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Variability in individual rates of aggression in wild gray seals: Fine-scale 30 

analysis reveals importance of social and spatial stability  31 

 32 

Abstract 33 

Aggressive interactions are costly for individuals in time, energy or physical damage, and in polygynous 34 

mating systems, there is high variability in the rates and intensity of aggression across individuals and 35 

within breeding seasons. However, examinations into the drivers of this variability are often conducted in 36 

isolation, in non-wild systems, or the predictor variables in question, for example, dominance, are 37 

averaged across large spatial, social, or temporal scales. The aim of this study was to adopt a fine spatial 38 

and temporal scale approach to investigate the factors associated with inter-individual variation in 39 

aggression in wild, breeding male gray seals within three consecutive breeding seasons. To do this, we fit 40 

models examining if the daily frequency of aggression and probability of escalated aggression for males 41 

was best explained by factors such as dominance score, proximity to competitors or females, local social 42 

stability, and the occurrence of stochastic environmental events. Stability of neighbor identities was the 43 

strongest correlate of reduced male aggression. Dominance status did not correlate with aggression at the 44 

daily scale, with the exception of one period after a natural disturbance to the breeding colony where 45 

dominant males had relatively reduced rates of aggression. These findings emphasize the importance of 46 

local social stability in explaining inter-individual variation in aggression in a wild population, and 47 

suggest that factors associated with aggression are context-dependent in relation to the natural 48 

environment. Furthermore, we highlight the utility of a fine temporal scale and incorporating spatial 49 

parameters when investigating variability in aggression in wild systems.  50 

 51 

 52 

 53 
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INTRODUCTION 54 

 55 

Animals face conflict within social groups as members compete for access to contested resources 56 

such as food, habitat, or mates, but conflict can be costly in time, energy, or physical injury (Maynard 57 

Smith and Price 1973; Maynard Smith 1974; Briffa and Elwood 2004). Individual variation in rates of 58 

aggression can be driven by characteristics of individuals such as size, age, or experience (Briffa and 59 

Elwood 2004), or by the presence of dominance hierarchies, winner/loser effects, honest signals of 60 

resource holding potential (RHP), and social relationships (Arnott and Elwood 2009; Kokko 2013). The 61 

importance of these factors can be context-dependent in relation to broader ecological processes such as 62 

resource availability (Lieser 2003), physiological constraints (Bohórquez-Herrera et al. 2014) and the 63 

underlying social system within a population or species (Ang and Manica 2010). 64 

For social animals, the formation of a linear, transitive dominance hierarchy based on RHP 65 

asymmetries between individuals can minimize costs associated with aggression. In stable hierarchies, 66 

dominant individuals typically gain increased mating success (Anderson and Fedak 1985; Drews 1993; 67 

Haley et al. 1994; Herberholz et al. 2007; Gerber et al. 2010), but an individual’s position in the hierarchy 68 

can also influence the rate or the probability of escalation (Rosenthal et al. 1992; Drews 1993; 69 

Goessmann et al. 2000; Ang and Manica 2010). In some breeding systems, high rank is associated with a 70 

greater intensity or increased frequency of aggression associated with defending a territory or mates 71 

(Francis 1988; Rosenthal et al. 1992; Goessmann et al. 2000; Ang and Manica 2010). However, other 72 

studies have demonstrated that dominant individuals have relatively reduced costs, and experience lower 73 

rates or intensity of directed aggression in comparison to subordinates (Twiss 1991; Heitor et al. 2006; 74 

Ostner et al. 2008).  75 

These differing relationships between dominance and aggression might be driven by the spatial 76 

distribution and social systems wherein the aggression occurs (Hemelrijk 2000). Alternatively, until 77 

recently, the available methodologies for calculating an individuals’ dominance score or rank were best 78 

applied to data spanning relatively long temporal scales (Boyd and Silk 1983; David 1987; Gammell et 79 
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al. 2003; de Vries et al. 2006). Recent additions to the dominance score calculation toolbox such as Elo 80 

ranking (Neumann et al. 2011) now allow for calculations of dominance in sequence, and at a finer 81 

temporal scale. If dominance or social structures vary within breeding seasons, adopting these methods of 82 

dominance calculation might provide insights into what drives the observed fine-scale variation in 83 

individuals’ rates or intensities of aggression. In order to tease apart these mechanisms and relationships, 84 

this study aimed to investigate the natural variation in aggression by using a spatially and temporally 85 

relevant scale, and by considering the structure of the physical and social environment. 86 

The polygynous breeding pinnipeds provide an ideal model for such investigations, and previous 87 

work has addressed the drivers of aggression and dominance in these systems (Anderson and Fedak 1985; 88 

Haley et al. 1994; Twiss et al. 1998; Lidgard et al. 2005; Carlini et al. 2006; Bohórquez-Herrera et al. 89 

2014). The gray seal (Halichoerus grypus) is a colonial, capital breeder where there is high skew in male 90 

mating and reproductive success (Twiss et al. 2006, 2007). Male energy is limited during the 91 

approximately 8 week annual breeding season (Twiss 1991), and there is considerable variability between 92 

years, colonies and individuals in the frequency of male-male agonistic interactions (Boness 1984; Twiss 93 

1991; Lawson 1993; Twiss et al. 1998). Inter-male aggression during the gray seal breeding season 94 

occurs as males strive to maintain access to shifting groups of females (Anderson et al. 1975; Twiss 95 

1991; Twiss et al. 1994, 2007). Males form a non-linear dominance hierarchy, where apart from a few 96 

clearly dominant and subordinate individuals, most males have very similar dominance scores (Twiss 97 

1991; Twiss et al. 1998). In general, dominant males experience the greatest levels of mating success 98 

through increased tenure duration and also experience relatively reduced aggression intensity and rates 99 

across a breeding season (Boness and James 1979; Anderson and Fedak 1985; Twiss 1991; Twiss et al. 100 

