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Abstract.

It is shown that by making straightforward approximations it is possible to simplify

the analysis of the measurements of a well-established dual-waveguide interferometer

for sensor applications. In particular we derive approximate algebraic formulae for

the mode phase shifts that are measured in the interferometric sensor when a layer

of the entity to be detected is deposited. Knowledge of the shifts of both the TE

and TM mode phases allows the deduction of both the thickness and refractive index

of a homogeneous deposited layer, and the formulae derived make that possible with

significantly reduced numerical computation. More generally the algebraic formulae

and the ease with which numerical results can be obtained for a wide range of layer

parameter combinations provide opportunities to improve our understanding of device

behaviour. In an application of the theory to a specific practical structure, the

numerical results show that the ratio of the TE and TM mode phase shifts varies

linearly with deposited layer refractive index but is only weakly dependent on layer

thickness, as has been observed previously in some experiments. The numerical results

are interpreted using the theory and a simple formula describing the linear dependence

of phase shift ratio on deposited layer refractive index is derived.

1. Introduction

Cross and co-workers [1–6] have described in a series of papers the principles and some

applications of a sensor based on a particular design of dual-waveguide interferometer.

The basic structure is two parallel dielectric slab waveguides each with just one mode

of each polarization (TE and TM) sharing a common cladding layer that is sufficiently

thick that the two guides operate in an effectively independent manner. The other

cladding layer of the upper waveguide is a liquid medium, for example water, in which

some entity is to be sensed. In the simplest method of operation, the entity is deposited

on the core of the upper waveguide creating an additional homogeneous layer (adlayer)

as part of the cladding as shown in figure 1. The deposition results in different changes in

the propagation constants of the two modes of the upper waveguide, and hence to phase

shifts which can be measured separately by reference to the phases of the corresponding

modes of the lower waveguide. This is a particular attraction of the device because a

unique combination of deposited layer thickness and index is defined by the measured

phase shifts of the two polarizations. Because of this facility, the device is often referred
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to and has been marketed as a ‘dual-polarization interferometer’. The dual-polarization

interferometer is just one type of sensor based on integrated planar optical waveguide

interferometry and the reader is referred to the recent review of Kozma et al [7] for

information on other devices and the relative advantages of the dual-polarization device

The basic theory of planar optical waveguides is very well developed and its

application to the theory of sensor performance such as device sensitivity (rate of

change of phase with some relevant refractive index and/or a layer thickness in the

structure) [8,9] has also received substantial attention. For the specific task of obtaining

both the refractive index and thickness of a deposited layer with a dual-polarization

interferometer sensor, the approach has been to calculate numerically a continuous set

of combinations of deposited layer thickness and refractive index that could lead to the

measured TE mode phase shift, using a transfer matrix method for example [4], and

then to do the same for the TM mode. It is then possible to obtain the combination of

layer thickness and refractive index that is compatible with both the TE and TM mode

phase shifts. Further details are given in two theses [10, 11] along with reports of the

use of numerical calculations to determine the structural limitations on the precision

of the device. While the amount of numerical computation required to deduce the

layer thickness and refractive index from the phase shifts is not a major resource issue,

it would still be useful to have a straightforward semi-analytical, albeit approximate,

method of calculating the mode phase shifts resulting from the deposition of an adlayer

to facilitate the interpretation of experimental measurements in general as well as the

determination of the parameters of specific adlayers. In this paper we describe just such

a method.

In section 2 we briefly review the basic theoretical model used to describe the

waveguide modes and show how the analysis can be approximated to obtain explicit

expressions for the changes of the propagation constants of the TE and TM modes

that result from the introduction of an adlayer into the structure. The efficacy of the

theoretical approach is then illustrated in section 3 by considering the effect of adlayers

with a range of thickness and refractive index combinations on the modes of a certain

structure that has been used for dual-waveguide interferometry.

