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Abstract

A novel algorithm for creating a computationally efficient approximation of
a system response that is defined by a boundary value problem is presented.
More specifically, the approach presented is focused on substantially reducing
the computational expense required to approximate the solution of a stochas-
tic partial differential equation, particularly for the purpose of estimating the
solution to an associated nondestructive evaluation problem with significant
system uncertainty. In order to achieve this computational efficiency, the ap-
proach combines reduced-basis reduced-order modeling with a sparse grid col-
location surrogate modeling technique to estimate the response of the system
of interest with respect to any designated unknown parameters, provided the
distributions are known. The reduced-order modeling component includes a
novel algorithm for adaptive generation of a data ensemble based on a nested
grid technique, to then create the reduced-order basis. The capabilities and
potential applicability of the approach presented are displayed through two
simulated case studies regarding inverse characterization of material proper-
ties for two different physical systems involving some amount of significant
uncertainty. The first case study considered characterization of an unknown
localized reduction in stiffness of a structure from simulated frequency re-
sponse function based nondestructive testing. Then, the second case study
considered characterization of an unknown temperature-dependent thermal
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conductivity of a solid from simulated thermal testing. Overall, the surrogate
modeling approach was shown through both simulated examples to provide
accurate solution estimates to inverse problems for systems represented by
stochastic partial differential equations with a fraction of the typical compu-
tational cost.
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1. Introduction

There is a large number of important inverse problems in engineering
mechanics, covering applications from material characterization to design of
complex physical systems, and a corresponding large amount of work involv-
ing the solution of these problems. Of particular interest to the present work
are inverse problems relating to the use of nondestructive evaluation (NDE)
to evaluate various properties of different in-service structures/systems [4, 8,
40, 50]. One effective approach for solving such inverse problems in mechan-
ics has been to use a numerical analysis tool, such as finite element analysis,
to predict the forward response of the system under consideration and then
combine nonlinear optimization to find the unknown properties to best match
the response of the numerical model with the desired or measured response
of the system [2, 51, 17, 38, 39, 25]. Although various research efforts have
been directed towards such computational methods for the solution of inverse
problems and have made significant strides, there are still several common
challenges, most often relating to the ill-posedness of the inverse problems
in the form of nonexistent or non-unique solutions along with the excessive
computational expense associated with many solution algorithms. In partic-
ular, regardless of the solution approach (e.g., gradient based [37, 31] or non-
gradient-based optimization [14, 23, 45], etc.), solving a NDE problem us-
ing a computational solution procedure commonly requires a relatively large
number of evaluations of the forward response of the system. Moreover, the
computational expense drastically increases if considering uncertainty within
the system, since the forward problem then involves a stochastic partial dif-
ferential equation (SPDE) (which is considerably expensive on its own).

There are several different approaches that have been developed for the



solution of SPDEs [22, 9, 54]. Whether the approach to address the uncer-
tainty is intrusive (i.e., modifies the deterministic boundary value problem)
or non-intrusive (i.e., only uses results from the deterministic boundary value
problem), these solution approaches typically require a substantial amount
of computational expense. As such, there has been considerable effort to
attempt to reduce the computational expense of SPDE solutions, both for
intrusive [12, 47, 6, 44] and non-intrusive approaches [26, 27]. Sparse grid ap-
proximation approaches are one particular computationally efficient solution
technique that builds a low-cost approximation (i.e., surrogate model) of the
SPDE and has shown considerable promise for being used in approximating
SPDE solutions [48, 54]. The sparse grid methods are non-intrusive, and
therefore, easy to implement, requiring only the solution of uncoupled deter-
ministic problems, and use substantially fewer evaluations of the boundary
value problem in comparison to the traditional Monte Carlo non-intrusive
methods, without sacrificing accuracy [9].

There have also been a variety of approaches developed in recent years
to solve inverse problem involving SPDEs (i.e., stochastic inverse problems).
For example, [35] presented an approach to solve a stochastic inverse heat
conduction problem using the spectral stochastic finite element method as
the forward solver (i.e., to solve the SPDEs) within an optimization rou-
tine. The work in [21] used the sparse grid collocation method based on the
Smolyak algorithm with adaptive refinement based on the importantance of
the stochastic dimensions to solve stochastic natural convection problems.
This work was extended for solving a design problem by using a sparse grid
representation of the design variables to convert the stochastic optimization
problem into a deterministic optimization problem, and gradient-based op-
timization was used to solve the design problem with stochastic sensitivity
computation [55]. In order to reduce the computational cost for Bayesian
solutions of inverse problems, Marzouk et al. [34] introduced a method that
combines Karhunen-Love (K-L) representation of the unknown field with
spectral methods, in which the K-L representation of a scaled Gaussian pro-
cess prior defines the uncertainty that is propagated through the forward
model with a stochastic Galerkin scheme. More recently, Marzouk et al. [33]
presented an efficient numerical method, which used generalized polynomial
chaos (gPC) to construct a polynomial approximation of a forward solution
and the support of the prior distribution to define a surrogate posterior prob-
ability density that can be evaluated at low computational cost.