1998, 2006, 2007; Worthington Wilmer et al. 2000; Lidgard et al. 2004). However, previous studies 101 

investigating individual rates of aggression (Twiss 1991) compared individuals at the scale of a whole-102 

season, and did not consider spatial and temporal fluctuations in aggression, sex-ratios, distributions of 103 

competitors, and distributions of females, all of which shift throughout a season (Pomeroy et al. 1994; 104 

Twiss et al. 1994). Furthermore, gray seal males and females exhibit site-fidelity between seasons 105 
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(Pomeroy et al. 1994; Twiss et al. 1994). Inter-annual male associations and within-year spatial social 106 

stability have been suggested as potential drivers of conflict reduction in gray seals (Anderson et al. 1975; 107 

Twiss 1991), but the relative importance of such factors in explaining the fine-scale variation in 108 

individuals’ rates of aggression has not been previously examined.  109 

Hemelrijk (2000) advocated studying animal behavior not in isolation, but with attention to 110 

spatially explicit individual, environmental and social variables. Therefore, the aim of our study was to 111 

use the wild gray seal breeding system to investigate, at a fine temporal and spatial scale, which factors 112 

best explain the variability in individual males’ rates of aggression and probability of engaging in an 113 

escalated interaction. We hypothesize that at the daily scale, based on the previous findings of Twiss 114 

(1991), the more dominant males will have lower rates of aggression. In addition to dominance, we 115 

included two density related spatial factors that vary at a fine temporal scale within a breeding season 116 

(Twiss et al. 1994) but have not been included in previous models of aggression for this system: 117 

proximity to competitors as a measure of intensity of competition and, proximity to females as a measure 118 

of ease of access to the contested ‘resource’. These variables were chosen because although male gray 119 

seals do not form distinct territories, male and female attendance shifts within a breeding season, 120 

changing the social structure at a fine temporal and spatial scale (Pomeroy et al. 1994, Twiss et al. 1994). 121 

Finally, male gray seals demonstrate inter-annual site-fidelity (Twiss et al. 1994) and social stability 122 

within breeding seasons influences female gray seal breeding behaviors (Pomeroy et al. 2005). Recent 123 

evidence also suggests that when weaned gray seals of both sexes were penned together, subsequent 124 

interactions between familiar individuals had less aggression than when the pups were ‘strangers’ 125 

(Robinson et al. 2015). Therefore, we included a daily measure of the stability of a male’s local 126 

‘neighborhood’ in our models, and predict that males with high local social stability will have lower rates 127 

and intensities of aggression (Anderson and Fedak 1985; Twiss 1991; Booksmythe et al. 2010; Cross et 128 

al. 2013). These factors were modelled within 3 successive breeding seasons to examine how within-129 

season stochastic environmental events and broad environmental variability across seasons might change 130 

which factors drive individual rates and intensity of aggression. 131 
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Methods 132 

Field Site  133 

Data were collected at the Donna Nook breeding colony on the North Lincolnshire coast, eastern 134 

England (53.47°N, 0.15°E). Field observations were conducted during all daylight hours (mean = 8h 135 

48min daily) across three autumn breeding seasons from 3 November to 12 December in 2011, and from 136 

27 October – 12 December in 2012 and 2013. Weather patterns varied across study years. The 2011 137 

breeding season was considerably warmer and drier relative to the other two years of study (mean air 138 

temp 2011: 8.17 °C; 2012: 6.42 °C; 2013: 6.79 °C  and mean rainfall 2011: 0.58 mm per day;  2012: 2.87 139 

mm per day; 2013: 2.14 mm per day).  140 

Two approximately 200m x 200m sites within the Donna Nook colony were selected to cover the 141 

range of topography: the public (PUB) site had grassy dunes and mud wallows (53.476°N, 0.155°E) and 142 

the Royal Air Force (RAF) site was primarily comprised of sand flats (53.474°N, 0.155°E). In 2011, one 143 

observer alternated between study sites within Donna Nook (Bishop et al. 2014); in 2012-2013 a second 144 

observer, trained by the primary, was added. Both alternated daily between sites in order to provide full 145 

observational coverage and minimize observer bias. At Donna Nook, two main breeding aggregations 146 

form, one along the waterfront and another approximately a mile inshore along the dune line. This study 147 

was conducted on the inshore breeding aggregation. Males in the study area were identified daily via 148 

unique, natural pelage markings in the field or post-hoc from high resolution pictures taken with a Canon 149 

EOS 30D, 100-400mm lens (Twiss et al. 1994; Bishop et al. 2014). The photo-ID catalogue contained a 150 

total of 170 individual males identified 2011; increasing to 287 in 2012; and 398 males in 2013. 151 

Male-male aggressive interactions  152 

Male-male aggressive interactions (AIs) were defined as any agonistic interaction between two or 153 

more males (Twiss 1991; Bishop et al. 2014). Inter-male aggression is typically characterized by low-154 

cost, noncontact displays, but some interactions escalate to fights (Boness 1984; Twiss 1991). In the 155 

prefight noncontact stage, males use a suite of nonvocal behaviors such as the Open-Mouth Threat 156 
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(Miller and Boness 1979; Twiss 1991; Lawson 1993; Twiss et al. 1998) and, at some colonies, the Body 157 

Slap (Bishop et al. 2014, 2015a). Contact AIs, or fights, are characterized by series of lunges, bites and 158 

bouts of ‘wrestling’ behavior (Twiss 1991). AIs involving at least one identified male were recorded with 159 

notation of participants’ IDs, start and end times, and coarse details of behaviors performed. Agonistic 160 

interactions are sufficiently conspicuous (particularly in open terrain with no visual obstructions) and 161 

rare, which allowed for all occurrence records to be kept while performing other observations (Altmann, 162 

