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Abstract 18 

The internal structure and emplacement mechanisms of composite plutons are 19 

investigated using new field data from the composite Late Miocene granitic intrusion of 20 

Mt Kinabalu in northern Borneo. The pluton was emplaced in the upper to middle crust 21 

in the Late Miocene at the contact between the ultramafic basement and sedimentary 22 

cover rocks.  Structural data indicates that emplacement occurred during regional NNW-23 

SSE oriented extension, challenging tectonic models that infer contemporaneous 24 

regional compression. The six major units comprising the pluton were accommodated by 25 

upward flexure of the cover rocks with most magma pulses emplaced successively 26 

beneath their predecessors. However, the irregular three-dimensional internal structure 27 

of the pluton also reflects preferential emplacement of successive units along the 28 

granite-country rock contact of previous units in preference to the basement-cover rock 29 

contact exploited by the initial units. This work highlights the complex emplacement 30 

mechanisms and internal structure of composite intrusions and assesses how they differ 31 

from models of tabular emplacement. 32 

33 



Introduction 34 

Interpretations of ascent and emplacement of granitic intrusions have changed 35 

drastically in recent decades from models of large diapirs ascending slowly through the 36 

crust to models of rapid dyke-fed ascent and layered, laccolith-style emplacement of 37 

composite plutons (Clemens & Mawer 1992, Petford et al. 2000, Petford & Clemens 38 

2000, McCaffrey & Petford 1997, Cruden 1998, Cruden & McCaffrey 2001, Grocott et al. 39 

2009, Vigneresse & Clemens 2000, Horsman et al. 2009, de Silva & Gosnold 2007, de 40 

Saint-Blanquat et al. 2001, de Saint-Blanquat et al. 2006, Vigneresse 2006, Wiebe & 41 

Collins 1998, Wiebe 1988). Mt Kinabalu in Sabah, NW Borneo (Fig. 1), is an Upper 42 

Miocene intrusion with a 4095 m high glaciated summit and good exposure over a 43 

vertical range of 2900m (Fig. 2), providing an excellent opportunity to study the structure 44 

of a granitoid pluton in three dimensions. Cottam et al. (2010) reinterpreted the intrusion 45 

as a composite laccolith formed by discrete magmatic pulses based on geochronological 46 

constraints. However, no detailed mapping of the pluton has been undertaken for four 47 

decades, largely due to its extreme relief and difficulties in accessing its densely forested 48 

flanks. We present the first new map of the pluton since Jacobson (1970) and reinterpret 49 

its structure and emplacement, then discuss the implications for global magmatic 50 

processes. 51 

Regional geological history and tectonic setting 52 

Northern Borneo has a basement of Mesozoic igneous and metamorphic rocks overlain 53 

by Cenozoic sediments. The basement includes mafic igneous rocks and radiolarian 54 

cherts, variably serpentinised peridotites and Triassic to Cretaceous rocks previously 55 

described as crystalline basement (Reinhard & Wenk 1951, Dhonau & Hutchison 1965, 56 

Koopmans 1967, Kirk 1968, Leong 1974). The latter resemble deformed ophiolitic rocks 57 

intruded by arc plutonic rocks that Hall & Wilson (2000) suggested formed in a Mesozoic, 58 

intra-oceanic arc. The peridotites have been interpreted as part of a Cretaceous ophiolite 59 

(Hutchison 2005) emplaced in the Late Cretaceous or Early Paleogene (Newton-Smith 60 

1967, Omang & Barber 1996). Unusual peridotites exposed close to Mount Kinabalu have 61 

been interpreted to represent sub-continental mantle (Imai & Ozawa 1991). The 62 

basement is in contact with a cover sequence of predominantly deep-water turbidites 63 



and related deposits assigned to the Eocene to Lower Miocene Trusmadi and Crocker 64 

Formations (Collenette 1965, van Hattum et al. 2006). 65 

The basement and cover rocks were folded and faulted during Eocene and Oligocene 66 

deformation that was driven by the subduction of the proto-South China Sea beneath 67 

Borneo (Taylor & Hayes 1983; Rangin & Silver 1990; Tongkul 1991, 1994; Hall 1996; Hall 68 

& Wilson 2000; Hutchison 2000). The attenuated South China continental margin 69 

collided with northern Borneo in the Early Miocene (Hutchison 2000, Hall & Wilson 2000) 70 

resulting in the Sabah Orogeny (Hutchison 1996), which produced significant topography 71 

in the region (Hutchison 2000) and  emergence of much of Sabah and the present central 72 

highlands of northern Borneo. However, by the end of the Early Miocene much of 73 

present-day Sabah was below or close to sea level (Noad 1998, Balaguru et al. 2003, Hall 74 

et al. 2008), probably with a low elevated range of hills at the position of the Crocker 75 

Mountains. Offshore the Neogene shelf edge migrated broadly northwestwards from the 76 

Middle Miocene onwards (Sandal 1996, Hazebroek & Tan 1993, Hutchison 2005, Cullen 77 

2010), suggesting a gradual rise and widening of the Crocker Mountains during the 78 

Middle and Late Miocene. The Kinabalu granite was intruded into the centre of the 79 

Crocker Mountains between 8 and 7 Ma (Cottam et al. 2010). High post-emplacement 80 

exhumation rates indicated by low temperature thermochronology are comparable to 81 

the exhumation rates of mountainous terrains (Cottam et al. 2013), suggesting that the 82 