Reduced-basis-type model reduction approaches that identify the rela-



tively low-dimensional basis that is optimal in some sense for representing
the physics of the system of interest have been used to produce efficient and
accurate numerical representations for several different applications in me-
chanics [24, 18, 41, 13, 3]. By not replacing the boundary value problem
governing the mechanics of interest as would be done with surrogate mod-
eling approaches, reduced-basis ROM techniques are more computationally
expensive than surrogate modeling approaches, but are typically capable of
more accurate approximations, particularly for extrapolating throughout the
space of potential system inputs. This ROM approach has also been recently
extended to stochastic problems with the work by Boyaval et al. [12] that
created reduced-basis ROMs to estimate the solution of an SPDE. There are
different strategies to determine the low-dimensional basis, but the focus of
the work herein is on methods that derive the “optimal” basis from a given
set of potential fields for the system of interest. These given fields can be
either experimentally measured or numerically simulated with different val-
ues of the system input parameters, depending on capabilities. There are
also different approaches to process these given fields to produce a basis. For
example, proper orthogonal decomposition (POD) has been used in several
studies [7, 29, 1] to extract the basis from a given dataset that is optimal
in the average Lo-error sense for representing the given fields. Alternatively,
other works, including the work by Boyaval et al. relating to SPDEs, have
simply used Gram Schmidt orthogonalization to directly convert the given
fields into an orthogonal basis [12]. Yet, a more important question that is
not often addressed in ROM studies is how to generate (e.g., select the sys-
tem inputs to numerically simulate with full-order analysis) the initial set of
potential fields used to create the basis. The majority of the previous work
has used some form of fixed sampling, often simply uniformly sampling the
input parameter space [30]. Alternatively, one approach that has been devel-
oped and referred to as “certified reduced basis methods” uses a posteriori
error estimation to iteratively add to a set of potential fields to minimize the
error of the resulting ROM with respect to the estimated error bound [43].
However, the ability to generate and ensure accuracy of the a posterior: error
estimate for the ROM with a given PDE can be nontrivial and a potentially
costly task. A different approach was presented by Brigham and Aquino [13]
to generate the dataset for ROM creation that was based on creating the set
of potential fields that were maximally diverse in a sense within the solution
space. However, this maximum diversity approach was only applicable as
presented for problems relating to solid mechanics of rate-dependent mate-
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rials. Overall, no clear approach exists as of yet that is generally applicable,
easy to implement, and computationally inexpensive to generate a suitable
dataset and ultimately an accurate ROM.

The current work presents an approach to substantially reduce the com-
putational expense required to approximate the solution of a stochastic PDE,
particularly for the purpose of estimating the solution to an associated NDE
problem. In order to achieve this computational efficiency, the approach
presented combines reduced-basis reduced-order modeling with a sparse grid
collocation surrogate modeling technique to estimate the response of the
system of interest with respect to both the inverse problem unknowns and
the uncertain system parameters. One of the main features of the proposed
method is the use of the nested properties of the grid for collocation to avoid
the computational expense when expanding the number of samples and re-
generating the reduced-order model to obtain higher accuracy. In addition,
the same full-order models used for generating the reduced-order model are
used to construct the Sparse grid approximation. In the following section a
general inverse problem solution framework is outlined. Then, the approach
for using the sparse grid method as a system response surrogate model is
presented, which is followed by an adaptive method for generating efficient
and accurate reduced-order models for the solution of SPDEs. Lastly, the
capability of this computationally efficient approach to provide accurate solu-
tion estimates to material characterization problems of systems represented
by SPDEs with a fraction of the typical computational cost is shown through
simulated examples involving both solid mechanics and heat transfer.

2. Methods

For context, the methods are presented with respect to nondestructive
evaluation problems based upon some type of physical system measurements
(e.g., displacements or temperatures) given the associated boundary condi-
tions and some knowledge of significant epistemic uncertainty in certain sys-
tem parameters. Furthermore, the present work utilizes a standard generally-
applicable optimization-based computational approach for inverse problem
solution approximation to evaluate the ROM strategy. As is typical, the
computational inverse mechanics approach consists of first constructing a
numerical representation of the behavior of the target system that is param-
eterized with respect to the unknown system properties. Then, an objective
functional is constructed that quantifies the difference between the measured



response and the response predicted by the numerical representation for any
given admissible set of system properties. Lastly, all that is necessary is to
minimize the objective functional with respect to the unknown system prop-
erties to produce an estimate to the inverse problem solution. As an example,
a common objective functional for the inverse solution approach could have
the following form:

| - @i
D .

J(h) = (1)
where A is the vector of unknown parameters (e.g. parameters defining a
material property distribution) to be determined through the inverse solution
process, R™¢ is the measured response of the system, R is the simulated
estimate to the system’s response for a given parameter set estimate, ¢ is the
vector of uncertain system parameters, and ||.|| is some suitable metric norm
that combines the contributions of all measurement information to produce
the total scalar error functional. The components of ¢ are assumed to belong
to an event space of a standard complete probability space [32, 54].

A critical point is that the calculation of the simulated response of the
structure with respect to different parameter estimates using traditional anal-
ysis methods (e.g., finite element analysis) can be computationally expensive
for many realistic applications, which can lead to the inverse solution pro-
cess becoming computationally infeasible (especially when addressing uncer-
tainty). Therefore, rather than using computationally expensive methods to
numerically simulate the system response estimate, the present work instead
utilizes a substantially more computationally inexpensive surrogate modeling
strategy to produce a tool to simulate the system response (R) with negli-
gible computational expense. In particular, this work presents a combined
ROM-collocation strategy to effectively and efficiently generate a surrogate
model of the system response with respect to both the inverse problem un-
knowns and the uncertain system parameters with the assumption that the
distributions of the unknown parameters is known. As outlined in the follow-
ing, this approach not only uses a collocation method to obtain the surrogate
model for the system response, but generates and uses a ROM to create this
surrogate model. This combination provides a substantial savings in compu-
tational expense in comparison to traditional techniques at each step in the
process and for the overall solution procedure.



2.1. Sparse Grid Collocation Method for Forward Model Approximation

A sparse grid collocation method was selected to create the system re-
sponse surrogate model for the present work due to its capabilities to provide
accurate approximations of smooth functions in high dimensions based on a
relatively small number of function evaluations, as has been shown in several
works relating to global optimization [20]. For the purposes of the sparse grid
collocation method, the vector of unknown/inverse problem parameters (k)
and the vector of uncertain system parameters (¢) are treated equivalently,
and therefore, are combined into a single parameter vector, ¢ = V_i, dr, for
this presentation.