1974). For aggressive interactions, the record was labelled as noncontact (threat phase) or contact (fight) 163 

and the outcome was noted as either draw or win-loss (Bishop et al. 2014). A male was determined to 164 

have won an encounter if his opponent moved or was chased away and lost his position amongst a group 165 

of females; otherwise the outcome was defined as a draw (Anderson and Fedak 1985; Twiss 1991; Twiss 166 

et al. 1998; Bishop et al. 2014). From this, the daily number of aggressive interactions (DAI) was 167 

calculated for each male. To standardize for unequal observation times within and between days, the 168 

number of aggressive interactions observed in a day for each male was divided by the number of hours he 169 

was present to get a rate of aggression per hour. This metric was then converted to a rate per 8 hours to 170 

allow for comparison to published data from other colonies which also reported rates per 8 hrs (day) of 171 

observation (Twiss 1991). To account for potential bias due to extrapolation (e.g. if a male partook in a 172 

large number of AIs observed over a short time period), for each male, only the days in which he was 173 

observed for a minimum of 4 hours were used.  174 

Spatial distribution of males 175 

Locations of all males were mapped hourly on printed aerial photos of the colony using a Nikon 176 

laser 550 rangefinder (6x21), with accuracy of 0.5m up to 100m and ±1m at >100m distance, and horizon 177 

reference points to determine distance and location of males. Female gray seals typically move <10m per 178 

day, and none of the rare ‘long-distance’ travelling behaviors observed at other colonies (Redman et al. 179 

2001) were noted at Donna Nook (James 2013). As such, females were mapped once daily (Pomeroy et 180 

al. 2000, 2005; Twiss et al. 2007), with differentiation noted for the age class of pups (Kovacs and 181 
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Lavigne 1986). Post-hoc, the images of the hourly maps of male locations were georectified to OSGB 182 

coordinate system, and male locations digitized using ArcInfo and ArcMap 10.1 (ESRI). For each male, 183 

the distance to the nearest male and nearest female in meters during each hour of mapping were 184 

calculated using the NEAR function in ArcMap 10.1 (ESRI). In order to provide accurate estimates of 185 

female to male distance, if a male was not present at the hour for which females were mapped, then 186 

distance to female was not calculated for him that day. Distance to female and distance to male were then 187 

averaged for each individual by day. 188 

Measures of Dominance 189 

Due to sample-size requirements, dominance score calculations such as the David’s Score (David 190 

1987; Gammell et al. 2003; de Vries et al. 2006) generate one score per male for an arbitrary time period 191 

(e.g., a month, a year, a breeding season) using the results of all of the male’s interactions in relation to 192 

other males in the specified sample. This limitation obscures temporal variation within individual males’ 193 

scores and ignores the variability in timing or presence on the colony between males (Neumann et al. 194 

2011). If David’s Score is used, a male gray seal who was only present for the final week of the breeding 195 

season, but won every interaction, could have a higher score than a male who was present all season and 196 

lost a handful of interactions. Additionally, males may be expressing or asserting dominance at different 197 

points of the season but this trajectory of dominance would be lost or masked in a dominance metric that 198 

relies on seasonal averages. This temporal disconnect has rarely been considered in dominance literature 199 

due to lack of appropriate methodology or adequate samples sizes to allow analysis at fine temporal 200 

scales; however, a recent addition to the dominance-score calculation toolbox, Elo ranking, has been 201 

advocated for ecological systems by Neumann et al. (2011).  202 

Elo score calculations generate real-time updates of ranks that are temporally fixed, in sequence 203 

and can account for draws and incomplete interaction matrices (Neumann et al. 2011). Mean Elo is 204 

comparable to David’s Score (Neumann et al. 2011), so broad assessments and comparisons can still be 205 

made. For this study, we calculated Elo scores for males who were present for a minimum of 2 days and 206 
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10 AIs for consistency with previous work (Twiss 1991; Bishop et al. 2014). The parameters of the Elo 207 

calculations included a starting value of 1000 for every male (Pӧrschmann et al. 2010) and a k value of 208 

200, where k is the amount a males’ score will shift depending on if the outcome was a win or loss, or 209 

0.5*k for draws, weighted by the score of his opponent (Neumann et al. 2011). A study on Galàpagos sea 210 

lions (Zalophus wollebaeki) set k at 50 (Pӧrschmann et al. 2010), but we selected to use the higher default 211 

value of 200 to account for the heavy costs associated with losing in this system (Anderson and Fedak 212 

1985; Twiss 1991). Males exhibit site-fidelity, are long-lived and evidence suggests that males do not 213 

shift dominance ranks substantially between years (Twiss 1991; Twiss et al. 1994). Therefore, while 214 

initial starting values were set at 1000, if a male was present for more than one year, his final Elo score 215 

from the previous year was used as the starting value in the subsequent year. Using these calculations, a 216 

male’s daily Elo score (DayElo) was the average of all his scores for a given day, within each year. As 217 

the range of possible Elo scores can vary depending on the individuals and aggressive events within a 218 

given day, year, or site (Neumann et al. 2011), DayElo values for individuals were normalized to allow 219 

for comparisons: DayEloN = (DayEloID – min(DayEloday) / (Range of DayEloday), which resulted in a 220 

range of individuals’ average scores per day of 0-1, from low to high dominance.  221 

Stability of neighbor identity  222 

Hierarchy stability is one way to track changes in inter-individual relationships for large social 223 

groups (Neumann et al. 2011). It is suitable for tracking broad changes in the hierarchy composition but it 224 

does not take into account how localized spatial differences in individual identities change over time. 225 