Crocker Range existed at the time of emplacement. 83 

Sabah became fully emergent only at the end of the Miocene or Early Pliocene 84 

(Collenette 1965, Balaguru et al. 2003, Tongkul & Chang 2003, Morley & Back 2008). The 85 

glaciated summit plateaus and Pleistocene glacial tills (Collenette 1958) of the Kinabalu 86 

area, and similar deposits near to Mount Tambuyukon, indicate that the summits of 87 

Kinabalu, Tambuyukon and possibly Trusmadi, were significantly higher than other parts 88 

of the Crocker Range by the Pleistocene. 89 



Results 90 

New geological maps 91 

A limited number of field studies on the geology of Mt Kinabalu have been published 92 

(Reinhard & Wenk 1951, Collenette 1958, Kasama et al. 1970, Jacobson 1970). At the 93 

time of this previous mapping the mountain was even less accessible than today with 94 

more extensive rainforest cover and much poorer transport systems. As such, access was 95 

largely restricted to the lowland streams south of the mountain. Our work augments the 96 

observations of Jacobson (1970), the most recent detailed study, with new traverses of 97 

the intrusion focusing on the previously unmapped high altitude regions including the 98 

eastern and northern ridges. 99 

A new digital elevation model (DEM) was created during this study based on published 100 

topographic maps, a high resolution satellite image (1m resolution) and GPS 101 

observations collected during fieldwork. Fig. 3 presents the revised geological map of Mt. 102 

Kinabalu. Draping the map over the digital elevation model in Fig. 4 illustrates how the 103 

relief is controlled by the surface lithologies. Localities referred to on the summit 104 

plateaux are highlighted on the large scale summit map in Fig. 5. Combining the field 105 

observations with the chronology of Cottam et al. (2010) allows us to infer the internal 106 

structure of the pluton (Figs. 6 and 7). 107 

Lithological Units 108 

Ophiolitic basement 109 

The ophiolitic basement is the oldest lithological unit in Sabah and underlies much of the 110 

region (Fig. 1). Outcrops of the ophiolite around Mt Kinabalu are predominantly 111 

lherzolite but there is also wehrlite, harzburgite and dunite, with varying degrees of 112 

serpentinisation (Jacobson 1970). 113 

Fluvial pebbles 11km SE of Mt Kinabalu comprise garnet pyroxenites (in agreement with 114 

Imai & Ozawa 1991), amphibolite, garnet amphibolite, garnet-zeolite amphibolite and 115 

amphibolite-plagioclase gneiss, amygdale-rich basaltic volcanics and chert. Some of 116 

these lithologies are similar to rocks described from the Darvel Bay ophiolite (Leong 117 



1974, Hutchison 1978, Omang & Barber 1996) and also resemble the description of Mt 118 

Kinabalu’s “crystalline basement” (Jacobson 1970). 119 

Ultramafic hornfels containing relict olivine and orthopyroxene with secondary chlorite, 120 

serpentine and talc is found downstream of the granite-ophiolite contact on the SE of 121 

the pluton in the river of S. Bambangan (Fig. 3). Some of the ultramafic rocks in contact 122 

with the Paka Porphyritic Granite on the summit trail are variably (sometimes 123 

intensively) altered to talc, and schists containing varying abundances of tremolite, 124 

anthophyllite and talc are described on the south of the mountain by Jacobson (1970). 125 

Crocker Formation turbidite sediments 126 

The interbedded turbiditic mudstones and quartzarenite to subarkose sandstones of the 127 

Crocker Formation overlie the ophiolitic basement. The contact was not observed on the 128 

north of the mountain but a metamorphic aureole of sandstones metamorphosed to 129 

quartzite extends ~20m to 2 km from the pluton. The contact between the sediments 130 

and granite was observed in S. Tahobang to the west of the intrusion (Fig. 3). For up to 8 131 

m from the contact, sedimentary rocks have been metamorphosed to a hornfels of very 132 

fine sutured quartz grains, chlorite, minor biotite, and interstitial secondary muscovite. 133 

Jacobson (1970) observed contact metamorphism up to 1.6 km from the pluton where a 134 

mica-cordierite hornfels close to the contact in S. Kilambuan (west of the mountain, Fig. 135 

3) contains biotite, muscovite, cordierite quartz and albite. 136 

The Mt Kinabalu Pluton 137 

The Mt Kinabalu pluton comprises six major units classified by modal mineral 138 

abundances determined by  point counting of 46 thin sections stained for plagioclase and 139 

K-Feldspar (Sperber 2009). Table 1 presents the modal mineralogy of these intrusive 140 

units, along with U-Pb ages from zircon rims (Cottam et al., 2010). Estimates of volumes 141 

for each unit are included based on the mapped extent (Fig. 3) and the interpreted pre-142 

erosion cross-section of the pluton (Fig. 6). Calculation of these volumes is discussed 143 

further in the ‘Discussion’ section below. Although the modal mineralogy of many of the 144 

units are very similar, they can be distinguished in the field (although sometimes only on 145 

fresh surfaces) and were mapped according to these mineralogical differences (with the 146 



exception of the Low’s Granite which was distinguished from the King Granite using 147 

mineralogical, chemical and magnetic susceptibility data). 148 

Petrographic descriptions and field relationships between the units are given below, with 149 

more detailed information in Burton-Johnson (2013). We include two newly recognised 150 

units, the King Granite and the Paka Porphyritic Granite. The King Granite was previously 151 

mapped as part of the Low’s Granite (under the name “Hornblende Granite”, Cottam et 152 

al. 2010) and the Paka Porphyritic Granite was included as part of the Mesilau Porphyritic 153 