The basic collocation approach uses Lagrange interpolating polynomials
and the tensor product technique to incorporate all dimensions of the pa-
rameter space to define the surrogate model approximation of the system
response in terms of a higher-order (e.g., finite element analysis) model of
the system response evaluated at each collocation point in the parameter
space as:

mi
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where RHO is the higher-order model response, L; is the j standard La-
grange interpolating polynomial corresponding to the i parameter and m;
is the number of collocation points for the i parameter. Note that each
parameter is typically mapped to a domain of [—1, 1] for this implementa-
tion. While this collocation approach is a relatively straightforward technique
overall, the selection of the collocation points is a nontrivial task. With the
total number of evaluations of the higher-order model of the system response
being equivalent to my; X --- X m,,, the creation of the surrogate model by
simply using uniformly spaced collocation points in the parameter space can
be excessively computationally expensive, even for a relatively inexpensive
higher-order model (R”?). Thus, the sparse grid approach is used here to
reduce the computational cost by significantly reducing the total number of
required collocation points without significantly sacrificing accuracy of the

surrogate model.
For the present study, the Smolyak algorithm [52, 10, 46] was used for
the sparse grid construction. At its core, the Smolyak algorithm creates a



sparse grid interpolant to be utilized in place of the tensor product above as:
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where n is the total number of system parameters (i.e., dimension of @), g—n
is the order of interpolation, i = (i, ..., 4,), and |i| = i;+- - - +1, (note that i
conceptually represents the level of interpolation along the the k™ direction).
To compute the surrogate model response approximation, R = A, ,(R79),
the response function should be evaluated at the sparse grid points given by

Hn=|J (@ @00 (4)
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where &% = (' .., ). Lastly, there are different potential choices for
the nested grid to define the collocation points in the parameter space, such
as the Gauss Patterson approach [15] or the Clenshaw-Curtis approach [49].

Utilizing a sparse grid approximation allows for construction of the surro-
gate model with orders of magnitude reduction in the number of higher-order
analyses required compared to a standard tensor product implementation
with approximately the same level of accuracy. However, sparse grids are
still affected by the “curse of dimensionality,” and the number of analyses
required for relatively high-dimensional parameter spaces can become ex-
cessive if the higher-order model being approximated requires a substantial
computational expense (as would often be the case if using traditional finite
element analysis to produce the system response here). Thus, the present
works adds one more layer of computational savings by building and using
a ROM (instead of a commonly used full-order finite element analysis) for
the higher-order analysis in the surrogate model creation, as detailed in the
following.

2.2. Adaptive Nested Sampling for Reduced-Order Model Generation

The reduced-order modeling strategy utilized herein is the reduced-basis
approach, which in essence, identifies the low-dimensional basis that is op-
timal in some sense to replace the standard higher-order generalized (e.g.,
polynomial) bases typically used within a numerical PDE solution strategy
(e.g., weak form Galerkin finite element method)[42]. This approach was
chosen since it balances the improvement in computational expense with the
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capability to maintain accurate generalization over the parameter space that
is afforded by maintaining the physics of the problem through the PDE, which
is still included in the solution procedure, in contrast to alternate ROM tech-
niques. The following discussion of an approach to create such an accurate
physics-based ROM is presented in a general format, which can be used for
a variety of mechanics, including both steady-state and transient processes,
etc., and could even be applicable as a direct replacement in a computational
inverse problem solution procedure (although, that was not the focus of the
work herein).

To understand the ROM approach, first consider the objective being to
find a stochastic function (the primary system response field), @ = u(Z, t, §) €
O x D, with g € D, with the assumption that « is a sufficiently smooth func-
tion, such that a sparse grid approximation is applicable (a detailed discus-
sion regarding the smoothness requirements of the solution can be found in
[15]). Then, the following general form of a SPDE representing the behavior
of a system of interest (arbitrarily shown as transient and with only essential
boundary conditions for clarity, but could equivalently be utilized for a static
problem, a problem in the frequency domain, and/or a problem with other
boundary conditions as well) holds:

O"u(z, t; @)
otn
=g (% p), Ve, for r=0,...n—1 (5)
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where ¥ is the spatial position, ¢ is time, F' is a spatial differential operator,
n is the number of temporal derivatives, g, are the known initial conditions,
@° is the known boundary condition, € is the spatial domain, and I is the
domain boundary. The core hypothesis of the reduced-basis reduced-order
modeling approach considered in the present work is that a relatively small
number of full-order (i.e., traditional finite element) analyses based upon
different values of the input parameters of interest () contain fundamental
information about the spatial distribution of potential solution fields of the
boundary value problem (BVP) and can be used to derive a low-dimensional
basis that can predict the solution fields for a range of input parameters
(not just the specific parameter values used to generate the set of full-order
analyses) with reasonable accuracy. Recall that ¢ contains both the vector
of unknown /inverse problem parameters and the vector of uncertain system
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parameters. Also, note that the nature of the distribution of each uncertain
system parameters (e.g., uniform, normal, etc.) is assumed to be known a
PTLOTI.

The proper orthogonal decomposition (POD) method was used herein
to derive the basis to be used from a set of previously generated full-order
analysis solution fields [11]. As detailed in [13, 28, 11], POD creates the basis
that is optimal in an L, average sense for approximating the given solution
fields. Assuming such an m-dimensional basis has been created, the solution
of the SPDE (Equation 5) can be approximated by a linear combination of
the basis functions (i.e., modes) as:

a7 67) = > ailt ?)éi(7) (6)

where a;(t; @) is the i modal coefficient to be determined by the numerical
analysis to approximate the solution of the system given a new set of system
input parameters, whether those parameters are unknowns to be determined
through an inverse solution process or other uncertain parameters of the
system. Applying the Galerkin projection procedure, the solution approxi-
mation (Equation 6) can be substituted into the governing SPDE (Equation
5) to obtain the weak form of the SPDE that can be used to approximate
the modal coefficients as:

I (t; §) al R B
% = (F (@Zai(t; @)@-(f)) ,gbc(f))L , fore=1,..,m, (7)

i=1
with the initial conditions given as:
a.(t =0;8) = (9,(%;9),¢c)p,, for r=0,..,n—1, ec=1,..,m, (8)

where (-,-);, is the standard L, inner product. Note that for the case of
fixed essential boundary conditions, the modes will automatically satisfy the
essential boundary conditions for the system of interest.

Of paramount importance is that a critical question still remains unan-
swered from the above formulation, which is how to select the set of input
parameters used to create the set of full-order analyses that will be utilized
to then create the POD basis and ultimately the ROM. In particular, to see
a true benefit from this ROM strategy, this dataset must be generated in
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such a way to limit the number of full-order simulations necessary to ensure
sufficiently accurate generalization of the ROM over the admissible range of
the input parameters of interest. As such, the following presents an adaptive
strategy to incrementally select the parameter set values to be used to create
full-order analysis fields (referred to as “snapshots” from here on) and build
the ROM to minimize a measure of the potential ROM solution error.