Therefore, we selected to calculate a measure of the local social stability, which could be extracted for 226 

individuals at a daily scale. Localized social stability has been previously estimated for female gray seals 227 

using the definition that neighbor affiliations were any females within 10m of each other (Ruddell et al. 228 

2007); however, since male gray seals do not form discrete territories and are typically more dispersed 229 

than females (Twiss et al. 1994) this method was not deemed suitable. Instead, we calculated localized 230 

associations by deriving Theissen polygons around each individual male using ArcMap 10.1 (ESRI; Fig. 231 

1). Theissen Polygons are generated by creating lines at the midpoint between two adjacent points for 232 
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each hourly map (Fig. 1). From this, any male whose polygon was adjoined to the focal male’s polygon 233 

was classified as a neighbor for that hour. Jaccard’s Similarity index (JSI) was the best metric for 234 

quantifying local social stability in colonial pinnipeds (Ruddell et al. 2007); so we calculated a measure 235 

of neighbor similarity for each focal male as a measure of how many of his neighbors were similar 236 

between two consecutive hours (1).  237 

(1) Neighbor Similarity = #Same / (#Same + #New + #Lost) 238 

Due to a number of transient, non-identified males on the colony at any given time, we selected to amend 239 

the neighbor similarity calculation to account for un-identified neighbors as part of the total neighbor 240 

pool (2):  241 

(2) Neighbor similarity = #Same / (#Same + #New + #Lost + Unknown Hour n + Unknown Hour n-1) 242 

This assumed that any unknown males from the previous hour were not the same individuals as the 243 

unknowns from the present hour. This likely over-estimates changes in neighbors, but all males present 244 

for more than 1 hour in the study area were photographed and cross-checked against the photo-ID 245 

catalogue for matches, thus reducing the probability of double-counting. Also, under this assumption, we 246 

provide a more conservative estimate of stability as any transient males that were not identified were 247 

unlikely to be present long enough to contribute to the social stability of the system (Twiss 1991). 248 

Neighbor similarity values were then averaged per day for each male and ranged from 0 (unstable: all 249 

new neighbors) to 1 (stable: no new neighbors). 250 

Statistical Analyses 251 

We first examined how neighbor similarity and other spatial metrics for males on the colony 252 

changed within and between seasons. Individual daily averages for neighbor similarity, distance to 253 

nearest male, and distance to nearest female were assessed for differences between sites at Donna Nook 254 

(RAF n = 590; PUB n = 827) and years (2011 n = 277; 2012 n = 634; 2013 n = 504) using linear mixed 255 

effects models (LMMs) with male ID (n = 147) and observer ID (in 2012 and 2013, n = 2) as random 256 

effects to account for pseudoreplication and observer variance. For measures across years, only days that 257 
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were present in all three years (Day of Year (DOY) 309-343) were used for calculating means/medians. 258 

In 2011, a storm-surge, tidal-event occurred on November 26
th 

(DOY 330) which resulted in spring tide 259 

waters >8m, female-pup separations and a general disorganization of the breeding colony. To test if this 260 

event changed the local social or spatial structure, LMMs similar to those above were fit with neighbor 261 

similarity, distance to nearest male, and distance to nearest female as the response variables, but with 262 

SITE (RAF n = 590; PUB n = 827), Tidal Event (Before n = 220; After n = 57), and SITE*Tidal Event as 263 

the categorical predictor variables. 264 

We then examined the factors driving individual daily rates of aggression by fitting generalized 265 

LMMs (GLMM, Poisson distribution; link= log) with male ID and observer ID (in 2012 and 2013) as 266 

random effects to account for repeat measures of the same male within each year and potential observer 267 

variance. The response variable was the rounded daily rate of aggression (DAI) per male per day, and the 268 

predictor variables included were the male’s mean normalized dominance score that day; his average 269 

distance to nearest male that day; average distance to nearest female that day; and his average neighbor 270 

similarity that day. These predictor variables accounted for individual quality, density effects and social 271 

determinants of rates of aggression. The model also included SITE as an interactive, fixed explanatory 272 

variable to test for site specific differences. Models were fit for 2011, 2012 and 2013 separately to allow 273 

for inclusion of year-specific variables. Specifically, an additional predictor variable of Tidal Event 274 

(TDEV) was included in the 2011 model as an interactive term to test if the continuous predictor 275 

variables differed in their effect prior to or after the tidal event. Finally, the same modeling procedure was 276 

followed to predict the probability of a male engaging in at least one aggressive interaction which 277 

involved contact per day using binomial GLMMs (logit-link). Models for all analyses were run in R 278 

2.13.2 (R Development Core Team 2011) with the lme4 package (Bates et al. 2011). Final models were 279 

selected following AIC minimization criteria (Richards 2008); all models within ∆6 AIC were retained, 280 

and any models within this set that were more complex versions of their nested counterparts, but with 281 

higher ∆AIC values, were excluded. ΔAIC values presented for “null models” represent the models with 282 

no fixed effects, and only random effects. 283 
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RESULTS 284 

Patterns in local social stability and spatial distributions of males across years and sites 285 

 Generally there was little evidence of inter-annual or site differences in average neighbor 286 

similarity (Neighbor Similarity: ΔAICNull = 0, second best model: ΔAICSite = 6.5) or distance to male 287 

(Distance to Nearest Male: ΔAICNull = 0, second best model: ΔAICSite = 7.0). Distance to the nearest 288 

female was significantly greater at the RAF site (12.75± 0.6m SE) than the PUB site (9.98± 0.4m SE) in 289 

all three years (Distance to Nearest Female: ΔAICSite = 0, ΔAICNull = 6.9), and there was also some 290 

evidence of interannual differences in distance to nearest female, with greatest distances observed in 2011 291 

(13.29 ± 0.9m SE, 2012: 11.25 ± 0.5m SE, 2013: 9.79 ± 0.6m SE; second best model: Distance to Nearest 292 