Granite (previously named the “Porphyritic Hornblende Granite”, Cottam et al. 2010). 154 

The revised classification (Fig. 8) differs from previous work (Reinhard & Wenk 1951, Kirk 155 

1968, Vogt & Flower 1989) as summarised in Cottam et al. (2010), which partly reflects 156 

changing classification schemes, and partly the result of mineral misidentifications in 157 

some earlier studies probably due to a lack of thin section mineral staining. Key 158 

differences are: (i) that we find more consistent modal mineralogies for each unit in this 159 

study than previous mineralogical data suggested; (ii) the Alexandra 160 

Tonalite/Granodiorite unit, previously classified as a monzodiorite (Vogt & Flower 1989), 161 

ranges from tonalite to granodiorite with varying potassium feldspar content (4-7%); and 162 

(iii) that the majority of units are granites, not granodiorites or quartz monzonites. 163 

Alexandra Tonalite/Granodiorite 164 

The Alexandra Tonalite/Granodiorite is the oldest unit and forms most of the western 165 

summit peaks of the Western Plateau. It is composed of 1-3 mm grains of quartz, 166 

plagioclase, K-feldspar, hornblende and biotite crystals. Biotite is the dominant 167 

ferromagnesian phase, although biotite pseudomorphs of hornblende indicate that 168 

much may be secondary. Secondary biotite occurs in all the granite units but is 169 

particularly prevalent in the Alexandra Tonalite/Granodiorite. Foliation of the biotite 170 

crystals was observed to dip at ~40-65° towards the south-west. 171 

Low’s Granite 172 

The Low’s Granite was emplaced below and around the Alexandra 173 

Tonalite/Granodiorite, forming the eastern and southern peaks on the Western Plateau 174 

and a separate unconnected region on the mountain’s northern flank (Fig. 3). The unit is 175 

composed of 4-7 mm long euhedral prismatic hornblende phenocrysts (the dominant 176 



ferromagnesian phase) in a groundmass of 1-4 mm grains of K-feldspar, plagioclase, 177 

hornblende and biotite. Samples from the northern flank contain more K-feldspar and 178 

quartz than those of the Western Plateau. 179 

The contact of the Alexandra Tonalite/Granodiorite and Low’s Granite was observed on 180 

the Western Plateau. Along the eastern extent of the Alexandra Tonalite/Granodiorite 181 

this contact steepens to vertical and in some places the Low’s Granite is found above the 182 

Alexandra Tonalite/Granodiorite, enveloping the older unit (Fig. 7 and 9). West of this 183 

the contact dip shallows to ~20° to the WSW and becomes sub-parallel to the 184 

topographic surface, revealing windows of the Low’s Granite within the Alexandra 185 

Tonalite/Granodiorite (Fig. 9). The contact is sharp when sub-vertical but appears to be 186 

more gradational (over 1-3 m) where dipping at a low angle. When sharp, the contact 187 

shows chlorite, hematite and epidote mineralisation along the contact surface and the 188 

Low’s Granite shows a 2 m wide chilled margin of more intense irregular and contact-189 

parallel fracturing, finer crystal sizes, more abundant biotite and extensive chlorite 190 

mineralisation of ferromagnesian minerals, grading in to its interior composition (Fig. 191 

10a). No chilled margin is expressed in the Alexandra Tonalite/Granodiorite. These field 192 

relations support emplacement of the Low’s Granite after the Alexandra 193 

Tonalite/Granodiorite. 194 

King Granite 195 

The most extensive unit is the King Granite, emplaced beneath the Low’s Granite. Crystal 196 

sizes and mineralogy are similar to the Low’s Granite but with a lower modal abundance 197 

of ferromagnesian phases (especially biotite) and a greater amount of K-feldspar. The 198 

contact can be observed on the eastern cliff of the Western Plateau (Fig. 10b). This 199 

inaccessible outcrop shows a lighter body of King Granite in sharp contact with the 200 

overlying, darker Low’s Granite. The lighter body darkens gradationally away from the 201 

contact, which dips at ~50° NW. Dykes of King Granite with sharp contacts intrude the 202 

overlying Low’s Granite (Fig. 10b) so the periphery of the Low’s Granite had solidified 203 

during the 0.2 My time gap inferred from zircon geochronology (Cottam et al. 2010), and 204 

support emplacement of the King Granite after the Low’s Granite. Elsewhere the Low’s 205 

and King Granites are almost identical in the field so the contact location is largely 206 



inferred from geochemical and Anisotropic Magnetic Susceptibility (AMS) data (Burton-207 

Johnson 2013). 208 

Donkey Granite 209 

Jacobson (1970) described this unit as a minor biotite adamellite porphyry but our work 210 

shows it to be much more extensive than previously mapped, intruding the King Granite 211 

on the Western and Eastern Plateaux and in Low’s Gully 600 m below (Fig. 5 and 10c). 212 

