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Daily rhythmic changes are found in cellular events in cell cycle, DNA repair, apoptosis and angiogenesis in both normal and
tumour tissue, as well as in enzymatic activity and drug metabolism. In this paper, we hypothesize that circadian rhythms
need to be considered in radiation protection and optimization in personalized medicine, especially for paediatric care. The
sensitivity of the eye lens to ionizing radiation makes the case for limiting damage to the lens epithelium by planning medical
radio-imaging procedures for the afternoon, rather than the morning. Equally, the tumour and normal tissue response to
radiotherapy is also subject to diurnal variation enabling optimization of time of treatment.

INTRODUCTION

Circadian (24-h) rhythms and cell division are funda-
mental biological systems in most organisms. There is
substantial evidence that, in mammals, circadian
rhythms affect the timing of cell divisions in vivo. This
has led to the proposal that circadian rhythms and cell
proliferation are phase-locked(1). Day-night variations
in both the mitotic index and DNA synthesis occur in
many tissues (e.g. oral mucosa, tongue keratinocytes,
intestinal epithelium, skin and bone marrow(2–9)). How
the circadian clock controls the timing of cell divi-
sions, however, is not known. Determining how this
clock organizes important processes such as cell div-
ision, apoptosis and DNA damage repair is key to
understanding the links between circadian dysfunction
and malignant cell proliferation(10). It is also central to
understanding how best to organize radiotherapy and
medical imaging to benefit most the patient, especially
for children and younger individuals.

DIURNAL CHANGES IN THE EYE LENS:
CELL PROLIFERATION, MELATONIN
SYNTHESIS AND REFRACTORY
PROPERTIES

Early studies of eye lens proliferation established that
there was a diurnal pattern to the proliferation rate in
the eye lens(11). This has been shown for the rabbit(12),
rat(13–15), mouse(16) and frog(17). Interestingly, for some
fish the refractive properties of the lens is also diurnally
variable(18), a process that is regulated by dopamine(19).
The (rat) lens has capacity to produce melatonin(20)

and serotonin N-acetyltransferase levels in the lens can
be entrained(21). So the lens itself potentially contributes
to the daily entrainment of the retina(22). Removal
of Clock1 from the mouse genome correlates with
increased age related cataract(23). The weight of evi-
dence suggests that cell proliferation in the eye lens
epithelium is subject to diurnal changes.

Cell proliferation is also age dependent(15). As pro-
liferating cells are more susceptible to ionizing radi-
ation, young individuals will be more susceptible to
damage by ionizing radiation. Preventing cell prolif-
eration protects the lens, but the lens is also the most
radiosensitive tissue in the eye(24, 25). It is for this rea-
son that cataract is one of the iconic non-cancer con-
sequences of IR damage(26). This coupled to the fact
that both oxidative defence mechanisms(27) and the
repair of X-ray induced double strand breaks (DSBs)
in DNA(28) are synchronized by circadian rhythms
also means that the timing of radiotherapy and radio-
imaging procedures needs to be coordinated as we
enter personalized medicine.

Impact upon the eye lens – the DNA repair response

X-ray exposure induces reactive oxygen species
leading to DSBs in DNA(29). Previous studies
determined that the lens epithelium, and specific-
ally the region where epithelial cell proliferation is
concentrated, i.e. the germinative zone where IR
effects are seen(12, 30) and by preventing cell prolifer-
ation, IR-induced cataract is also prevented(31, 32).
Given that the lens epithelium also is subject to cir-
cadian rhythm for cell proliferation(11), why is the
germinative zone of the lens especially sensitive to IR?
DNA repair processes are diurnally regulated in other
cells and tissues(28, 33, 34), and DNA repair is regulated†Both authors contributed equally to the publication.
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by melatonin(35), and the lens epithelium has both
melatonin receptors and also the ability to synthesize
melatonin(20). We expect DNA repair processes to be
diurnally regulated in the lens epithelium, as seen for
heart, brain and lung where the levels of DNA repair
genes are highest during sleep(36), a time when accu-
mulated DNA damage would be cleared. Therefore
timing IR exposures in the late afternoon or early
evening would likely help reduce DNA damage and
its effects upon the lens epithelium. Moreover, it is
clear that reducing proliferation in the lens epithe-
lium is radio-protective(31, 32).

The occurrence and repair of DSBs in DNA differs
between the germinative zone and the rest of the eye
lens epithelium ((30) and references therein). In this
study the mice were all exposed to IR in the morning,
the time when proliferation rate would be expected to
be highest. Whereas DNA repair in the central, non-
proliferative zone was more efficient even than circu-
lating blood lymphocytes from the same animals, lens
epithelial cells in the germinative zone had a delayed
DNA repair response(30). Indeed the link between
compromised DNA repair and cataract is clear for the
lens. For instance in humans, polymorphisms in the
XPD gene are linked to age related cataract(37) and a
recessive XPD mutation causes inherited cataract in
mice(38). The levels of acetylated 8-oxoguanine-DNA
glycosylase 1 (OGG1), coded by a diurnally regu-
lated gene(33), are elevated in lens epithelial cells
of patients with age related cataract(39), with evidence
of higher ROS levels. OGG1 is acetylated by sir-
tuin 1 (SIRT1), a diurnally regulated acetylase(40).
Heterozygosity in ataxia-telangiectasia mutated (ATM)
kinase, increased the susceptibility of mice to IR-
induced cataract(41), a sensitivity further increased by
additional heterozygosity in mRAD9(41), and breast
cancer type 1 susceptibility protein (BRCA1)(42) further
evidencing a direct link between IR-induced cataract
and compromised DNA repair.