Female: ΔAICSite + Year = 2.7, ΔAICNull = 6.9).  293 

Effect of stochastic tidal event on measures of spatial distribution and local social stability 294 

Distances to the nearest male did not differ pre- and post-tidal event at either site (Distance to 295 

Male: ΔAICNull = 0, second best model: ΔAICSite = 4.05; Fig. 2a). The tidal event increased the distance to 296 

the nearest female from an average of 10.88m ±0.74 SE pre-tidal event, and to 22.42 ±1.49 SE following 297 

the tidal event, but there was no difference across sites (Distance to Female: ΔAICTidal = 0, 298 

ΔAICTidal+Site+Tidal*Site = 6.9, ΔAICNull = 18.51, Fig. 2b). Individuals’ neighbor similarity decreased after the 299 

tidal event from an average of 0.51 ±0.015 SE, to 0.33 ±0.01 SE, and there was some evidence that the 300 

tidal event resulted in a relatively greater reduction in neighbor similarity at the RAF site (Neighbor 301 

similarity: ΔAICTidal+Site+Tidal*Site = 0; ΔAICNull = 22.07; Fig. 2c). However, the second-best model for 302 

neighbor similarity did not include the interaction between the tidal event and SITE (Neighbor similarity: 303 

ΔAICTidal = 0.08); suggesting the evidence for different effects across sites might be limited.  304 

Prediction of individual rates of aggression  305 

Models provided evidence that neighbor similarity and proximity to competitors were important 306 

factors explaining individual rates of aggression in all three years (Table 1). Increasing neighbor 307 

similarity was associated with reduced rates of aggression (Table 2; Fig. 3a). This pattern was conserved 308 
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at the RAF site in all years, but in 2012 and 2013 at the PUB site, neighbor similarity shared no 309 

significant relationship with aggression (Table 2; Fig. 3a). Males farther away from competitor males 310 

also exhibited reduced aggression (Table 1). This pattern was apparent at the RAF site in all years (Table 311 

2; Fig. 3b), though again, in 2012 and 2013 at the PUB site the effect was slightly reduced (Table 2; Fig. 312 

3b). There was less evidence supporting distance to the nearest female or dominance score as important 313 

factors in explaining variation in aggression. While both were retained in the best models in all years, 314 

dominance was often excluded as a factor in subsequent models retained under the AIC criteria (Table 1). 315 

Additionally, the effect sizes of both parameters were small relative to other factors, and the direction, 316 

significance and sizes of effects varied across years and sites (Table 2; Fig. 3c-d). Finally, the tidal event 317 

in 2011 was retained as a fixed and interactive effect (Table 1). The relationship between the distance to 318 

the nearest male and aggression was lost after the tidal event (Table 2; Fig. 3b). Dominance had no 319 

relationship with aggression prior to the tidal event, but after the tidal event in 2011, dominant males had 320 

less aggression per day than subordinate males (Table 2; Fig. 3d). 321 

Prediction of individual daily contact aggression 322 

 Neighbor similarity and distance to male competitor were again the strongest predictors for the 323 

probability of engaging in a Contact AI in a given day (Table 3). As neighbor similarity and distance to 324 

nearest male increased, the probability of engaging in a Contact AI was reduced across all three years, 325 

with the effect of neighbor similarity again showing a tendency to have a stronger effect at the RAF site 326 

(Table 3, 4; Fig. 4a-b). Dominance was retained in the 2011 model with an interaction with the tidal event 327 

(Table 3), but its effect on the probability of escalation was not significant (Table 4). Distance to nearest 328 

female was not a strong predictor of the probability of escalated aggression (Table 3, 4).   329 

DISCUSSION 330 

Our results demonstrate that the variation in aggression between individual male gray seals is 331 

highly associated with the local stability of neighbor identity and competitor proximity, and less 332 

influenced by resource (female) proximity and dominance rank. Males with full neighbor similarity had 333 
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an approximately 50% reduction in the frequency of aggression, and the probability of escalated 334 

aggression compared to males with no neighbor similarity. There was some temporal and spatial 335 

variability for this relationship, which suggests that the effectiveness of specific factors might be 336 

dependent on local conditions. For example, there was very little evidence suggesting dominance score 337 

shared a relationship with individual frequency of aggression, or probability of escalated aggression, 338 

during typical breeding seasons. However, after a stochastic tidal surge caused redistribution of seals and 339 

disruption of local social stability, the dominant males had approximately 50% less aggression compared 340 

to the most subordinate males.  341 

Social stability and aggression 342 

Instead of dominance score showing a strong correlation to rates of aggression (Twiss 1991), we 343 

found a strong association between increasing local social stability and lower rates and intensity of 344 

aggression at the daily temporal scale. This relationship likely reflects the potential for greater mating 345 

success through conservation of energy and prolonged tenure found in this and other closely related 346 

systems (Twiss 1991; Twiss et al. 1994, 2006; Lidgard et al. 2005; Pӧrschmann et al. 2010; Bishop et al. 347 

2015b). For other territorial species, the importance of local social stability is supported in that losing to a 348 

stranger often results in expulsion from a territory, but a loss to a neighbor might only result in a small 349 

loss of territory or a few resources (Husak and Fox 2003a, b; Bee 2003; Lachish and Goldizen 2004; 350 

Booksmythe et al. 2010; Cross et al. 2013). For male gray seals, ‘not losing’ a position near females is 351 

considered more important than ‘winning’ in terms of securing mating success (Anderson et al. 1975; 352 