We interpret these three occurrences as a NE-trending, sub-vertical planar sheet, 213 

approximately 2.5 km long and 200 m wide. The Donkey Granite is mineralogically similar 214 

to the King Granite, composed of hornblende, biotite and ≤4 mm long subhedral tabular 215 

plagioclase phenocrysts in a finer hornblende, biotite, plagioclase, quartz and K-feldspar 216 

groundmass. 217 

On the Western Plateau the sub-vertical western and eastern margins of the Donkey 218 

Granite are different from each other (Fig. 5). The eastern contact is largely gradational 219 

but becomes sharp where it forms the distinctive Donkey’s Ears Peak (Fig. 10d). The 220 

western contact is sharp along its length with sub-vertical, contact-parallel flow banding 221 

within the Donkey Granite and localised magma mingling with the King Granite (Fig. 10e), 222 

implying that neither body was solid when the Donkey Granite was intruded. 223 

Paka Porphyritic Granite 224 

The Paka Porphyritic Granite was emplaced after the King Granite (based on contact 225 

relations and geochronology) along the southern flank of the pluton. It is found to the 226 

south and east of the Eastern Plateau and at lower elevations on the NW flank. The unit 227 

contains subhedral, tabular, K-feldspar megacrysts of 10-15 mm length in a groundmass 228 

of 2-5 mm long K-feldspar, plagioclase, quartz, hornblende and biotite crystals. 229 

Megacrysts commonly show long axis alignment plunging at a low angle (<26°) but with 230 

varying azimuths, even across a single outcrop. 231 

The contact of the King and Paka Porphyritic Granites is sharp and often apparent in the 232 

topography as steep cliffs around the Eastern Plateau. Proximal to the King Granite, 233 

megacrysts become more abundant in the Paka Porphyritic Granite which also shows 234 

contact-parallel flow banding and megacryst alignment (Fig. 10f) implying emplacement 235 



of the Paka Porphyritic Granite after the King Granite. Along Mt Kinabalu’s southern 236 

flanks the contact dips steeply south (67-82° S) with the Paka Porphyritic Granite 237 

overlying the older unit, but the orientation changes on the Eastern Plateau where the 238 

Paka Porphyritic Granite underlies the King Granite (Fig. 6, 7 and 10g). Hydrothermal 239 

channelling proximal to the contact has produced strong haematite alteration of the 240 

overlying units, including at the consequently named “Red Rock Peak” on the Eastern 241 

Plateau (Fig. 5 and 10g). 242 

Mesilau Porphyritic Granite 243 

The southeast portion of the main pluton is composed of the Mesilau Porphyritic Granite, 244 

which also forms the mineralised satellite stock of the disused Mamut porphyry copper 245 

mine (Fig. 3). The northern extent of the main mass was not observed but is interpreted 246 

from prominent topographic ridges and valleys. Previously mapped as a variant of the 247 

Paka Porphyritic Granite, the Mesilau Porphyritic Granite shows clear differences in 248 

mineralogy, chemistry and field relations (Burton-Johnson 2013). Most notably the 249 

Mesilau Porphyritic Granite possesses large, 20-30 mm long, subhedral, tabular, K-250 

feldspar megacrysts that comprise approximately 30% of the rock and are commonly 251 

aligned. The groundmass consists of 3-5 mm long crystals of K-feldspar, plagioclase, 252 

quartz, hornblende and biotite and ≤2% clinopyroxene. 253 

We could not locate contacts of the Mesilau Porphyritic Granite with other units. These 254 

were inferred from changes in float on opposite sides of narrow streams and gullies to 255 

the south, where it is close to the Paka Porphyritic Granite, and the east, where it is 256 

adjacent to the King Granite. 257 

Dykes 258 

Pyroxene monzonite dykes form large ENE-WSW trending intrusions up to 20 m wide. 259 

On the west face of the mountain individual dykes can be traced for approximately 1 km 260 

vertically. Preferential erosion of the dykes is the cause of a number of large, linear 261 

depressions across the plateau and many of the gaps between the Diwali Pinnacles of 262 

the Western Plateau (Fig. 10h). These dykes contain porphyritic clinopyroxene and K-263 

feldspar in a groundmass of quartz and feldspar. Some dykes were found with subhedral 264 



to euhedral tabular K-feldspar phenocrysts ≤15 mm long oriented parallel to their 265 

margins. 266 

Discussion 267 

The new field evidence allows us to reinterpret the emplacement history and 268 

mechanisms of the Mount Kinabalu pluton and its internal structure. The data allows 269 

investigation of the pluton and individual unit volumes; the syn-magmatic tectonic 270 

setting; the magmatic emplacement mechanisms; and the individual units’ spatial and 271 

temporal relationships. Based on this we consider the implications for magma 272 

emplacement processes. 273 

Pluton thickness 274 

Although the new geological map and contact geometry data allow interpretation of the 275 

three dimensional structure of the pluton (Fig. 6 and 7), the basal geometry is not 276 

exposed and an independent methodology must be used to assess our interpretations. 277 

Cruden & McCaffrey (2001) have proposed that a power law relates the thickness and 278 

length of laccoliths, plutons and batholiths:  279 

𝑇 = 0.6(±0.15)𝐿0.6(±0.1) [Equation 1] 280 

Importantly, Cruden & McCaffrey (2001) postulated that Equation 1 is consistent for all 281 

scales of pluton emplacement including individual bodies and large composite plutons. 282 