2.2.1. Adaptive Nested Grid Snapshot Generation:

The core of this incremental snapshot generation approach is the use of
a nested grid strategy to select the associated parameter set values along
with a local refinement procedure to select additional parameter set values
adaptively in the region of the parameter space with the highest approxi-
mation error. The assumption is that this point of highest error indicates a
region of inaccuracy within the sparsely sampled space, that should there-
fore be adaptively resampled (including the point with highest error itself) to
best improve the approximation capability. In addition, the parameter space
sampling that is used to create the ROM can be done in such a way (as was
done herein) that a portion of the parameter space grid points corresponding
to the snapshots are the exact same points as a portion of the collocation
points that will then be used to create the surrogate model (as described in
Section 2.1). Since, the points in the parameter space corresponding to the
full-order analyses are naturally the most accurate (in the ROM context),
having the grids overlap in this two stage (i.e., ROM to surrogate model)
process will ensure that the information with the highest possible accuracy
is used to create the numerical representation of the system response that
will ultimately be used in the inverse problem solution procedure.

The algorithm developed for adaptive nested grid snapshot generation is
outlined in Algorithm 1. For the present work, an ad hoc approach was
used to estimate the approximation error of the ROM based on a randomly
generated set of full-order analysis response fields (i.e., “ROM test” set) to
drive the adaptive snapshot generation procedure. Two different measures of
this approximation error are utilized at two different stages in the snapshot
generation algorithm, the average relative Lo-error, which is defined as:

a HRFOM(—’ N ) _RROM

1 T,V (@, '7’f)||L Q)
EI(I'UE(ROM) - _ — 2
L a ; [ REOM(Z, i) || ()

: (9)
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Algorithm 1 - Adaptive Nested Grid Snapshot Generation

1:

11:
12:
13:
14:

15:
16:

17:

Randomly generate a ROM test set of parameter sets and corresponding re-
sponse fields with full-order simulation.

: Generate an initial set of snapshots from the parameter sets that are defined

based on the chosen nested grid type and initial level (L).

Create a reduced-basis ROM from the set of snapshots.

Evaluate the ROM for each parameter set in the ROM test set and calcu-
late the average relative Lo-error with respect to the full-order simulations

(Ef¢(ROM)).

: while (Ef**(ROM) > E{%, ;) do

Level
Increase the grid level: L = L 4 1, and generate the additional associated

snapshots.

Create a reduced-basis ROM from the set of snapshots.

Evaluate the ROM for each parameter set in the ROM test set and calculate
EL¢(ROM).

: end while
10:

Calculate the maximum relative Lo-error with respect to the full-order simu-
lations (E7'**(ROM)).
while (E7“*(ROM) > E! ) do

Local

P

Identify the parameter set (5) corresponding to E7'**(ROM).

Calculate the euclidean distance (I) in the parameter space between the
parameter set (S) and the next nearest parameter set.

Generate additional snapshots from parameter sets based on a hypercube
of length ! centered at S in the parameter space.

Create a reduced-basis ROM from the set of snapshots.

Evaluate the ROM for each parameter set in the ROM test set and calculate
ET*(ROM).
end while
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and the maximum relative L..-error, which is defined as:

FOM .4 — ROM .~
E7**(ROM) = Max |r72"(@ ) A ’%)HL“’(Q), (10)
> kellal [RFOM(Z, i)l . ()

where a is the number of response fields in the ROM test set,, is the set
of all nondestructive test parameters that the measurements are obtained
from (e.g., excitation frequency, sensor location, time, etc.), RFOM g the
response field simulated with the full-order model, RF°M is the response
field simulated with the ROM, and | - ||z,() and || - ||z () are the standard
Lo and L., norms, respectively. In addition, two error tolerance values are
set by the user, E% . (i.e., the level error tolerance), which corresponds
to the average relative Lg-error and is used to determine the final level of
the nested grid to generate the snapshots, and E% . (i.e., the local error
tolerance), which corresponds to the maximum relative Lo-error and is used
during the local refinement process. Therefore, the first step in the snapshot
generation procedure is to create the ROM test set by randomly generating
a set of parameter sets and calculating the associated response fields with
the full-order simulation. Then, an initial set of snapshots is created based
on a nested grid with a selected level (this level could typically be chosen
as an arbitrarily small number, such as 1) and an ROM is created from this
set of snapshots. The level of the nested grid is iteratively increased, with
the corresponding new parameter sets evaluated with the full-order model
and the ROM updated after each iteration until the average relative Lo-
error of the ROM computed with the ROM test set is below the level error
tolerance. In order to improve the accuracy of the ROM in the regions of the
parameters space that highest error metric, the local refinement procedure
iteratively generates additional snapshots by sampling a hypercube with a
user-defined sampling procedure (e.g., a uniform grid) in the parameter space
of user-defined relative length (1) centered at the parameter set values from
the ROM test set corresponding to the maximum relative L.,-error (g ), and
the ROM is again updated after each iteration until the maximum relative
Lo-error is below the local error tolerance. Omne of the choices for user-
defined relative length (1) in the local refinement process can be defined as
the euclidean distance in the parameter space between the parameter set
corresponding to E7'*(ROM) (S) and the next nearest parameter set from
the current set of snapshots used to create the ROM.
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Figure 1: Flow chart for computationally efficient approximation of stochastic NDE prob-
lems.

2.3. Computationally Efficient Stochastic Nondestructive FEvaluation Proce-
dure
Putting all of the components together, the complete process for compu-
tationally efficient approximation of NDE problems involving SPDEs is as
following (shown schematically in Figure 1):

Step 1: Create a reduced-order model for the SPDE of interest using a tradi-
tional (full-order) numerical solution technique (e.g., finite element
anlaysis) to adaptively generate an optimal set of snapshots (Sec-
tion 2.2).

Step 2: Create a surrogate model for the SPDE of interest that will es-
timate the system response given inverse problem and uncertain
system parameters using the reduced-order model with the sparse
grid collocation method (Section 2.1).

Step 3: Apply the computational inverse problem solution procedure to es-
timate the solution to the inverse problem by minimizing the dif-
ference between the measured/target system response and the re-
sponse estimated by the surrogate model (Equation (1)).