Anderson and Fedak 1985; Twiss 1991), and length of stay, not dominance, is an important driver of 353 

mating success in pinniped breeding systems (Twiss 1991; Pӧrschmann et al. 2010). As such, individuals’ 354 

relative dominance scores, as measures of ability to ‘win’ (Drews 1993; Neumann et al. 2011), might not 355 

determine rates of aggression if selection favours ‘not losing’. Instead, regardless of dominance rank or 356 

score, males might benefit when the local social neighborhood is stable by not having to defend their 357 

positions to intruders, but only maintain the boundaries with their neighbors. Dominant males on North 358 

Rona, Scotland, often maintained positions in the core of the colony where they were buffered from 359 
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exposure to ‘roaming’ transient males (Anderson et al. 1975; Twiss 1991; Twiss et al. 1994), therefore 360 

the previous link between high dominance and lower aggression for gray seals could be an artefact of not 361 

including appropriate spatial or social variables (Twiss 1991).  362 

While it was not explicitly tested in this study, neighbor consistency is a key requirement for the 363 

dear enemy phenomenon (DEP: Jaeger 1981; Getty 1987). Thus, the potential for DEP to be in effect in 364 

this system merits some consideration. There is currently some evidence of individual recognition for 365 

gray seals. Female gray seals exhibit some level of sociality not explained by spatial metrics alone 366 

(Pomeroy et al. 2000, 2005; Insley et al. 2003; Ruddell et al. 2007; Robinson et al. 2015) and they also 367 

have the capacity for discerning the identity of their pups (McCulloch et al. 1999; McCulloch and Boness 368 

2000; Insley et al. 2003). Aggression was reduced amongst weaned gray seal pups of both sexes when 369 

individuals had previous exposure to each other (Robinson et al. 2015). In other pinnipeds, male northern 370 

elephant seals, Mirounga angustirosis, rely on characteristics of vocalizations to identify individuals 371 

(Casey et al. 2013). Male gray seals exhibit spatial site-fidelity and roughly 30-40% return across years 372 

(Twiss et al. 1994), suggesting males are exposed to similar individuals over time. However, to our 373 

knowledge, there have not been any rigorous attempts to investigate individual recognition capability in 374 

adult male gray seals. Therefore, at this time we cannot ascertain if the DEP, via local social stability, is 375 

driving the observed reduction in rates and intensity of conflict male gray seals, but the evidence from 376 

female gray seals and pups suggests that there could be a component of individual recognition in play. 377 

Very little is known about DEP driving conflict reduction in wild systems which do not assort into clearly 378 

defined territories. As controlled, paired-trials are not feasible for adult gray seals, a more comprehensive 379 

examination of the role of local social stability and DEP would benefit by coupling neighbor similarity 380 

metrics with auditory playbacks (Casey et al. 2013), visual or scent manipulations which test for 381 

individual recognition (Cross et al. 2013), or hormonal analysis which can test for physiological 382 

indicators of recognition (Robinson et al. 2015).  383 

Context-dependence of social and spatial variables  384 
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The fine spatial and temporal-scale of the present study allows us to make some observations 385 

about how natural environmental variation shapes conflict and conflict reduction. In the present study, the 386 

correlates of male aggression appeared to be conserved across years; however, some factors such as male 387 

proximity and neighbor similarity varied in the size or in the direction of their effect between years and 388 

sites. There is evidence that the relationship between the local environment and conflict reduction is 389 

context-dependent in other systems (Graham and Herberholz 2009; Tierney et al. 2013; Monclús et al. 390 

2014). The presence of a female in the test arena reduced the effect of DEP for male pupfish Cyprinodon 391 

variegatus (Leiser 2003), male Galápagos sea lions congregate in shaded areas during periods of thermal 392 

stress (Wolf et al. 2005), and the location of aggressive behaviors for California sea lions, Zalophus 393 

californianus were related to temperature (Bohórquez-Herrera et al. 2014).  394 

Thermal stress, and the associated physiological responses, selects against high levels of 395 

aggression in warm environments for animals such the mole-rat Spalax ehrenbergi (Ganem and Nevo 396 

1996). Although gray seals breed in the autumn in temperate climates, they exhibit variation in behaviors 397 

in relation to thermal stress and weather (Twiss et al. 2000, 2002, 20007; Redman et al 2001). Female 398 

gray seals prefer breeding sites in close proximity to pools of water for the presumed function of 399 

thermoregulation and as a source of drinking water (Stewart et al. 2014). In years with increased rainfall, 400 

the variation in mating success between male gray seals was greater due to females not traveling to gain 401 

access to pools and thus allowing for greater monopolization of mating opportunities (Twiss et al. 2007). 402 

Increased topographic variation has also been associated with an overall reduction in conflict (Anderson 403 

and Harwood 1985; Twiss et al. 1998). At Donna Nook, dunes and muddy wallows create fine-spatial 404 

scale topographic variation at the PUB site. Aggression at this site was lower for dominant males, and 405 

positively correlated with increased competitor proximity. However, at the flat RAF site, particularly in 406 

wetter and colder years, neighbor stability appears to be most important for facilitating a reduction of 407 

aggression. Due to only three seasons of data being available, additional data would be needed for any 408 

firm conclusions to be drawn regarding the effects of broad weather patterns or differences in resource 409 

availability on gray seal aggression. However, by investigating individual variation in aggression in the 410 
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wild at a fine temporal and spatial scale we have begun to unravel how individuals’ aggression responds 411 

to local environmental patterns, natural fluctuations, and subsequent changes in resource availability. 412 

Similar methods can be applied to systems in which only large scale data has previously been available.  413 

Finally, reductions in conflict driven by dominance hierarchies and DEP can be context-414 

dependent in regards to rapid changes in natural conditions (Graham and Herberholz 2009; Monclús et al. 415 