If this relationship is applicable to Mount Kinabalu then the 11.5 km equivalent circle 283 

diameter of the short (9 km) and long (15 km) axes predicts a pluton thickness of 2.6 km 284 

(±1.5 km). This thickness estimate implies that the intrusion does not continue far 285 

beneath the observed 2.9 km vertical range of outcrops. Estimates of the volume of 286 

granitic material eroded by glaciation based on the glacial till around the pluton 287 

concluded that the original uppermost surface of the pluton was unlikely to be much 288 

higher than the present summit pinnacles (Sperber 2009). Combining these 289 

interpretations suggests that most of the intrusion’s original thickness is both exposed 290 

and preserved, in agreement with Reinhard & Wenk (1951).  291 



Individual unit volumes 292 

Based on the field data described above, pre-erosional volumetric estimates can be 293 

made for each of Mt Kinabalu’s composite units (summarised in Table 1 and Fig. 7). 294 

Both the upper and lower contacts of the Alexandra Tonalite/Granodiorite were 295 

observed in the field, so a good estimate of the unit’s thickness can be made (~0.2 km). 296 

However it is unclear how much of its lateral extent has been lost to erosion. Equation 1 297 

describes the relationship between an intrusion’s width and thickness, predicting a 298 

lateral unit extent of 0.1 km (0.06-0.3 km within error). The unit has an equivalent circle 299 

diameter of 1.3 km, greater than the predicted lateral width, so it is unlikely much 300 

material is missing laterally. The unit has an ellipsoidal form in the field (Fig. 7), so 301 

modelling it as an ellipsoid with the observed dimensions equates to a total volume of 302 

0.2 km3. 303 

The upper and lower contacts of the Low’s Granite on the Western Plateau were also 304 

observed, so the same methodology can be applied as for the previous unit. 305 

Extrapolating the contact surfaces (Fig. 6) predicts a unit thickness of ~0.6 km, 306 

corresponding to an intrusion width of 1.1 km (0.7-1.6 km within error) according to 307 

Equation 1. The unit’s outcrop extent has an equivalent circle diameter of 2.3 km, 308 

indicating that little material has been lost laterally. Again modelling the unit as an 309 

ellipsoid (Fig. 7) gives a unit volume of ~2 km3. 310 

The extent and structure of the Low’s Granite on the northern flank of the pluton (Fig. 3) 311 

are highly ambiguous and poorly constrained, although outcrops were observed over a 312 

500 m vertical range. Modelling the unit as an ellipsoid and calculating its thickness using 313 

Equation 1 predicts a volume of ~3.9 ±0.5 km3, although this is highly speculative 314 

compared to the other units. 315 

The King Granite has a more irregular structure than the preceding units of the Western 316 

Plateau, and its basal contact is not observed. However, its eastern contact on the 317 

Eastern Plateau dips west beneath the intrusion, allowing interpretation of its basal 318 

surface (Fig. 6). This estimates a thickness of ~2.3 km, comparable to the 2.2 km 319 

predicted by Equation 1. Modelling the unit as an ellipsoid gives a unit volume of ~90 320 

km3. 321 



The Donkey Granite is well constrained in its length and width, and although it was 322 

observed 600m below the plateaux in Low’s Gully, it is unclear how far it continues at 323 

depth. Allowing a further 200 m and modelling the unit as a cuboid sheet (Fig. 7) equates 324 

to a volume of 0.4 km3. 325 

The structure of the Paka Porphyritic Granite is irregular as it intruded around the King 326 

Granite (Fig. 7), and the form of its basal contact cannot be predicted. However, although 327 

the outcrop width varies from 0.2-1.5 km around the pluton, it is most commonly around 328 

800 m and so we model it here as a sheet (Fig. 6). This is supported by the dip of the 329 

outer western contact beneath the pluton (Fig. 3), implying the unit doesn’t widen at 330 

depth, and the previous calculation that based on Equation 1 most of the pluton’s 331 

thickness is exposed. Based on these interpretations we predict a unit volume of ~40 332 

km3. 333 

The basal structure of the Mesilau Porphyritic Granite is again ambiguous and 334 

unexposed. Based on the lateral extent of the unit, Equation 1 predicts a thickness of 1.9 335 

km, comparable to the 1.9 km thickness predicted by interpreting a regular basal surface 336 

along the pre-emplacement interface of the basement and cover rock (Fig. 6). This is 337 

again supported by the previous interpretation based on Equation 1 that the pluton does 338 

not continue far at depth. Based on this interpretation of a regular basal surface, the 339 

structure of the unit in the field appears to resemble a spherical cap thickening laterally 340 

towards its centre (Fig. 6 and 7). Modelling the unit as such predicts a volume of ~40 km3. 341 

Emplacement conditions 342 

Vogt & Flower (1989) employed an Al-in-hornblende geobarometer to estimate 343 

emplacement pressures of 1-3 kbar (equivalent to 3-10 km) for the Alexandra 344 

Tonalite/Granodiorite and the Low’s and King Granites. This estimation has been 345 

improved by combining 40Ar/39Ar, zircon fission track and (U-Th-Sm)/He 346 

thermochronometry to give an upper to mid-crustal emplacement depth of 7-12km 347 