3. Example and Discussion

Two numerical case studies were considered to investigate the potential
capabilities of the presented approach for creating a ROM using an adaptive
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nested grid sampling strategy and utilizing this ROM to construct a surro-
gate model to be used in a NDE problem with significant system uncertainty.
The objective of the first case study was to inversely calculate the unknown
localized reduction in stiffness of a structure from simulated frequency re-
sponse function based nondestructive testing. Alternatively, the objective of
the second case study was to inversely calculate the temperature-dependent
thermal conductivity of a solid from simulated thermal testing.

For both case studies standard Galerkin finite element analysis [42] was
used to simulate the “experimental” measurements and to generate the snap-
shots for the ROM construction. For all examples, the Gauss Patterson
approach [49, 16] was chosen to define the grid points for both the snap-
shot selection process to create ROMs and the sparse grid surrogate model
method. The ROM test sets for calculating the error norms of the ROM were
comprised of 50 generated response field snapshots based on low-discrepancy
quasi-random Hammersley sampling methods [36, 53], the level error toler-
ance was defined as %! = = 5%, and the local error tolerance was defined
as El = 1% for both example. Gauss Patterson grids were used for the
sparse grids with an initial level of one, and the local refinement process for
the ROM generation added 5 sample points inside an adaptively defined hy-
percube with length (1), in which [ was chosen as the euclidean distance in the
parameter space between the parameter set corresponding to E7'**(ROM)

(5) and the next nearest parameter set from the current set of snapshots
used to create the ROM. A genetic algorithm, specifically the NSGA-II by
Deb. [19] (a stochastic optimization algorithm) was applied to approximate
the inverse problem solutions for all examples (as described in Section 2). For
simplicity, standard GA parameters were utilized and the stopping criteria
was set to be well in excess of the actual convergence of the GA population
to ensure that the optimization process was as successful as possible for each
trial, and therefore, did not bias the results. An important point is that
although a GA provides significant global search capabilities, a GA would
typically be computationally excessive for problems such as this, since GAs
usually require a relatively large number of function evaluations to converge
to a solution. However, the use of surrogate modeling herein allows even a
GA to be applied with relatively low overall computational expense for the
inverse solution process. An addition note is that to add some amount of
realism to the examples and to partially relieve the inverse crime inherent
in simulated experiments, 1% Gaussian white noise was added to all simu-
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Figure 2: Schematic for the first example of stiffness characterization of a plate from
frequency response testing, displaying the sensor locations (x-marks) and the actuator
location (Xg).

lated experimental responses prior to applying the inverse characterization
procedure as:
R™* = R (14 0.01N) | (11)

where R is the original simulated test response without noise and N is a
normally distributed random variable with zero mean and unit variance.

3.1. Stiffness Characterization from Frequency Response Testing

The first numerical example was based upon characterization of the stiff-
ness of a solid from frequency response testing and consisted of a 1m x 1m x
0.01m aluminum plate, that was fixed along the bottom and free to displace
on the remaining three sides. Figure 2 shows a schematic of the plate and
the simulated nondestructive test used to perform the material characteri-
zation. For the simulated test, an actuator was assumed to be represented
by a harmonic 2D pressure force F = (50N/m) x sin(wt) applied to a 0.05m
region normal to the top surface that excited the structure to steady state at
10 equally spaced excitation frequencies between 100 to 1000 H z, while the
resulting harmonic displacement amplitudes were measured at nine “sensor”
locations for each excitation frequency. The horizontal position of the ac-
tuator (defined as the location of the resultant of the distributed load) was
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assumed to be the main source of uncertainty for this inverse problem ex-
ample, and was assumed to be described by a uniformly distributed random
variableXp ~ U(0.625,0.825)m.

3.1.1. Forward Problem and Reduced-Order Modeling:

The structure was assumed to behave linearly elastically with respect to
the nondestructive testing (NDT) and represented by steady-state dynamic
solid mechanics. Therefore, the SPDE and boundary conditions governing
the behavior of the structure can be written as:

zelq, (12)

where o is the stress tensor, w is the excitation frequency, ¢ is again the vec-
tor of both the unknown/inverse problem parameters (stiffness distribution
parameters for this example) and the uncertain system parameters (actua-
tion location for this example), p is the density, @ is the displacement vector,
7 is the unit normal to the surface, G is the applied traction vector, @° is the
vector of applied displacement boundary conditions, €2 is the domain of the
structure, I'¢ is the portion of the domain boundary with applied traction
boundary conditions (which is uncertain for this example), and T, is the
portion of the domain boundary with applied displacement boundary condi-
tions. In addition, the response of the thin plate was assumed to obey the
plane stress condition. The material parameters of the plate were based upon
standard values for aluminum, with a Poisson’s ratio of v = 0.3 and density
of p = 2700 kg/m3. The elastic modulus distribution was assumed to be the
primary unknown of the inverse problem, but for simplicity, the distribution
was assumed to be known to be localized (as could be potentially applicable
for damage characterization problems) with a base value of 69 G Pa, and
defined by a radial basis function (RBF) representation as:

E(T) = {1 — D -exp <—@ﬂ x 69 GPa, (13)

where ||.|| represents the standard l,-norm, D is the Young’s modulus percent
reduction, €, is the center of the RBF (i.e., localized stiffness change), and ¢
is the breadth of the RBF. For the ROM and surrogate model generation and
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the inverse characterization process, the material parameters were assumed
to be bounded as follows: D € [0,1], € € [0, 1]Jm x [0, 1]m, and ¢ € [0,0.1]m?

