morphology of the three scanned fault 139 

surface DEMs derived from the point clouds.  140 

3 Study methods 141 

3.1 Fractal dimension characterizing the surface roughness 142 

Assuming that our fault has been exhumed mainly by coseismic slip, the surface observed 143 

features are likely produced by the combination of two mechanical processes: faulting abrasion, 144 

and post-earthquake weathering and erosion. Faulting abrasion is expected to make the 145 

morphology of fault surface more anisotropic, so that the roughness in the direction parallel to 146 

slip becomes less than that in the direction perpendicular to slip (Sagy et al., 2007). Conversely, 147 

weathering is expected to be a more random process, and makes the fault surface more 148 

isotropic and rougher. Previous studies, emphasizing the impact of faulting abrasion on the fault 149 

surfaces, often used the power spectral density (Power et al., 1988; Power and Tullis, 1991; 150 

Brown, 1987) and standard deviation (Renard et al., 2006; Candela et al., 2009) to describe the 151 

roughness based on line profiles parallel or perpendicular to slip. These 1D analysis methods 152 

are useful to explore the relation between fault surface morphology and faulting processes 153 

(Power et al. 1987; Sagy et al., 2007, 2009; Wei et al., 2010), but not for understanding the 154 

effects of weathering on morphologic characteristics, because the weathering is a random and 155 

isotropic process on two-dimensional surface. Moreover, t-LiDAR allows genuinely 156 

two-dimensional data of fault surface to be gathered, typically in the form of digital images. Such 157 

data offer exciting opportunities for addressing issue of spatial variation in a way that is difficult 158 

for line transects of surface. 159 

Because the fractal dimension can capture the essence of a natural surface roughness 160 

(Viewed in Burrough, 1981; Mandelbrot, 1983), it has been widely used in earth sciences for 161 

textural analysis of topography and characterizing geological quantities of Earth (Polidori et al., 162 

1991; Klinkenberg and Goodchild, 2002; Sung and Chen, 2004). The surfaces of rocks 163 

associated with slip wear, weathering and erosion is similar to the real landscapes which have 164 
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statistical properties similar to fractional Brownian surface (Brown, 1987), it is possible to 165 

describe the roughness of the fault surface using the fractal dimension (e.g., Sage et al., 2007; 166 

Candela et al., 2009). Isotropic empirical variogram proposed by Davies and Hall (1999) is an 167 

effective method to estimate the fractal dimension of 2D spatial data (Gneiting et al., 2012). 168 

Therefore, here we calculate the 2D fractal dimension using a cellular fractal model and the 169 

isotropic empirical variogram to quantitatively describe the weathering morphology of fault 170 

surface.  171 

3.2 Calculation of two-dimensional fractal 172 

The isotropic empirical variogram, i.e., the statistical variation of mean differences with 173 

distances between two points, is an extension of the Hausdorff dimension in a two-dimensional 174 

random field (Davies and Hail，1999). Taking X as a random process (one dimension series) or 175 

random field (two dimensional plane), γ(t) = cov{X(t), X(0)} is the covariance of a pair of points 176 

with separation distance t. Generally, there is a relationship between the γ(t) and the separation 177 

distance (t) as follows: 178 

γ(t) ∝ c||t||α     (1) 179 

where α is the fractal index, which is between 0 and 2. There is a linear relationship between the 180 

fractal index (α) and fractal dimension (D) as follows: 181 

D = d+1-α/2     (2) 182 

where d is the topological dimension of the data field. For random processes d is equal to 1, and 183 

for random fields d is 2. The fractal dimension (D) can be calculated by α which is the slope of 184 

the best-fitting line based on the double logarithmic linear regression of the isotropic variogram 185 