(Cottam et al. 2013). 348 

Metamorphic temperatures in country rocks can be used to estimate the minimum 349 

emplacement temperature of an intrusion. Talc and anthophyllite formed by contact 350 



metamorphism of ultramafic bodies imply temperatures of 630-700°C at emplacement 351 

pressures of 2-3 kbar (Bucher & Grapes 2011). Talc is absent from ultramafic samples far 352 

from the contact, indicating that these are contact metamorphic phases. The 353 

temperature range overlaps the 470-650°C implied by a hornfels containing coexisting 354 

muscovite, biotite and cordierite near the intrusive contact (Bucher & Grapes 2011). 355 

These temperatures are consistent with low pressure melting experiments (2-3 kbar) 356 

indicating a whole rock solidus of ~670-700°C for granitoids of a similar mineralogical and 357 

chemical composition to the main granitic units of Mt Kinabalu (Naney 1983, Lambert & 358 

Wyllie 1974, Klimm et al. 2003, Holtz & Johannes 1994). The presence of hornblende at 359 

these temperatures implies high H2O contents (>5 wt.%; Bogaerts et al. 2006). 360 

Accommodation space 361 

Whether melt emplacement was accommodated through roof lifting or floor depression 362 

differentiates laccolithic and lopolithic emplacement mechanisms and can be 363 

determined from country rock structures. Sedimentary beds >1.9 km to the north, south, 364 

southwest and southeast of Mt Kinabalu dip towards the south and/or west (dominantly 365 

southwest), reflecting deformation of the Crocker sediments prior to the intrusion of Mt 366 

Kinabalu. However, beds closer to the pluton strike sub parallel to the contact and dip 367 

away from the pluton. This reorientation of the country rock structures implies that the 368 

sedimentary units bow upwards over the pluton (Fig. 6) with accommodation space 369 

created through upward deformation and roof lifting of the overlying sediments in a 370 

laccolith style, although floor depression may also have occurred (Cruden 1998). Earlier 371 

units were also tilted by each subsequent intrusion, producing the westward inclination 372 

of the Alexandra Tonalite/Granodiorite and Low’s Granite contact surfaces. The intrusion 373 

was emplaced at the contact of the basement sedimentary cover rocks, and it was likely 374 

this interface that halted magma ascent and determined the depth of emplacement 375 

(Clemens & Mawer 1992). 376 

Internal structure and implications for pluton emplacement mechanisms 377 

In current models of composite pluton growth, successive pulses intrude above or below 378 

their predecessors as horizontal tabular bodies (Cruden 1998, Cruden 2006, Grocott et 379 

al. 2009). The exhumation and preservation of peripheral material at Mt Kinabalu 380 



provides a unique opportunity to observe the three dimensional internal structure of a 381 

pluton and to test this model of composite pluton growth. 382 

The initial two units have tabular forms suggesting that magma spread laterally upon 383 

reaching its emplacement level (Fig. 7); the second (Low’s Granite) emplaced below the 384 

first (Alexandra Tonalite/Granodiorite). This closely resembles the sheeted laccolith 385 

model (Cruden 1998, Cruden 2006, Wiebe & Collins 1998, de Saint-Blanquat et al. 2006) 386 

as previously advocated for Mt Kinabalu (Cottam et al. 2010). However, these early units 387 

diverge slightly from the general model as the Low’s Granite ascended around the sides 388 

of the Alexandra Tonalite/Granodiorite and enveloped its periphery (Fig. 7). Further 389 

upward deformation accommodated the King Granite, tilting both the earlier intrusions 390 

and their overburden (Fig. 6) in a similar manner to other composite plutons (Stevenson 391 

et al. 2007, Grocott et al. 2009). The King Granite formed a major impediment for the 392 

upwelling Paka Porphyritic Granite magma which (unlike the Donkey Granite) was unable 393 

able to ascend through the now-crystallised body. Unable to deform or uplift the earlier 394 

bodies but still experiencing positive buoyancy, the Paka Porphyritic Granite ascended 395 

around the periphery of the earlier units (Fig. 6 and 7) rather than extending laterally at 396 

the same crustal level they had exploited. Finally, again restricted by the earlier units, 397 

the Mesilau Porphyry intruded beneath the intrusion and extended laterally to the SE 398 

(Fig. 7). 399 

Mt Kinabalu highlights the effect of pre-existing granite pseudo-stratigraphy on magma 400 

emplacement, producing a complex internal structure (Fig. 7). Instead of the intrusion of 401 

each pulse being independent of those before, emplacement was affected by the 402 

structure and crystallisation state of the earlier intrusions. At any instant the existing 403 

structure controlled the spatial distribution of subsequent intrusions, forcing later pulses 404 

in a particular direction with the granite-country rock contacts of earlier units being 405 

intruded preferentially over the original emplacement depth of the sediment-ophiolite 406 

contact. 407 

Tectonic setting 408 

Dyke and fault orientations were recorded from within the pluton to determine the syn-409 

magmatic tectonic setting and associated paleostresses (Fig. 11), although shear sense 410 



indicators were largely lacking. In both compressive and extensional regimes, dykes will 411 

propagate perpendicular to the direction of minimum compressive stress (σ3), parallel 412 

to the plane containing the maximum (σ1) and intermediate (σ2) compressive stresses 413 