2. Theory

2.1. Basic model

We consider the modes of the upper planar waveguide of a dual-waveguide interferometer

which has the layer structure shown in figure 1. All the layers are assumed to be non-

magnetic dielectrics. The core is a solid layer of thickness d and refractive index n1

and the cladding below it is also a solid with refractive index n3 < n1. The upper

cladding comprises a deposited layer (the adlayer) of thickness a and refractive index

na, which the interferometer is designed to sense, and a liquid medium, with refractive

index n2 < n1, in which the deposition takes place. In the theory described here the



Some theory of a dual-polarization interferometer for sensor applications 3

waveguide is assumed to have infinite width and the lower cladding and the top layer

of the upper cladding to have infinite thickness.
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Figure 1. Schematic diagram of the upper waveguide of the dual-waveguide

interferometer. The core has a refractive index n1 and thickness d. The upper cladding

comprises a liquid of refractive index n2 and also, after its deposition, an adlayer of

refractive index na and thickness a. The lower cladding, which has refractive index n3,

is also the upper cladding of the lower (reference) waveguide, the rest of which is not

shown. The guided modes are confined to the vicinity of the core in the z-direction

and are considered to propagate in the y-direction

The waveguide is designed to have one TE and one TM guided mode, each of

which can be considered to be plane waves that undergo multiple total internal reflection

within the layered structure resulting in net propagation parallel to the layers in the

y-direction. The condition for each mode to exist is that the phase change in the wave

when it undergoes a round trip in the z-direction, which is transverse to the waveguide

plane, is zero or an integer multiple of 2π [12]. It is convenient to consider that phase

change to consist of three components, viz, that in traversing the thickness of the core

twice and those on the reflections at the core-adlayer and core-lower cladding interfaces.

The appearance of an adlayer in the upper cladding causes changes in the propagation

constants of the modes of the waveguide and hence shifts in the phase changes of the

modes that occur when they propagate along the waveguide. In the dual-waveguide

interferometer those phase shifts can be measured by reference to the phases of the

corresponding modes of the lower waveguide of the device (which is not shown in the

figure).

2.2. TE modes

The TE modes have an electric field component Ex and magnetic field components By

and Bz. They can be considered to result from the multiple total reflections of a plane

wave propagating in the y-z plane in the core with electric field parallel to the x-axis.

A mode with propagation constant ky corresponds to a plane wave which in the core

propagates at an angle θ to the waveguide plane where cos θ = ky/n1k0 . We can cal-
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culate the reflection coefficient of such a wave at the core-adlayer interface (taken to be

located at z = 0) by using a transfer matrix method. The incident and reflected field

components parallel to the plane of the interface can be written as

Incident:

Ex = E0 exp(ikyy + ikzz) (1)

cBy = (kz/k0)E0 exp(ikyy + ikzz) (2)

Reflected:

Ex = rteE0 exp(ikyy − ikzz) (3)

cBy = − rte(kz/k0)E0 exp(ikyy − ikzz) (4)

where a time dependence exp(−iωt) has been assumed but is not shown explicitly, E0

is a constant defining the amplitude of the incident electric field, c is the velocity of

light in free space, k0 = ω/c, rte is the reflection coefficient to be determined of a TE

polarized wave incident from the core on the upper cladding, and

kz = (n2

1
k2

0
− k2

y)
1

2 . (5)

The field components of the waves in all the layers of the structure must have the

same y-dependence as the fields in equations 1-4. Also for a bound mode it is necessary

for the wave in the core to be totally reflected by the upper and lower cladding. Total

reflection by the upper cladding requires that ky = n1k0 cos θ > n2k0 and then the

relevant field components in the top layer of the upper cladding have the form

Ex = tteE0 exp(ikyy − α(z − a)) (6)

cBy = itte(α/k0)E0 exp(ikyy − α(z − a)), (7)

where tte is a constant defining the amplitude of the electric field at z = a and

α = (k2

y − n2

2
k2

0
)

1

2 . (8)

The values of Ex and cBy in the adlayer at z = a can be related to those at z = 0

by the transfer matrix across the adlayer for the fields, which in the basis (Ex, cBy) is

Mte(a) =

(

cosh γa i(k0/γ) sinh γa

−i(γ/k0) sinh γa cosh γa

)

(9)

where, without loss of generality, M(a) has been written in the form appropriate to the

case ky > nak0 so that

γ = (k2

y − n2

ak
2

0
)

1

2 (10)

is a real positive quantity. Also, since the fields Ex and cBy are continuous at the layer

interfaces, we can use the same transfer matrix to relate the fields in the top layer of

the cladding at z = a to the fields in the core at z = 0:

Mte(a)

(

1 + rte

(kz/k0)(1 − rte)

)

=

(

tte

itte(α/k0)

)

. (11)
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Using the two equations represented by the matrix equation 11 to eliminate tte,

we can obtain an expression for the reflection coefficient of the cladding determined at

z = 0:

rte =
Fte + Gte

F ∗

te + G∗

te

(12)

where

Fte = −(kz/k0)[cosh γa + (α/γ) sinh γa]

and

Gte = i(α/k0)[cosh γa + (γ/α) sinh γa].