(Equation 1) shown in Figure 3. The cellular fractal model following Sung et al (1998), a moving 186 

window operation (Figure 4), is used to calculate the fractal dimension distribution on the fault 187 

surface in this paper. The moving window traverse the entire fault surface with the offset for 188 

each move in directions of horizontal and vertical to calculate the fractal dimension using the 189 

variogram method. The moving window is defined to N×N (cells of DEM), then the offset for 190 
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each move is N/2 (Figure 4a). The area within each window can be treated as a homogeneous 191 

unit and is described by a uniform fractal dimension which can be derived by double logarithmic 192 

linear regression of Equation 1. A raster image of fractal dimension is made to display the spatial 193 

distribution of roughness on a surface, and the resolution of raster data is N/2, the offset of the 194 

window (Figure 4b). The surface units within moving windows at the same height likely 195 

experienced the similar faulting abrasion and weathering erosion, and their fractal dimension 196 

values display a normal distribution. To characterize differences in natural fault surface 197 

alteration along the height of the fault surface, we calculated the mean value with 95% 198 

confidence interval of the normal population for each horizontal row in raster image of fractal 199 

dimension. The average fractal along the surface height is then used to evaluate the disparity of 200 

the fault surface topography. 201 

3.3 Choice of the moving window 202 

The proper size of the window is very important to both the accuracy and the precision of 203 

fractal dimension using variogram (Sung et al., 1998). Too small windows cover insufficient data 204 

and increase the uncertainty of the fractal dimension estimate; too large windows increase the 205 

changes of capturing heterogeneous and multi-fractal characteristics within the window and 206 

decrease the spatial resolution of the fractal dimension. Sung et al. (1998) found that the 207 

percentage of acceptable fractal dimension estimations for three synthesized surfaces 208 

decreases with a decreasing window size. It drops drastically if the window size is smaller than 209 

30×30. They suggested that 30×30 is the smallest data matrix that provides >80% of the 210 

accurate estimate of the surface fractal dimension, and there is little difference in the estimator 211 

of fractal dimension when the window size is larger than 60×60. This technique has been 212 

applied for quantifying the heterogeneity of various surfaces, such as sea floor (Wilson et al., 213 

2007), landform (Bi et al., 2012) and bedrock surface (Wiatr et al., 2015). We chose three types 214 

of the moving window, 32×32, 64×64 and 128×128 in grid, to calculate the 2D fractal dimensions 215 

of the three bedrock fault surfaces. Because the grid spacing of the morphologic DEM is 2 mm, 216 
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the sizes of three windows are 64×64 mm2, 128×128 mm2 and 256×256 mm2, respectively. 217 

Based on the supposed coseismic vertical displacement of AD 1303 earthquake, these window 218 

sizes are significantly smaller than the displacements which control the abrupt changes in the 219 

features of fault surfaces.  220 

4 Results and interpretation 221 

The raster images in figure 5 show the spatial distribution of two-dimensional fractal values 222 

on the scanned fault surfaces. Because our primary objective is to reconstruct the past seismic 223 

slip history of bedrock fault scarps, we are more interested in the vertical changes (dip changes) 224 

of roughness along the fault surface. However, the raster image of fractal show faint variations 225 

of the fractal dimension, without a clear trend as a function of the fault height. As a result, it is 226 

not easy to identify the presence of bands characterized by different weathering degree along 227 

the surface height in such raster images (figure 5). Therefore, averaging the fractal values of 228 

each horizontal row (perpendicular to dip) in raster image was performed in order to determine 229 

the roughness changes along the height of the fault surface. Through viewing the plots of 230 

average fractal against surface height, a stair-like increase can be recognized on the analyzed 231 

surface from base to top, with values ranging from 2.2 to 2.7. ( i.e., the base of the fault surface 232 

is smoother with low fractal value, and the top is rougher with high fractal value). Such changes 233 

in roughness along fault surface is similar to the changes in the amount of specific cosmogenic 234 

isotopes along seismic exhumed bedrock scarps (e.g. Schlagenhauf et al., 2010), which allow to 235 

use the surface roughness to provide earthquake information from bedrock fault scarps. 236 

 “Stair-like” increase in the surface roughness with increasing scarp height has originally 237 

been described by Wallace (1984) and Stewart (1996) for seismic exhumed bedrock fault scarps. 238 

These authors first proposed a mechanism that may have produced such roughness 239 

fluctuations: Before being exposed above ground level by an earthquake, the bedrock fault 240 

surfaces had been smoothed by sliding wear during faulting actives. Faults generally emerge 241 
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from the ground as smooth, polished planes. Once exposed above ground level by an 242 

earthquake, the scarp rock begin to be roughened by the weathering processes which leads to 243 

increased rock surface roughness with time (Giaccio et al., 2002; Galli et al., 2010; Wei et al., 244 