2014). When features of the environment are highly variable, inter-individual differences in behaviors 416 

can be masked or their effects diminished (Killen et al. 2013). At Donna Nook, in comparison to colonies 417 

such as North Rona, Scotland, individuals are exposed to relatively greater environmental variability in 418 

the form of daily tidal fluctuations due to the open access to the sea. Individuals are also exposed to 419 

relatively greater anthropogenic presence due to the colony’s position on the mainland coast. The 420 

generally variable environment at Donna Nook could be increasing the costs associated with relying on 421 

factors such as dominance under normal conditions, and instead be selecting for maintaining local social 422 

stability as a means of reducing conflict. By using a fine-temporal scale measure of dominance, we found 423 

that following the tidal event in 2011, when individuals’ average local social stability were greatly 424 

reduced, dominance was a stronger predictor of conflict reduction, even though under ‘normal’ 425 

conditions, relying on this alone would presumably have a greater cost. This could again be evidence of 426 

the strong selection for ‘not losing’ in this system (Anderson and Fedak 1985). Our work has begun to 427 

discern the importance of including fine-scale variability measures, such as natural disturbance events 428 

within a breeding season, when investigating the drivers of individual rates of aggression. Further work 429 

which links measures of social stability, dominance and spatial distribution of resources to direct 430 

measures of costs will be vital for predicting how individuals, colonies or populations will respond to 431 

stressors such as anthropogenic presence or climate change.  432 
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Figure Captions 608 

Fig. 1 An example of Theissen polygons generated around male positions on Day of year 325 at the RAF 609 

site in 2012. Black points represent mapped locations of males for the given hour (known=Alphanumeric 610 

code; unknown = x). The lines are drawn at the midpoints between adjacent points, creating polygons. 611 

Males were considered ‘neighbors’ if their polygons shared an edge for the given hour 612 

 613 

Fig. 2 The differences in (a) mean daily distance (m) to nearest male (DNM); (b) distance (m) to nearest 614 

female (DNF); and (c) neighbor similarity (NJSI, 0 = unstable, 1 = stable) at the RAF and PUB site pre 615 

and post tidal event in 2011 (Day of year 330).  Boxes represent the interquartile range around the median 616 

(dark line). Whiskers represent the 75
th
  and 25

th
 percentiles. Circles outside of whiskers represent 617 

possible outliers. Significant differences are denoted by an * 618 

 619 

Fig. 3 The effects of (a) neighbor similarity (NJSI: 0 = unstable, 1 = stable); (b) distance (m) to nearest 620 

male (DNM); (c) distance (m) to nearest female (DNF); and (d) Elo dominance score (DayEloN) in 2011, 621 

2012 and 2013 on an individual males’ frequency of AIs daily. If there was an interaction effect of the 622 

tidal event, separate responses are differentiated as pre-tidal event (Pink) and post-tidal (Blue). Similarly, 623 

if SITE interacted the responses are differentiated as RAF (green) and PUB (orange). (Shaded area is 624 

95% CI)   625 

 626 

Fig. 4 The effects of (a) neighbor similarity (NJSI: 0 = unstable, 1 = stable) and (b) distance (m) to 627 

nearest male (DNM) in 2011, 2012 and 2013 on the probability of a male engaging in a contact AI on a 628 

given day. When SITE was retained as an interaction term; response of RAF (green) and PUB (yellow) 629 

are separate. (Shaded area is 95% CI)  630 
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Fig. 4 (grayscale) 663 
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Table 1 Retained GLMMs for predicting individual male DAI (daily rate of aggression) in 2011-2013. 664 
Random effects included in the models were MID (male ID) in 2011, and MID and OBSR (primary or 665 
secondary observer) in 2012 666 

YEAR AICc ∆AIC Weight 

2011(Nsamples =277, NMID = 48) 
   

DAI ~ TDEV + NJSI + DNF + DNM + ELO + ELO:TDEV + DNM: TDEV  701.78 0 0.09 

DAI ~ TDEV + NJSI + DNF + DNM + ELO + ELO:TDEV  703.58 1.8 0.04 

DAI ~ TDEV + NJSI + DNF + DNM + DNM: TDEV  706.66 4.88 0.01 

    
2012 (Nsamples =635, NMID = 75, NOBSR=2) 

   
DAI ~ (ELO + NJSI + DNF + DNM + SITE )*SITE 2635.12 0 0.36 

DAI ~ ELO + NJSI + DNF + DNM + SITE + ELO:SITE + DNF:SITE +  NJSI:SITE  2636.16 1.05 0.21 

DAI ~ NJSI + DNF + DNM + SITE + DNF:SITE + DNM:SITE + NJSI:SITE  2636.31 1.2 0.20 

DAI ~ NJSI + DNF + DNM + SITE + DNF:SITE  + NJSI:SITE  2637.88 2.77 0.09 

    
2013(Nsamples =504, NMID = 82, NOBSR=2) 

   
DAI ~ ELO + NJSI + DNF + DNM + SITE + ELO:SITE + DNM:SITE + NJSI:SITE  1551.58 0 0.26 

DAI ~ ELO + NJSI + DNF + DNM + SITE + ELO:SITE +  DNF:SITE + NJSI:SITE  1553.42 1.03 0.15 

DAI ~ NJSI + DNF + DNM + SITE + DNF:SITE + DNM:SITE + NJSI:SITE  1554.05 1.19 0.14 

DAI ~ ELO + NJSI + DNF + DNM + SITE + ELO:SITE + NJSI:SITE  1554.08 1.59 0.12 

DAI ~ NJSI + DNF + DNM + SITE + DNM:SITE + NJSI:SITE  1554.21 2.6 0.07 

DAI ~ ELO + NJSI + DNF + DNM + SITE + DNF:SITE + NJSI:SITE  1556.59 3.17 0.05 

DAI ~  NJSI + DNF + DNM + SITE + NJSI:SITE  1556.67 4.55 0.03 

 667 
†ELO = DayEloN; NJSI = neighbor similarity; DNF = distance to nearest female (m); DNM = distance to nearest male  (m); 668 
TDEV = Tidal event 2011. All continuous predictor variables are averages per day 669 
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Table 2 Coefficient estimates for the retained fixed effects in the best 683 