Applying the Galerkin projection described in Section 2.2 to the governing
equations (Equation 7) produces the ROM for the steady-state dynamic solid
mechanics problem as:

/QV(EC(@ : Zaz w, P V@ (Z a;(w, @ V(ﬁl( )) dx

—i—/ﬂV@(@: ()\ (V.Zai(w,gﬁ)@(f)> I\ dz
/Qw p¢c (Z O[Z w (’0 d[f

(5(;(5) C_j( Z,w,§)dd =0, for c=1..m,

Vel
(14)
where I is the identity tensor, and the Lamé constants can be expressed in
terms of the elastic modulus and Poisson’s ratio as:

B E(Z)v
A= (1—2v)(1+v) (15)
__E@)
C2(1+v)’ (16)

The POD procedure with adaptive snapshot generation described in Section
2.2 was applied to determine the basis for the above ROM. As such, snap-
shot displacement fields were generated with full-order analyses based upon
variations in the input parameters of the RBF (D, ¢ and €), the actuation
location (Xr), and excitation frequency (w). It should be noted that even
though the excitation frequency (w) was discretely sampled in the simulated
test procedure it was treated as a continuous variable identically to the other
input parameters with a range of [100 - 1000] Hz for generality in testing
the ROM algorithm presented. The adaptive nested grid snapshot gener-
ation algorithm converged at a total of 127 snapshots, which were used to
create the ROM that would be applied for the surrogate model generation.
The final value of L at convergence was 2, which produced 97 6-dimensional
snapshot parameter sets, and an additional 30 snapshot parameter sets were
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added in the refinement cycle (6 iterations with 5 parameter sets generated
each iteration).

An intermediate test was performed first, in which the response approxi-
mation capabilities of an ROM created with the adaptive strategy presented
was compared to the approximation capabilities of a “baseline” ROM cre-
ated with an equivalent number (i.e., 127) of snapshots that were entirely
randomly generated from the space of input parameters (as has often been
the default snapshot creation strategy in the literature). The average rela-
tive Lo-error and the maximum relative Lo-error (as defined previously in 9
and 10, respectively) between both ROMs and a set of 50 test response fields
that were generated based on quasi-random low-discrepancy Hammersley
sampling methods (and different than the snapshot sets used to generate the
ROMs) were calculated. The two error values (Ls and L) for the adaptively
generated ROM were 1.09% and 1.64%, respectively, while the error values
for the baseline ROM were 1.97% and 2.08%, respectively. Thus, the use of
the adaptive nested grid snapshot generation strategy improved the accuracy
of the resulting ROM by 46% in terms of the average relative Lo-error and
21% in terms of the L..-error in comparison to a common random genera-
tion approach. In other words, the use of the adaptive snapshot generation
procedure to more “intelligently” sample the parameter space targeting the
areas in the parameter space with highest error produced a more accurate
ROM for the fixed number of snapshots in comparison to random snapshot
generation.

3.1.2. Surrogate Modeling:

In order to construct a sparse grid approximation of the displacement with
respect to the vector of unknown parameters and the vector of uncertain
system parameters (parameters of the RBF, excitation frequency, and the
location of the actuator) as described in Section 2.1, a 6 dimensional level 5
sparse grid, which required 1,345 evaluations of the ROM, was found to be
suitable to approximate the displacement fields. Note that the computing
cost (in terms of analysis time) of the ROM was approximately 10% of the
cost of the equivalent full-order model, and therefore, the overall cost of
creating the surrogate model was approximately 10% of what would have
been required with a full-order model.
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3.1.3. Material Characterization Results:

The objective of the inverse problem for this first example was to deter-
mine the statistics of the elastic modulus distribution, and therefore the RBF
parameters (D, ¢, and €), with respect to the nondestructive test with the
uncertain location of the actuation (Xr). The objective functional used for
the optimization-based inverse solution procedure in terms of the nine dis-
placement measurement locations ({Xg;}2_,) at the 10 excitation frequencies
was cast as:

— . _ 2
5 2o (Rmes(Xsi,w5) — RO (Xsi, w33 D, 0, Xp))

J(D,c,g)zzz

= 2
i=1 j=1 (RmES(XSi,Wj)>

, (17)

where R™ is the simulated experimentally measured response (i.e., target
response) and R*™ is the response estimate simulated with the surrogate
model for a given estimate of the inverse problem solution and the uncer-
tain parameter. To estimate the statistical moments of the inverse problem
solution, the optimization-based solution procedure was repeated 20 times,
each time with a different randomly generated value of the actuator location
(within the given bounds) assumed within the surrogate model estimate of
the system response to be compared to the simulated experimental measure-
ments. Also note that the actuator location used to generate the simulated
experimental measurements was randomly selected, but fixed for all trials
(as would be the case in reality). 20 was chosen arbitrarily as the number of
trials, since the accuracy of the statistics of the solution was considered less
important than showing that the surrogate model approach was capable of
estimating these solutions (nearly) as accurately as a traditional (full-order)
model, but with a fraction of the computational expense. For each trial the
stopping criteria for the GA optimization process to estimate the material
parameters was set as a maximum of 7,000 functional evaluations.

Table 1 shows the mean (the first moment) and variance (the second
central moment) of the RBF parameters estimated by the inverse solution
process. Table 1 also shows the mean and variance of the measurement er-
ror corresponding to the parameter estimates with respect to the surrogate
model (Equation 17) and the measurement error of those parameter estimates
with respect to the full-order model (Equation 17 with the full-order model in
place of the surrogate model for R¥™), as well as the error between the surro-
gate model and the full-order model (Equation 17 with the full-order model in

20



Table 1: Target values for the unknown damage amplitude (D), the breadth (c¢), and the
horizontal and vertical location of the damage center (e, ¢€,), the mean and variance of
the corresponding values estimated for the 20 trials, and the mean and variance of the
measurement error corresponding to the parameter estimates with respect to the surrogate
model (SM-EXP) and with respect to the full-order model (FOM-EXP), and the error
between the surrogate model and the full-order model (SM-FOM) for the first example.

D c €x €y Relative Lo-Error
Target Value| 0.7 0.005 0.7 0.3 |[SM-EXP FOM-EXP SM-FOM
Mean 0.51  0.0049 0.7 0.36 0.12 0.18 0.018
Variance 0.062 9.18x107% 0.019 0.022| 0.006 0.043 0.004