It is apparent from the structure of the right hand side of equation 12 that the magnitude

of rte is unity. The phase is given by

δuc
te (ky) = −2 arctan

[

(

γ

kz

)

(

α cosh γa + γ sinh γa

γ cosh γa + α sinh γa

)]

. (13)

When there is no adlayer, a = 0 and then the phase of the reflection coefficient is

δuc0
te (ky) = −2 arctan

(

α

kz

)

. (14)

This result can also be used to obtain the reflection coefficient and phase change

on reflection at the core-lower cladding interface. The lower cladding never contains an

adlayer but the refractive index n3 is generally different from that of the upper cladding

(n2). Nevertheless, that refractive index must be such that the condition ky > n3k0

holds so that total reflection occurs and a guided mode results. This being the case, the

reflection coefficient determined at z = −d has unit magnitude and a phase

δlc
te(ky) = −2 arctan

(

β

kz

)

, (15)

where

β = (k2

y − n2

3
k2

0
)

1

2 . (16)

The third component in the phase change in a transverse round trip of a doubly

reflected plane wave is due to the transit across the thickness d of the core and back,

which gives

δtr
te(ky) = 2kzd. (17)

The structure of the interferometer is designed so that in the absence of an adlayer

it can support just one TE mode at the operating frequency ω. The value of the

propagation constant ky of that mode, which we denote by κ0, can be obtained by

solving the equation

δuc0
te (κ0) + δlc

te(κ0) + δtr
te(κ0) = 2πm (18)

where m is zero or an integer. Equation 18 is well known in waveguide theory and

its solution reduces to a numerical root-finding exercise. When an adlayer has been

deposited in the waveguide structure, the propagation constant of the mode changes to
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a different value, which we denote by κ and the essential feature of the interferometer

is that it gives the change in propagation constant ∆κ = κ − κ0 through a phase

shift measurement. A theoretical value for the change in propagation constant can be

obtained by carrying out a numerical solution of

δuc
te (κ) + δlc

te(κ) + δtr
te(κ) = 2πm. (19)

for κ.

While a full numerical calculation of ∆κ is straightforward and quantitatively

reliable, further analysis can provide additional insight into the behaviour of the

interferometer as well as facilitating a simpler, albeit approximate, numerical solution

that could be helpful in interpreting measurements. If κ0 has already been calculated,

we can take the difference of equations 19 and 18 and use the component approximations

δj
te(κ) = δj

te(κ0) +
dδj

te

dκ

∣

∣

∣

∣

∣

κ=κ0

∆κ

for j = uc, lc, tr to write

∆κ =
δuc0
te (κ0) − δuc

te (κ0)
[

dδuc
te /dκ + dδlc

te/dκ + dδtr
te/dκ

]

κ=κ0

. (20)

In deriving equation 20 we have tacitly assumed that while the change of phase

δuc
te (κ0) − δuc0

te (κ0) of the reflection coefficient rte when an adlayer is introduced can be

substantial, and is not readily expressed in an approximate algebraic form, the change

of phase with the propagation constant κ is generally well represented by the linear term

in a Taylor series.