models for predicting individuals’ daily rates of aggression (∆AIC  = 0; 684 

Table 1). All predictor variables are averages per day 685 

YEAR 
 

Coefficient 
Estimate 

Standard 
Error 

P-value 

2011 Intercept:PRE TIDE 2.02 0.16 <0.0001 

 Intercept:POST TIDE 1.54 0.35 0.17 

 
NJSI -0.65 0.18 0.0003 

 
DNF 0.008 0.003 0.003 

 ELO: PRE TIDE 0.17 0.13 0.194 

 
ELO:POST TIDE -0.67 0.26 0.01 

 DNM:PRE TIDE -0.03 0.005 <0.0001 

 
DNM:POST TIDE 0.006 0.02 0.67 

     

2012 Intercept:RAF 3.69 0.20 <0.0001 

 Intercept:PUB 2.45 0.20 <0.0001 

 
ELO:RAF 0.06 0.07 0.41 

 
ELO:PUB -0.17 0.08 0.03 

 
NJSI:RAF -0.92 0.12 <0.0001 

 
NJSI:PUB 0.24 0.14 0.09 

 
DNF:RAF -0.007 0.002 <0.0001 

 
DNF:PUB 0.006 0.003 0.03 

 
DNM:RAF -0.05 0.005 <0.0001 

 
DNM:PUB -0.04 0.005 <0.0001 

     

2013 Intercept:RAF 3.69 0.15 <0.0001 

 Intercept:PUB 2.39 0.19 <0.0001 

 
DNF -0.004 0.002 0.004 

 
ELO:RAF 0.17 0.08 0.04 

 
ELO:PUB -0.16 0.10 0.11 

 
NJSI:RAF -1.01 0.12 <0.0001 

 
NJSI:PUB 0.11 0.14 0.46 

 
DNM:RAF -0.04 0.006 <0.0001 

 
DNM:PUB -0.02 0.004 <0.0001 

† ELO = DayEloN; NJSI = neighbor similarity; DNF = distance to nearest 686 

female (m); DNM = distance to nearest male (m); Pre Tide = DOY < 330; 687 

Post Tide = DOY ≥ 330 688 
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Table 3 Retained GLMMs for predicting the probability of a contact AI (PF) per day 689 

in 2011-2013. Random effects included in the models were MID in 2011, and MID 690 

(male ID) and Observer (primary or secondary) in 2012 691 

YEAR  AICc ∆AIC Weight 

2011 (Nsamples =277, NMID = 48) 
   

PF ~ ELO + NJSI + DNM + ELO:TDEV  343.14 0 0.03 
PF ~ ELO + NJSI + ELO:TDEV 345.65 2.51 0.01 

PF ~ NJSI + DNM  345.69 2.55 0.01 

PF ~ DNM  345.99 2.85 0.01 

PF ~ NJSI + DNF  347.30 4.15 0.004 
PF ~ NJSI  348.28 5.14 0.002 
PF ~ 1  348.81 5.60 0.002 

2012 (Nsamples =635, NMID = 75, NOBSR=2) 
   PF ~ NJSI + DNF + DNM + SITE + NJSI:SITE + DNF:SITE  799.69 0 0.20 

PF ~ NJSI + DNF + DNM + SITE + DNF:SITE  803.22 3.53 0.03 

PF ~ NJSI + DNF + DNM + SITE + NJSI:SITE  803.58 3.89 0.03 

PF ~ DNM   803.61 3.92 0.03 

PF ~ NJSI + DNF + SITE + NJSI:SITE + DNF:SITE  803.98 4.87 0.02 

2013 (Nsamples =504, NMID = 82, NOBSR=2) 
   PF ~ NJSI + DNM  606.56 0 0.12 

PF ~ NJSI + DNF + SITE + NJSI:SITE   610.79 4.24 0.02 
PF ~ NJSI   611.36 4.81 0.01 

† PF = Daily probability of escalating to a fight/contact AI. ELO = DayEloN; NJSI = 692 

neighbor similarity; DNF = distance to nearest female (m); DNM = distance to nearest 693 

male (m); TDEV = Tidal event 2011 only   694 
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Table 4 Coefficient estimates for the retained fixed effects in the best 695 

models across years for predicting the probability of an individual 696 

engaging in an escalated interaction on a given day (∆AIC  = 0;   697 

Table 3). All continuous predictor variables are averages per day 698 

YEAR 
 

Coefficient 
Estimate 

Standard 
Error 

P-value 

2011 Intercept 0.50 0.57 0.38 

 
NJSI -1.42 0.63 0.02 

 
DNM -0.04 0.02 0.04 

 
ELO:PRE TIDE 0.64 0.45 0.16 

 
ELO:POST TIDE -0.70 0.64 0.28 

     

2012 Intercept:RAF 1.63 0.63 0.01 

 
Intercept:PUB -0.25 0.58 0.001 

 
DNM -0.05 0.02 0.01 

 
NJSI:RAF -2.06 0.72 0.004 

 
NJSI:PUB 0.30 0.70 0.67 

 
DNF:RAF -0.04 0.01 0.005 

 
DNF:PUB 0.01 0.02 0.39 

     
2013 Intercept 0.75 0.55 0.16 

 
NJSI -1.62 0.52 0.002 

 
DNM -0.05 0.02 0.01 

† ELO = DayEloN, NJSI = neighbor similarity; DNF = distance to 699 

nearest female (m); DNM = distance to nearest male (m); Pre Tide = 700 

DOY < 330; Post Tide = DOY ≥ 330 in 2011 only  701 

 702 