place of the target response, R*) for the parameter estimates. The resulting
parameter values were consistent with the sensitivity of the system response
to the uncertain system parameter, with the mean value of the breadth and
horizontal location of the RBF having been accurate in comparison with the
target values (i.e., those used to simulate the experimental data) and with
relatively low variances. Alternatively, the amplitude and vertical location
of the RBF were more sensitive to the uncertain actuator location, particu-
larly relative to the sensitivity of the measured response to those parameters
themselves, and therefore, had significantly more relative variance and lower
accuracy overall. One physical interpretation would be that the given test
was considerably more reliable in predicting the horizontal location and size
of the material variation in comparison to the magnitude and depth of the
variation. The displacement measurement error with respect to the simu-
lated experiment with the full-order model in place of surrogate model shows
higher relative Lo-Error than the measurement error of simulated experiment
with surrogate model, which is expected since the error objective functional
was minimized based on surrogate model. More importantly, the difference
between the surrogate and full-order models and the change in measurement
error when analyzing the solutions with the full-order model rather than the
surrogate model were both relatively low. These low errors provide confi-
dence that the surrogate model was able to accurately represent the system
response, and thus, provide accurate estimates to the statistical moments
of the inverse problem solution for the elastic modulus distribution. This is
particularly impressive when considering that the surrogate model was built
using only 177 full-order analyses (127 for the ROM snapshots and 50 for the
ROM test set) to then be used for 140,000 system evaluations (7,000 evalu-
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Figure 3: Schematic for the second example of conductivity characterization from thermal
testing, displaying the sensor locations (x-marks) and the temperature and flux boundary
conditions.

ations for each of the 20 GA trials), with those 140,000 system evaluations
only requiring on the order of 1 hour of computing time on a standard PC
with a 2.00 GHz processor and 4 GB RAM.

3.2. Conductivity Characterization from Thermal Testing

The second numerical example was based upon characterization of the
thermal conductivity of a solid from temperature measurements. Figure 3
shows a schematic of the 0.2m x 0.2m two-dimensional plate structure and
the simulated thermal testing considered. The simulated thermal testing
involved applying a heat flux to the top surface of the plate, with the plate
having a known initial temperature of 0 throughout and the remaining three
sides fixed at a temperature of 0, and the transient temperature response at
9 discrete “sensors” within the plate was measured. The applied heat flux
was assumed to be the main source of uncertainty for this problem, with this
uniformly applied flux assumed to be defined and known for the purposes of
the inverse problem as:

7="7Tx10°x (1+¢) W/m?, (18)
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where the uniformly distributed random variable { ~ U(0,1). Then, the test
was simulated by randomly generating 40 realizations of the applied heat flux
from the given distribution, and for each realization of the applied flux the
resulting temperature was measured at 10 uniformly spaced points in time
between Os and 1s at each sensor to produce the first moment and second
central moment of the temperature at each sensor and each time step with
respect to the variable flux.

3.2.1. Forward Problem and Reduced-Order Modeling:

The structure for this example was assumed to have a nonlinear transient
thermal response due to a nonlinear thermal conductivity and no internal
heat sources, with the SPDE and boundary conditions governing the behavior
given as:

OT(#t,3)
ot
_(H (T<f7t7 QB)) ’ VT(fut76>> : ﬁ(f) - Q(C)v VIe FQ? (19)
t

p Cy

where T is the temperature, ¢t € [0,1]s is the time, p is the density, C, is
the specific heat, (7" is the temperature-dependent thermal conductivity,
@ is again the vector of both the unknown/inverse problem parameters (heat
conductivity parameters for this example) and the uncertain system param-
eters (heat flux magnitude for this example), 7 is the unit normal to the
surface, €2 is the domain of the structure, I'y is the portion of the domain
boundary with applied heat flux boundary conditions, and I'r is the portion
of the domain boundary with applied temperature boundary conditions. The
specific material parameters were based on those utilized in [5] (with some
minor modification to the function used to define the thermal conductivity),
with a density of p = 7850 kg/m? and specific heat of C, = 419 J/(kg -° C).
The temperature-dependent thermal conductivity x(7T) was assumed to be
the primary unknown of the inverse problem and defined in terms of four
scalar coefficients in the following form:

K (T(%,t,58)) = csT°(Z,t, ) + T (Z,t,§) + o1 T(%, ¢, 8) + co. (20)

For the ROM and surrogate model generation and the inverse characteriza-
tion process, the four material parameters were assumed to be bounded as
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follows: co € [420,980] W/(m K), ¢; € [1.8 x 1072, 4.2 x 107% | W/(m K),
co €[1.2%x 1073, 28 x 107 | W/(m K), and ¢3 = [0.66 x 1072, 1.55 x 1073

Applying the Galerkin projection described in Section 2.2 to the governing
equations (Equation 19) produces the ROM for the nonlinear transient heat
transfer problem as:

0 C, 80‘0 —1—002041 @, / Voi(Z) - Vo T)di
+01/Q<Zaj( 1) f) Za, (B, 1)V ¢4(T) - Vo(T)dT

+e /Q (Zaj@,t)cbj(f)) D@ NVe) Vou@)dE  (21)

j=1 =1
m 3 m
e /Q (Zamtm(@) S 0a(@ V() - Vou(#)di
j=1 i=1
— | ¢(Z)gdZ =0, for c=1..m,
Fq
with
(.t = 0) = / Ty- 6u(@)dF, for c—1..m. (22)
Q

The snapshot temperature fields generated with full-order analyses using
the adaptive snapshot generation algorithm were based upon variations in
the thermal conductivity parameters (cp, c1, co, and c3) and the heat flux
amplitude parameter (¢). Alternatively, for simplicity, the time sampling
was fixed for the snapshot generation, with three times generated for each
conductivity and heat flux combination: ¢t = 0.3s, t = 0.6s, and t = 0.9s.
Through initial testing of this example, these 3 snapshots through time were
determined to be sufficient for approximating the system behavior. However,
it should be noted that as the nonlinearity in time of a problem increases,
the number of snapshots in time needed for accuracy will also increase. The
adaptive nested grid snapshot generation algorithm converged at a total of
36 transient full-order analyses to form the 108 snapshots used to create
the ROM. The final value of L. at convergence was 1, which produced 11 5-
dimensional snapshot parameter sets for each value of time. An additional 25
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snapshot parameter sets were added during the refinement cycle (5 iterations
with 5 parameter sets generated each iteration).

Again, an intermediate test was performed first, in which the response
approximation capabilities of an ROM created with the adaptive strategy
presented was compared to the approximation capabilities of a baseline ROM
created with an equivalent number (i.e., 50) of snapshots that were entirely
randomly generated from the space of input parameters. The average relative
La-error and the maximum relative L.-error between both ROMs and a
set of 50 test response fields that were randomly generated based on quasi-
random low-discrepancy Hammersley sampling method calculated. The two
error values (Lo and L) for the adaptively generated ROM were 0.85%
and 1.05%, respectively, while the error values for the baseline ROM were
1.79% and 2.09%, respectively. Thus, the use of the adaptive nested grid
snapshot generation strategy improved the accuracy of the resulting ROM
by 52% in terms of the average relative Lo-error and 50% in terms of the
L.-error in comparison to a common random generation approach for this
second example.