The individual terms in equation 20 can be resolved as follows. Making use of

equations 5, 8, 10 and 16 with the propagation constant ky = κ, we can obtain

dδtr
te

dκ
= −

2κd

kz

(21)

from equation 17,

dδlc
te

dκ
= −

2κ

βkz

(22)

from equation 15, and from equation 13,

dδuc
te

dκ
= −2κk2

0

(

Ate

1 + A2
te

) [

(n2

1
− n2

a)

γ2k2
z

+
(kz/α)(1 + αa)(n2

2
− n2

a)

NteDte

]

, (23)

where

Nte = γ (α cosh γa + γ sinh γa) (24)

Dte = kz (γ cosh γa + α sinh γa) (25)

Ate = Nte/Dte. (26)

If the adlayer is very thin so that γa � 1, we can write

δuc0
te (κ0) − δuc

te (κ0) = −a
dδuc

te (κ)

da

∣

∣

∣

∣

∣ a=0
κ=κ0

= −2kza

(

n2

a − n2

2

n2
1 − n2

2

)

(27)
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(with kz evaluated for ky = κ0) and use that result in equation 20 along with

dδuc
te

dκ
≈

dδuc
te

dκ

∣

∣

∣

∣

∣

a=0

= −
2κ

αkz

(28)

and equations 21 and 22 to obtain the leading term in ∆κ, which is proportional to a.

It is convenient to write the result in terms of the effective refractive index of the mode

nte = κ/k0 and specifically the change ∆nte = ∆κ/k0 from its value nte0 = κ0/k0 in the

absence of an adlayer:

∆nte =
a

dte

[

(n2

1
− n2

te0)(n
2

a − n2

2
)

nte0(n
2
1 − n2

2)

]

, (29)

where dte = d + α−1 + β−1 (with α and β evaluated for ky = κ0) is an effective extent

in z of the TE mode fields.

The corresponding sensitivity of the sensor to the appearance of an adlayer

(∂nte/∂a|
a=0

) is trivial to calculate from equation 29 and is identical to the result for

a = 0 obtained by Tiefenthaler and Lukosz [8], which has recently been extended to

a 6= 0 by Sharma et al [9].

2.3. TM modes

For the TM modes, the plane wave equations corresponding to equations 1-4 and 6-7

are

Incident:

Ey = E0 exp(ikyy + ikzz)

cBx = (−n2

1
k0/kz)E0 exp(ikyy + ikzz)

Reflected:

Ey = rtmE0 exp(ikyy − ikzz)

cBx = rtmE0(n
2

1
k0/kz) exp(ikyy − ikzz)

Top layer of upper cladding:

Ey = ttmE0 exp(ikyy − α(z − a))

cBy = ittm(n2

2
k0/α)E0 exp(ikyy − α(z − a)),

The transfer matrix across the adlayer is

Mtm(a) =

(

cosh γa i(γ/n2

ak0) sinh γa

−i(n2

ak0/γ) sinh γa cosh γa

)

and using that we can relate the values of Ey and cBx at z = a to those at z = 0:

Mtm(a)

(

1 + rtm

−(n2

1
k0/kz)(1 − rtm

)

=

(

ttm

ittm(n2

2
k0/α)

)

.

It follows that the reflection coefficient of the upper cladding determined at z = 0 is

rtm =
Ftm + Gtm

F ∗

tm + G∗

tm

,
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where

Ftm = −(n2

1
k0/kz)[cosh γa + (n2

2
γ/n2

aα) sinh γa]

and

Gtm = i(n2

2
k0/α)[cosh γa + (n2

aα/n2

2
γ) sinh γa].

The magnitude of rtm is unity and the phase is

δuc
tm(ky) = π − 2 arctan

[(

γ/n2

a

kz/n2
1

)(

(α/n2

2
) cosh γa + (γ/n2

a) sinh γa

(γ/n2
a) cosh γa + (α/n2

2) sinh γa

)]

.

In the absence of an adlayer, a = 0, the phase change of the wave on reflection at the

upper cladding reduces to

δuc0
tm (ky) = π − 2 arctan

(

α/n2

2

kz/n
2
1

)

.

The phase change on reflection at the lower cladding is

δlc
tm(ky) = π − 2 arctan

(

β/n2

3

kz/n2
1

)

,

and the phase change due to the double transit across the core is given by equation 17,

as in the TE case.