(Fig. 12a and 12 c). In contrast, all shear fractures (faults) will propagate obliquely to σ1 414 

and in an extensional regime will strike parallel to σ2 (Fig. 12b and 12d; Bles & Feuga 415 

1986, Park 1997). Consequently, in extensional regimes (i.e. where σ1 is vertical) faults 416 

and dykes will share similar strike orientations, whilst in compressive regimes (i.e. where 417 

σ1 is not vertical) the two populations will have different strike orientations (Fig. 12). 418 

Measurements from faults and both aplite and intrusive dykes (dominantly pyroxene 419 

monzonite) show dominantly steep dips and similar strike orientations trending ENE-420 

WSW (Fig. 11), as would be expected in an extensional regime (Fig. 12a and 12b). A 421 

limited number of shear sense indicators were observed but showed no preferred 422 

orientation or sense of movement. 423 

Although the faults and pyroxene monzonite dykes have not been dated and may 424 

significantly post-date intrusion of the Mt Kinabalu pluton, aplite dykes are 425 

contemporaneous with the pluton as they are generated from residual, highly 426 

fractionated interstitial melts infilling extensional fractures during the crystallisation and 427 

contraction of their granitic host (Best 2003). Consequently the steeply NNW-SSE dipping 428 

orientation of the aplite dykes indicates a subhorizontal NNW-SSE oriented σ3 direction 429 

(Fig. 11). The ENE-WSW strike of the aplite dykes is shared by both the faults and 430 

pyroxene monzonite dykes, so the subhorizontal NNW-SSE orientation of σ3 can be 431 

interpreted to continue during and after intrusion of the pluton. It should be noted, 432 

however, that whilst the fault and pyroxene monzonite dyke orientations are largely 433 

concentrated in a common ENE-WSW strike (Fig. 11), the aplite dyke orientations are 434 

more dispersed. As aplites are formed during the crystallisation and contraction of their 435 

host pluton this is likely the result of localised stresses produced by the contraction being 436 

superimposed on the regional stress field. These localised stresses may also explain the 437 

more minor dispersed orientations of the faults and pyroxene monzonite dykes. 438 

In contrast with the interpretation of the regional stress field from the field data, the 439 

intrusion of magma in to the crust can perturb the local stress field during emplacement 440 



(Vigneresse et al. 1999). However, the stresses induced by magma emplacement 441 

produce fractures and dykes whose strikes radiate from or are concentric around the 442 

central point of emplacement induced pressure (likely the core of the pluton or dyke, 443 

Castro 1984). The dyke and fault orientations of Mt Kinabalu do not show such a 444 

distribution, indicating their formation was influenced by regional stresses not perturbed 445 

by local syn-emplacement stresses. Furthermore, any stresses related to magmatic 446 

emplacement superimposed on the regional stress field would wane following 447 

emplacement, resulting in different interpreted stress directions for the aplite dykes 448 

(shortly after emplacement) and faults (later post emplacement) which is not the case 449 

(Fig. 11). 450 

These observations indicate NNW-SSE orientated regional extension during 451 

emplacement of the pluton (the σ3 direction), supporting previous interpretations 452 

(Cottam et al. 2013, Hall 2013) that the emplacement and uplift of the pluton was 453 

associated with contemporaneous crustal extension. Vogt & Flower (1989) and Swauger 454 

et al. (2000) ascribed melt generation and uplift to compression and crustal thickening 455 

associated with the Sabah Orogeny. However, the revised Late Miocene ages for the 456 

emplacement and uplift of the pluton (Cottam et al. 2013, Cottam et al. 2010) 457 

significantly post-date this Early Miocene collisional event (Hutchison 1996, Balaguru & 458 

Nichols 2004, Hall et al. 2008). Post-orogenic extension affected sediments elsewhere in 459 

northern Borneo (Hutchison 2000) and may be associated with Miocene extension of the 460 

Sulu Sea basin (Hall 2013), NE of Sabah (Fig. 1). The structural data presented here 461 

provides evidence for extension in northern Sabah during the Late Miocene, extending 462 

the duration and extent of Miocene extension in Borneo. Further evidence should be 463 

sought to determine the extent of Late Miocene extension and to prove that this is not 464 

purely local extension, as this conclusion implies that tectonic models interpreting the 465 

region as in a compressive regime following the cessation of South China Sea spreading 466 

(e.g. King et al. 2010, Pubellier & Morley 2013) require revaluation. 467 

Conclusions 468 

The Mt Kinabalu granitic intrusion was emplaced in the upper to middle crust over ~0.8 469 

My in the Late Miocene. The pluton was emplaced in a regional extensional setting, and 470 



steeply NNW-SSE dipping dyke and fault orientations suggest a NNW-SSE oriented 471 

regional extension direction challenging tectonic models that predict contemporaneous 472 

regional compression. The composite Mt Kinabalu intrusion comprises six major units: 473 

the oldest unit being a tonalite/granodiorite, followed by three subsequent sub-474 

equigranular granites and two final porphyritic granites (not quartz monzonite as 475 

previously suggested). The changing compositions of these composite units reflect an 476 

evolving system of magmatic fractionation and assimilation (Burton-Johnson 2013) 477 

which will be discussed in a future paper. 478 

Magma was emplaced along the contact of the ultramafic basement and sedimentary 479 

overburden where the contact interface halted upward magma migration and initiated 480 

lateral intrusion. Emplacement was accommodated by roof uplift and flexure of the 481 

overlying sediments, although floor depression may also have occurred. Successive 482 

magmatic units were largely emplaced beneath each other. Each successive pulse tilted 483 

earlier units, intruded around them and enveloped their periphery, exploiting the 484 

granite-country rock contacts of previous units in preference to the basement-cover rock 485 

contact exploited by earlier units. This produced an irregular three dimensional internal 486 

structure, deviating somewhat from tabular intrusive emplacement models and 487 

providing insight in to the 3D structure of composite intrusive bodies. 488 
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Unit 
Alexandra 