3.2.2. Surrogate Modeling:

A 6 dimensional level 5 sparse grid was used to construct a suitably
accurate surrogate model approximation of the temperature response with
respect to the thermal conductivity parameters (cg, ¢1, ¢2, and ¢3), the heat
flux parameter(¢), and the time (t), which required 1, 345 evaluations of the
ROM. Similarly as the previous example, the computing cost of the ROM
was approximately 5% compared to that of the full-order model used to
create the ROM, and therefore, the overall cost of constructing the sparse
grid surrogate model was 5% of the computing cost that would have been
required to use the full-order model only.

3.2.3. Material Characterization Results:

The objective of the inverse problem for this second example was to de-
termine the parameters of the temperature-dependent thermal conductivity
function (¢, ¢1, ¢ and c3) with respect to the simulated thermal test that
produced the two statistical moments (i.e., mean and variance) of the tem-
perature at each sensor location ({Xg;}?_,) at 10 uniformly spaced points in
time between 0s and 1s ({t;};2;) with respect to the uncertain applied flux
parameter (). Therefore, the objective functional used for the optimization-
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Table 2: Target (i.e., simulated experimental) values for the heat conductivity parameters
(co, €1, c2 and c¢3) and the corresponding values estimated by the inverse characterization
process, as well as the respective relative error for each estimated parameter.

Co C1 Ca C3
Target Value 650 25x1073 25x1073 1.2x1073
Estimated Value | 638 2.01 x 1073 2.39 x 1073 1.15x1073
Relative Error 1.8% 19.6% 4.4% 4.2%

based inverse solution procedure was defined as:

10 10 2 <Tmes(f5i,tj)>k—<T5im()?sz',tj;007017627037C)>k

i=1 j=1 k=1 <Tmes()zsz', tj)>k

(23)

where T™¢ is the simulated experimentally measured response, T5™ is the
response estimate simulated with the surrogate model for a given estimate of
the inverse problem solution and the uncertain parameter, (.), represents the
first moment operator, ()2 represents the second central moment operator,
and |.| is the absolute value operator. Similarly to the approach that was used
to generate the simulated experimental data, the moments of the temperature
response were estimated with the surrogate model during the optimization
process (i.e., at each iteration) by randomly generating 40 realizations of
the applied heat flux parameter, evaluating the surrogate model with each
realization (given values of the thermal conductivity parameters and the
time), and then estimating the moments from the results. The stopping
criteria for the GA optimization process to estimate the material parameters
for this example was set as a maximum of 40,000 evaluations of the error
functional.

Table 2 shows the thermal conductivity parameters used to simulate the
experimental measurements (i.e., the target conductivity parameters), the
thermal conductivity parameters estimated with the inverse solution process,
and the relative error between each target and estimated parameter. More
importantly, Figure 4 shows a plot of the temperature-dependent thermal
conductivity that corresponds to the parameters used to simulate the exper-
imental measurements (i.e., the target conductivity function) compared to
the thermal conductivity corresponding to the parameters estimated through
the inverse solution procedure. These results clearly indicate that the inverse
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Figure 4: Target (i.e., simulated experimental) temperature-dependent thermal conduc-
tivity and the thermal conductivity estimated by the inverse characterization process (Es-
timated).

procedure utilizing the computationally efficient surrogate model was able to
accurately estimate temperature-dependent thermal conductivity, with the
approximate relative Ls-error in the thermal conductivity being less than
1%. More specifically, the surrogate model was capable of successfully cap-
turing the relationship between the temperature response and the uncertain
applied flux for the potential variations in the thermal conductivity with suf-
ficient accuracy to guide the optimization-based inverse solution procedure
through the parameter space to an accurate solution. Similarly to the previ-
ous example, the surrogate model also provided a dramatic decrease in the
computational expense compared to the cost of using the full-order model or
reduced-order model directly. For this second example, the surrogate model
was built using only 86 full-order analyses (36 for the ROM snapshots and 50
for the ROM test set) to then be used for 40,000 system evaluations, which
required on the order of 30 minutes of computing time on a standard PC
with a 2.00 GHz processor and 4 GB RAM.

4. Conclusion

A novel approach was presented for creating a computationally efficient
polynomial approximation (i.e., surrogate model) of a system response with

27



respect to any designated unknown parameters, including parameters that
may be considered to have significant uncertainty and/or parameters that
are entirely unknown and sought to be determined through a nondestructive
evaluation procedure. To enhance the overall efficiency of the approach, a
novel algorithm was included as an intermediate step for creating a reduced-
basis type reduced-order model of the system of interest. This intermediate
step was based upon a technique to use nested grids to adaptively gener-
ate a data ensemble that is representative of the potential system response
with respect to the unknown parameters. The overall approach would then
use this computationally efficient ROM to create the surrogate model rather
than a full-order model (e.g., traditional finite element analysis) at a sub-
stantial computational savings. This approach to generate an ROM was
shown to provide a more accurate representation of the system of interest
in comparison to a commonly used approach of randomly generating the re-
sponse field ensemble. The overall surrogate modeling approach was then
evaluated through numerically simulated example inverse problems based on
characterization of material properties for two different systems, involving
solid mechanics and heat transfer, respectively. Not only did the two exam-
ples consider different physical processes, but they also consider two different
ways that uncertainty could be present and significant within NDE applica-
tions. The first example showed that the surrogate modeling approach could
be used to computationally efficiently and accurately estimate the statisti-
cal moments of the parameters for an unknown stiffness distribution for a
dynamically tested solid with uncertainty in the applied actuation. Lastly,
the surrogate modeling approach was shown to be able to provide a sin-
gle estimate, again both efficiently and accurately, of the parameters for an
unknown temperature-dependent thermal conductivity for a solid in which
the inverse problem objective was to match the statistical moments of the
measured temperature field given an uncertain applied heat flux.
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