The TM mode of the structure with and without the adlayer can be found

numerically by the procedure described for the TE polarization. The value of the

propagation constant ky (and hence kz, α, β and γ) will of course be different from

the TE case but we use the same symbols (κ0 and κ) to simplify the notation without

any risk of ambiguity. We can also use the TM version of equation 20,

∆κ =
δuc0
tm (κ0) − δuc

tm(κ0)
[

dδuc
tm/dκ + dδlc

tm/dκ + dδtr
tm/dκ

]

κ=κ0

, (30)

to obtain a relatively simple approximate formula for ∆κ. Again, we must resolve the

individual components in equation 30. First we have that

dδtr
tm

dκ
= −

2κd

kz

,

as for the TE case, and

dδlc
tm

dκ
= −

2κ

βkz

[

(

ntm

n1

)

2

+
(

ntm

n3

)

2

− 1

]

−1

,

where ntm = κ/k0 is the effective refractive index of the TM mode. Finally

dδuc
tm

dκ
= − 2κk2

0

(

Atm

1 + A2
tm

){

(n2

1
− n2

a)

γ2k2
z

+

(

kz/α

n2
an

2
1NtmDtm

)(

n2

2
− n2

a

n2
an

2
2

) [

1 + αa

(

(

ntm

na

)

2

+
(

ntm

n2

)

2

− 1

)]}

,
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where

Ntm = (γ/n2

a)
[

(α/n2

2
) cosh γa + (γ/n2

a) sinh γa
]

Dtm = (kz/n
2

1
)
[

(γ/n2

a) cosh γa + (α/n2

2
) sinh γa

]

Atm = Ntm/Dtm.

For a very thin adlayer (γa � 1),

δuc0
tm (κ0) − δuc

tm(κ0) ≈ − a
dδuc

tm(κ)

da

∣

∣

∣

∣

∣ a=0
κ=κ0

= − 2kza

(

n2

a − n2

2

n2
1 − n2

2

)(

(ntm0/na)
2 + (ntm0/n2)

2 − 1

(ntm0/n1)2 + (ntm0/n2)2 − 1

)

,

where ntm0 is the effective refractive index in the absence of an adlayer. We can use this

together with

dδuc
tm

dκ
≈

dδuc
tm

dκ

∣

∣

∣

∣

∣

a=0

= −
2κ

αkz

[

(

ntm

n1

)

2

+
(

ntm

n2

)

2

− 1

]

−1

in equation 30 along with the formulae for dδtr
tm/dκ and dδlc

tm/dκ to obtain the leading

term in the change of effective refractive index ∆ntm, which, as with the TE case, is

proportional to a. The result is

∆ntm =
a

dtm

[

(n2

1
− n2

tm0
)(n2

a − n2

2
)

ntm0(n2
1 − n2

2)

] [

(ntm0/na)
2 + (ntm0/n2)

2 − 1

(ntm0/n1)2 + (ntm0/n2)2 − 1

]

, (31)

where

dtm = d +

{

α

[

(

ntm0

n1

)2

+
(

ntm0

n2

)2

− 1

]}

−1

+

{

β

[

(

ntm0

n1

)2

+
(

ntm0

n3

)2

− 1

]}

−1

is an effective extent in z of the TM mode fields. The corresponding sensor sensitivity

(∂ntm/∂a|
a=0

) is the same as the result for a = 0 previously obtained by Tiefenthaler

and Lukosz [8].

3. An illustrative example

As an illustrative example of the application of the theory in section 2 we consider

the effect of an adlayer on the modes of a waveguide with the parameter values given

in table 1, which are those of a structure used in the work reported in [6]. In the

absence of an adlayer the waveguide considered has modes with effective refractive

indexes (to six significant figures), nte0 = 1.50754 and ntm0 = 1.50648 when excited

by a helium-neon laser with a free space wavelength of 632.8 nm. To demonstrate the

effectiveness of the approximate method for calculating how the effective refractive index

of a mode((which henceforth we refer to as the ‘mode index’ for brevity) is affected by

an adlayer, we compare the results obtained using equations 20 (TE mode) and 30 (TM

mode) with those from a full numerical solution of equations 18 and 19 (TE mode), and

the corresponding equations for the TM case.
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n1 n2 n3 d (nm)

1.524 1.331 1.475 998

Table 1. Values of the waveguide parameters defined in figure 1 that have been used

to obtain the results presented in section 3.
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Figure 2. The calculated mode index as a function of adlayer thickness and refractive

index for (a) the TE mode and (b) the TM mode of the structure shown in figure 1

with the parameters given in table 1.