2013). One band on a fault surface exhumed by an earthquake experienced the same 245 

weathering processes under similar sub-aerial conditions, thus, it would have the same 246 

roughness. As bedrock scarps are progressively exhumed by the action of repeated large 247 

earthquakes, the roughness along the entire exposed scarp should take a “stair-like” curve 248 

made of a series of approximate straight sections separated by sharp discontinuities. The 249 

vertical separation between two successive discontinuities provides a measure of the 250 

displacements produced by the earthquakes. 251 

5 Discussions 252 

5.1 Determination of weathering bands along surface 253 

Identification of bands is a decisive step as far as the seismic intensity, the seismic cycle 254 

and seismic hazard assessment are concerned (Schlagenhauf et al., 2010; Mouslopoulou et al., 255 

2011). Through visual identification in the plots of average fractal versus scarp height (Figure 5), 256 

there are three obvious bands for surface A and surface B, and two bands for surface C. In 257 

addition to the visual identifications, a statistical analysis was used to validate these bands with 258 

different roughness on a scanned fault surface (i.e., Student's t-test. See details and results in 259 

the Supplementary materials). 260 

 261 

 The result of Student’s t-test, similar to the visual interpretation, show that there are three 262 

bands for surface A and B, and two bands for surface C, but with a more robust statistical 263 

evidence for band division. For surface A, two discontinuities in surface roughness are located 264 

at the height of 0.9–1.2 m, 5.1-5.3 m, respectively: for surface B, two discontinuities are located 265 

at the height of 1.5-1.8 m, 5.8-5.9 m, respectively; surface C has only one discontinuity in 266 
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roughness located at the height of 1.1-1.3 m. We also found some tiny fluctuations in the mean 267 

fractal curves (Figure 6) that may be caused by the local slight difference in rock constituents 268 

along fault surface or noise data from t-LiDAR measurement. Therefore, we do not think those 269 

tiny fluctuations can act as a discontinuity in roughness. 270 

According to the band division above, we calculated the mean and the standard deviation of 271 

fractal dimension for each surface band, and the results are summarized in table 1 and showed 272 

by the red lines in Figure 5. These mean values can be seen as the characteristic fractal 273 

dimensions for bedrock fault surface bands, and as a morphologic parameter characterizing the 274 

surface roughness to quantify the degree of weathering.  275 

5.2 Paleoseismic events and coseismic slips 276 

Under the hypothesis that the weathered bands of fault scarp are the result of repeated fault 277 

slip events, our three bands would indicate three slip events. Historical earthquake analyses 278 

and paleoseismic investigations along the HF have indicated that three surface-rupturing 279 

earthquakes occurred during the Holocene (Xu and Deng, 1990; Xu, 2013), which is consistent 280 

with our paleoseimic result demonstrated via differential weathering on fault surfaces. Therefore, 281 

these three bands from bottom to top match the three earthquakes dated 1303, 2555-3475 a BP 282 

and 4620-5455 a BP. 283 

As the upper and lower extents of the surfaces were not scanned completely, we cannot 284 

usethese surface segments to estimate the vertical co-seismic displacement.Conversely, the 285 

middle segments of surface A and B had been scanned completely, and their width of about 4 m 286 

quite possibly represent the dip-slip offset of the penultimate earthquake. Considering the fault 287 

dip of 75˚, the vertical co-seismic displacement during the penultimate earthquake is 3.8 m. 288 

Compared to the vertical co-seismic displacement offor the Hongdong earthquake of 1303 (4-5 289 

m), the vertical co-seismic displacement of 3.8 m implies that the penultimate earthquake had a 290 

similar magnitude with the Hongdong earthquake. Wei et al. (2015) used faulting knickpoints to 291 

indicate that the ruptures on the HF obey a characteristic slip model with a similar slip (about 4 292 
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m) for several successive earthquakes as well. Moreover, between two adjacent weathered 293 

bands, there is a narrow gap, the fractal value of which increases gradually with fault surface 294 

height. The two possible explanations for the formation of the gap are an inter-seismic creep slip 295 

along the fault, or a gradual erosion along the base of the fault scarp for a long time.  296 

We made an evolutionary model of fault scarp surface in bedrock (Figure 7), where the fault 297 

scarp has been divided into two main sections according to the dip angle and weathering degree. 298 