Recently the role of Lens derived growth factor
(LEDGF/p75) inDNAend resection and homologous
recombination has been discovered(43). LEDGF and
RAD51 load onto DNA breaks, but this requires
SETD2 (Su(var), Enhancerof zeste, Trithorax-domain
containing 2). Loss-of function mutations in SETD2
promotes renal cancers(44). In the context of this article,
LEDGF is required for lens epithelial cell growth and
survival(45)andiselevatedinresponsetooxidativestress
of lens epithelial cells(46). Therefore, along with ATM
heterozygosity, this is another aspect of personalized
medicinetobeconsideredintermsofcataractrisk.

CHRONOTHERAPY OF CANCER – DIURNAL
VARIATION IN THE RESPONSE TO
RADIOTHERAPY

Recent work has discovered that the timing of the
delivery of 131I in mice influences tissue-specific

genome-wide transcriptional responses in a diurnal
related manner(47). The thyroid, liver, and kidney
cortex and medulla all showed strong changes in
genome-wide expression, and the response in kidney
and liver was delayed 3h compared with the thyroid,
probably due to indirect effects by thyroid hormone-
induced responses that were more evident than the
direct response to ionizing radiation(47). The data
suggest that circadian rhythm should be considered
not only in radiation research, but also in radio-
nuclide therapy and endpoints considered in the con-
text of diurnal patterns.

Chronotherapy is becoming an emerging aspect of
personalized cancer treatment because of the enhan-
cement of both tolerance and efficacy(48–50). Indeed it
is worth considering in this context that the crypto-
chromes are derived from DNA repair genes(51), and
that their removal appears to encourage oncogene
transformation(52). Radiation-induced toxicity is mini-
mized when the timing of radiotherapy treatment is
considered. Patients with head and neck cancer, can-
cer in the lower GI tract and cervical cancer can all
benefit from lower side effects when the timing of the
radiotherapy treatment is considered (reviewed in(53)).
One study on patients with head and neck cancer
confirmed morning radiotherapy was better with low-
er high-grade oral mucositis incidence and reduced
weight loss(54), but gender differences were discov-
ered. For women, afternoon treatment regimens
were found to be better(54). Therefore there is capital
to be made for patients in terms of reduced side
effects from radiotherapy when diurnal considera-
tions are taken into account(55). It is clear, however,
that the interplay between circadian rhythms, cell
proliferation and DNA repair with respect to gender
and physiological differences need to be better
understood (Figure 1).

The cell cycle integrates metabolic, physiological
and environmental factors to regulate cell prolifer-
ation. DNA repair induced by exposure to ionizing
radiation stops the cell cycle, but this effect is dose
dependent. Low dose (0.02–0.5 Gy) ionizing radi-
ation can stimulate cell proliferation, while higher
doses ( >1 Gy) can arrest the cell cycle and then trig-
ger cell death. The cell cycle is diurnally regulated as
too is the synthesis of metabolic enzymes and DNA
repair proteins. Radiotherapy exploits the fact that
dividing cells are more susceptible to DNA damage,
but this is not without side effects on normal tissues
where cell proliferation is at a much lower rate than
in cancers. Understanding the interplay between the
cell cycle, circadian rhythm, cell proliferation and
DNA repair will deliver benefits to patients by redu-
cing side effects and improving efficacy of radiother-
apy treatments and medical imaging procedures.

When discussing optimization of radiotherapy, the
influence of circadian rhythm on radiobiological
effects on tumour tissue must also be considered in
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order to find time points when the therapeutic win-
dow is largest. Proliferation of tumour cells seems
also to be influenced by rhythmicity. Many tumours
follow tumour-specific circadian or ultradian (peri-
ods of a few hours) rhythm, different from the
normal tissue circadian rhythms(56). Especially fast-
growing or less differentiated tumours seem to follow
ultradian pattern. There is thus a potential to find
optimal time periods when radiosensitivity is high in
tumour tissue while low in normal tissues. It should,
however, be noted that radiotherapy may alter the
tumour rhythm to become circadian, which must
also be considered when optimizing radiotherapy
schedule on an individual basis.

There is significant between-subject and circadian
variability in enzyme activity and drug metabolism, e.g.
for 5-FU(57), which may be used in chemoradiotherapy.
In two phase II studies on patients with locally
advanced rectal cancer chronomodulated therapy
using capecetabine and radiation therapy resulted
in effective treatment with low side effects(58, 59).

CONCLUSION

Circadian rhythms serve to synchronize the organ-
ism and its physiology to its changing environment
and this means integrating, for instance, metabolic
processes and the cell cycle as well as coordinating
DNA repair. It is therefore not surprising that diur-
nal patterns significantly impact ageing and cancer
susceptibility. Furthermore, radiobiological effects
both in normal and tumour tissues are also influ-
enced by circadian rhythms, and some attempts to
include such information in clinical studies on radio-
therapy and chemoradiotherapy have been per-
formed. Still, more basic knowledge on the relation
between radiation and circadian biology is needed,
together with preclinical and clinical in vivo studies

in order to define strategies for optimization of med-
ical use of ionizing radiation.

It is well known that the radiation sensitivity and
risk factors are higher for children than adults. One
reason is faster cell proliferation leading to higher
risk of impairment in DNA repair. Another is the
longer life expectancy and therefore the higher risk
of long-term consequences of exposure (with longer
latency period). Therefore, certainly for paediatric
radiotherapy and medical imaging, due consider-
ation needs to be given as personalized medicine
becomes the accepted standard.
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