Figure 2 shows the results obtained using equations 20 (TE mode) and 30 (TM

mode) for the dependence of the TE and TM mode indexes on adlayer thickness

(0 ≤ a ≤ 100nm) and refractive index (1.331 ≤ na ≤ 1.5), where the lower limit

of the refractive index is the value for the water cladding layer in the absence of an

adlayer. The percentage error in the calculated mode index relative to the value obtained

from a full numerical calculation is greatest for the most extreme case considered

(a = 100nm, na = 1.5) where it is only 0.003%, and it is substantially less than

that over most of the range of parameters considered. However, it is the change of

mode index that is measured by the interferometer and being much smaller than the

value of the mode index itself, the percentage error is significantly larger. The results

in figure 3 suffer from numerical noise near a = 0 and na = n2 = 1.331 and show errors

approaching 3% at the largest a and na considered.

Experimental measurements of the TE and TM mode index changes for a structure

with a specific adlayer define contours on the surfaces of figure 3, which correspond to
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Figure 3. The percentage error in the calculated change of (a) the TE mode index

and (b) the TM mode index shown in figure 2 relative to the change obtained using a

full numerical method.

the possible combinations of layer thickness and refractive index that could give rise to

the mode index change for each polarization. The intersection of those contours in the

layer thickness-refractive index plane determines, to within experimental and theoretical

error, the unique combination that is compatible with the results for both polarizations.
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Figure 4. Ratio of the calculated TE to TM mode index changes versus adlayer

thickness and refractive index.

Figure 4 shows how the ratio of the TE to TM mode index changes with adlayer

thickness and refractive index. The ratio shows a near-linear increase with increasing

layer index. However, the ratio is strikingly insensitive to layer thickness, a property
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previously observed and remarked on by Cross [6] for a similar structure. The theory

provides a simple qualitative explanation for the weak dependence of the TE-TM index

ratio on layer thickness and also the formulae for a quantitative description. We have

shown that for both polarizations the leading term in the expression for the change in

mode index for small a (γa � 1) is proportional to a and also we know from simple

physical considerations that the change in mode index will be independent of a for

sufficiently thick layers. It follows that the ratio of mode index changes is insensitive to

change in a for both small and large a. In the case of small a we can use the formulae

derived at the ends of sections 2.2 and 2.3 to predict the dependence of the ratio on

change of adlayer refractive index na.

Using equations 29 and 31, we can write the ratio

∆nte0

∆ntm0

=

[

ntm0dtm

nte0dte

] [

(n2

1
− n2

te0)

(n2
1 − n2

tm0)

] [

(ntm0/n1)
2 + (ntm0/n2)

2 − 1

(ntm0/na)2 + (ntm0/n2)2 − 1

]

. (32)

The denominator of the third factor on the right hand side of equation 32 is the only

term dependent on na. Recognizing that (na −n2)/n2 � 1 for n2 = 1.331 and the range

of values of na displayed in figure 4, the term may be written as
[

(

ntm0

na − n2 + n2

)

2

+
(

ntm0

n2

)

2

− 1

]

−1

and expanded up to first order in (na − n2)/n2 to give

1

[2(ntm0/n2)2 − 1]

{

1 +
2(ntm0/n2)

2

2(ntm0/n2)2 − 1

(

na − n2

n2

)

+ · · ·

}

. (33)

For the relevant range of na, equation 33 provides an excellent approximation to the

original expression and its use in equation 32 with the parameters in table 1 gives

excellent quantitative agreement with the linear dependence of ∆nte0/∆ntm0 on na as

a → 0 that is seen in figure 4.

4. Conclusions

We have given a concise description of the theory of a dual-polarization interferometer

for sensor applications and have proceeded to show how some simple approximations

facilitate the derivation of formulae for the mode phase shifts that are observed in the

interferometer with the deposition of a layer of the entity to be detected. It has already

been explained by other authors that knowledge of the phase shifts of both the TE

and TM modes allows the deduction of both the thickness and refractive index of a

homogeneous deposited layer, but the formulae derived here make that possible with

much less numerical computation than has been required hitherto. Also, the numerical

results obtained for a specific device support the contention that the ratio of the TE

and TM phase shifts increases linearly with increasing layer refractive index but is only

weakly dependent on layer thickness. Furthermore the theory developed provides both

a qualitative explanation and a quantitative description of that behaviour.
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