The upper section has seriously been weathered, its dip angle has changed to be lower than the 299 

original fault dip angle; the lower section has not been weathered so much and some faulting 300 

abrasion feature has been saved, and its dip angle has been kept to be similar to the original 301 

fault dip angle. We can identify the weathering band by naked eye according to large scale 302 

morphological feature and dip angle variation in the upper section. In the model, there are two 303 

surface morphological bands with different weathering degree in the upper section identified by 304 

naked eye, and three surface morphological bands in the lower section identified by roughness 305 

analysis based on high-resolution DEM measured by t-LiDAR. These five surface morphological 306 

bands with different weathering degree might correspond to five earthquake faulting events. 307 

5.3 Weathered characteristics as a function of exposed time of the fault surface 308 

In order to make fractal index a reliable palaeoseismological tool, it should be understand 309 

how the fractal indices of fault surface changes over the exposure time, that is, what is the 310 

relationship between the fractal index and the exposed time of the fault surface. 311 

To build such relationship, we need in advance two variables: one is the fractal index 312 

quantifying the degree of weathering, and another is the exposure time . In our case, the 313 

youngest event can be dated at 1303 AD by historic documents, and other two 314 

paleoearthquakes were dated at 2555-3475a BP and at 4620-5455a BP, respectively, by means 315 

of paleoseismological trenching (Xu et al., 1993). In Figure 8 we plotted the characteristic fractal 316 

dimensions vs the occurrence times of supposed paleo-earthquakes, i.e. the exposed time of 317 

surfaces segments, for surface A, Surface B and the set of studied surfaces. There seem to be 318 
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an ascending linear trend of fractal value with the exposed time of fault surface (dashed lines in 319 

Figure 8).  320 

D = 0.049 T + 2.246     (3) 321 

where D is the fractal dimension, and T is the exposed time of fault surface which unit is ka. As 322 

we know that the two-dimensional fractal has an upper limiting value of 3, this will gradually 323 

approach a steady value over the exposed time when the morphology of bedrock fault surface 324 

reaches the equilibrium with the weathering and erosion on surface. As a result, the relationship 325 

between the characteristic fractal dimensions and the exposed time should be nonlinear and 326 

complicated in a long enough time scale. At present, however, we do not know more information 327 

about this relationship. Our result revealed the linear trend between the characteristic fractal 328 

dimensions and the exposed time ranging from 0.7 ka to 5 ka on studies fault surfaces 329 

(Equation 3). We speculate that the relationship between the characteristic fractal dimensions 330 

and the exposed time can be treated as a linear function approximately in a 331 

centennial-millennial scale. However, to obtain a more accurate relationship, the changes of 332 

fractal dimension over a much larger time scale are necessary. Therefore, it is one of our 333 

important research targets in future that the weathering stability and weathering behavior of the 334 

various lithologies on the bedrock fault.  335 

6 Conclusions 336 

The quantitative analyses of bedrock fault surface morphology is an effective method to 337 

study faulting history and identify paleo-earthquake. The 2D fractal dimension on a fault surface 338 

calculated by isotropic empirical variogram shows vertical segmentation, and the characteristic 339 

fractal dimension of each fault surface segment increases step by step from the bottom to the 340 

top. This kind of step increase suggests that those fault surfaces are cropped out intermittently 341 

likely due to periodic faulting earthquakes. Therefore, the exposure duration or the occurrence 342 

time of an earthquake can be inferred by using the characteristic fractal dimension of each fault 343 

surface segment, and the vertical co-seismic displacement by using the width of fault surface 344 

segment. Based on the quantitative morphologic analyses of the fault (scarp) surfaces on the 345 

Huoshan piedmont fault, we indentified three earthquake events, the Hongdong M 8.0 346 
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earthquake of 1303 and other two previous earthquakes. Combined with the occurrence times 347 

of two pre-historical earthquakes estimated by trenching study, we got an empirical relationship 348 

between the characteristic fractal dimension and the occurrence time of earthquake 349 

displacement of characteristic faulting earthquake on the Huoshan piedmont fault has also been 350 

estimated to be 3-4 m. Moreover, 0.1-0.3 m wide gap between two adjacent fault surface 351 

segments, which fractal dimensions increase gradually as fault height increases, is produced by 352 

erosion between two earthquakes.  353 
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 1 

Figure 1 Geologic map of the Huoshan piedmont fault. a, location of the Ordos 2 

block within north-central China. b, Active faults surrounding the Ordos block. The 3 

background is a color shaded-relief view of SRTM elevation data, the red lines are 4 

active faults (from Deng et al., 2007), the black dashed lines are isoseismals of the 5 

Hongdong M 8 earthquake of 1303 (Earthquake Engineering Investigation Institute 6 

of Shanxi Province, 2009), and the white rectangle shows the location of Figure 1c. 7 

c, Geometry of the Huoshan piedmont fault. Black rectangles show the locations of 8 

scanned fault scarps. Other geologic information is shown in the legend. 9 
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 11 

Figure 2 Fault outcrops (upper) and their rendering morphology derived from 12 

scanned point clouds (below). a, b and c are three fault surface outcrops, whch 13 

locations are indicated by Site 1, Site 2 and Site 3 in Figure 1c, as well as the scan 14 

locations (red rectangles). Panels show the morphologies of the three fault 15 

surfaces, respectively.  16 
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 18 

Figure 3 Log-log regressions for the isotropic variogram each dot represents the 19 

covariance of points with a certain separation distance t ; red line is the linear 20 

fitting of the dots, and its slope is linearly associated with the fractal dimension of 21 

2D spatial data.  22 
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 24 

Figure 4 Schematic diagram for calculating fractal dimension of fault surface. (a) 25 

Photo of the fault surface; (b) Hillshade image created by the high resolution digital 26 

elevation model of scanned surface; the colored squares stand for the moving 27 

windows with size of N×N in both directions of horizontal and vertical; (c) shows 28 

image of fractal dimension for fault surface; each pixel stand for the estimator of 29 

fractal dimension for surface cell with size of N/2×N/2; the yellow-red colors are 30 

index of fractal value; (d) the diagram shows the fractal values distribution of fault 31 

surface along with vertical height; each black point is the average fractal 32 

dimension on each horizontal row. 33 
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 35 

Figure 5 Raster images of fractal dimension and corresponding average fractal 36 
along surface height for fault surfaces. a, b and c correspond to the three scanned 37 
bedrock fault surface. In each panel, the raster images with color range from red to 38 
light yellow (left) show the spatial distribution of fractal dimensions on the fault 39 
surface, while the scatter diagrams (right) show the variability of the average 40 
fractal along the surface height. The raster images are generated by three types of 41 
moving window, 64×64 mm2, 128×128 mm2 and 256×256 mm2 from left to right. 42 
Black dots with error bars are the mean value of each horizontal row in the fractal 43 
raster images and gray error bars represent 95% confidence interval. The red 44 
vertical bars show the average value for each group of samples (see text for 45 
details). 46 



 47 

Figure 6. Results of determination of weathering bands applying Student’s t-test. 48 
(a), (b) and (c) show the weathering bands on surface a, surface b and surface c, 49 
respectively, based on the fractal derived by using the moving window of 50 
64×64mm2. (d) Shows a simplified sketch of the process using two-sample 51 
Student’s t-test to quantitatively determine the bands. “g1” and “g2” indicate two 52 
adjacent data sets of n data points, which overlapped each other in a half of data 53 
points (n/2), standing for two surface segments. Dots assigned by 0 or 1 on right 54 
plots are the t-test result, and detailed description is showed in section 5.1; each 55 
straight segment on the mean fractal curve indicate one weathering band on fault 56 
surface. 57 



 58 

Figure 7 Evolutionary model of fault scarp surface, showing five weathering bands 59 

corresponding to five different exposure times (modified from model of Giaccio et 60 

al, 2002). The two higher bands have conspicuous weathering morphological 61 

feature identified by naked eye easily; while the three lower bands have no 62 

conspicuous weathering morphological feature identified by naked eye, and similar 63 

dip angle as original fault dip angle. The quantitative morphology applied in our 64 

study can identify the three lower bands. The rectangle on the fault scarp surface 65 

shows the scan scope, and the two color rectangles on the left show fractal 66 

dimension and rendering morphology, respectively. The characteristic fractal of the 67 

three lower bands are demonstrated by color bars and scatter diagrams on the 68 

right. 69 

 70 



 71 

Figure 8 Fitting lines of relationship between 2D fractal dimension and exposure 72 

time. The gray belts show the time spans of paleo-earthquake occurrence. The 73 

three empirical relations, are all fitted based on the characteristic fractal 74 

dimensions derived by using the moving window of 64×64mm2. 75 
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