Tn/Gd 
Low’s Gt King Gt 

Donkey 

Gt 

Paka 

Pph 

Mesilau 

Pph 

U-Pb Age 

(Ma) 
7.85 ±0.08 

7.69 ±0.07 

– 

7.64  ±0.11 

7.46 ±0.08 

– 

7.44 ±0.09 

7.46 

> t > 

7.32 

7.32 ±0.09 

– 

7.22 ±0.07 

– 

Approx. Vol. 

(Km3) 
0.2 

2 (W) 

4 (N) 
90 0.4 40 40 

 Phases (Modal %) 

Qz 23-28 16-28 14-27 23 15-21 7-21 

Pl 40-45 25-33 21-38 26 23-33 24-28 

Kfs 4-7 18-29 26-36 25 23-35 38-48 

Hbl 4-13 21-28 9-21 11 11-24 8-23 

Bt 9-19 4-7 0-5 13 1-2 0-5 

Cpx – – – – – 0-2 

Accessory Ap, Ep Ap, Ep, Zrn Ap, Ep, Zrn Ap Ap Ap, Spn 

 688 

Table 1. Summary of U-Pb zircon ages, estimated volumes and modal mineralogies of the 689 

major granitoid units. Abbreviations used: Tn – Tonalite; Gd – Granodiorite; Gt – Granite; 690 

Pph – Porphyritic Granite; Qz – Quartz; Pl – Plagioclase; Kfs – Potassium Feldspar; Hbl – 691 

Hornblende; Bt – Biotite; Cpx. – Clinopyroxene; Ap – Apatite; Ep – Epidote; Zrn – Zircon; 692 

Spn – Sphene (Whitney & Evans 2010). 693 
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 695 

 696 

Fig. 1. Simplified geological map of Sabah, adapted from (Kirk 1968), (Balaguru & Nichols 697 

2004) and (Hutchison 2005). 698 
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 700 

 701 

Fig. 2. Photo of Mt Kinabalu looking north from the town of Kundasang, 10 km south and 702 

2800 m below the summit, illustrating the scale, relief and contrast of the forested lower 703 

flanks and glaciated summit plateaux of the mountain. 704 
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 706 

 707 

Fig. 3.  Geological Map of Mt Kinabalu, combining observations of this study with the 708 

map of Jacobson (1970). Inset shows regional geography and study area. Abbreviations 709 

used: “S.” prefix denotes “Sungai”, Malay for “River”; Tn – Tonalite; Gd – Granodiorite; 710 

Gt – Granite; Pph – Porphyritic Granite; Sed. – Sedimentary; Umf. – Ultramafic. 711 
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 713 

 714 

Fig. 4.  New geological map overlain on the DEM of the mountain and photo from the air 715 

of a similar view for comparison (photo courtesy of Dr Tony Barber, SEARG). 716 

Abbreviations as in Fig. 3. Ages of granitic units from Cottam et al. (2010). 717 
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 719 

 720 

Fig. 5.  Summit map of the Western and Eastern plateaux of Mt Kinabalu, separated by 721 

Low’s Gully, showing the geological interpretation and peak names referred to in the 722 

text. Abbreviations as in Fig. 3. 723 

  724 



 725 

 726 

Fig. 6.  Interpreted geological cross-sections of the mountain showing the internal 727 

structure of the pluton and extrapolated original extent. Line of section as shown in Fig. 728 

3. No vertical exaggeration. 729 
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 731 

Fig. 7.  Exploded view illustration of the pre-erosional structure of the Mt Kinabalu pluton 732 

and its composite units. Emplacement ages from Cottam et al. (2010).Calculated volumes 733 

from Table 1. Abbreviations as in Fig. 3. 734 
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 736 

 737 

Fig. 8.  Classification of the Mt Kinabalu granitoids, according to the modal IUGS-738 

Streckeisen classification (Streckeisen, 1976). Classification codes: (1) Syenogranite; (2) 739 

Monzogranite; (3) Granodiorite; (4) Tonalite; (5) Quartz-Syenite; (6) Quartz- Monzonite); 740 

(7) Monzonite. Abbreviations as in Fig. 3, plus:  Pyx Mon – Pyroxene Monzonite. 741 
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 743 

 744 

Fig. 9. View of the Western Plateau looking east, showing the contact between the 745 

Alexandra Tonalite/Granodiorite (Alexandra Tn/Gd, foreground) and the Low’s Granite 746 

(Low’s Gt). Field of view ~1.3km;  747 
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 749 

 750 



Fig. 10. (a) Contact of the Alexandra Tonalite/Granodiorite (Alexandra Tn/Gd) and the 751 

Low’s Granite (Low’s Gt) on the Western Plateau, west of Victoria Peak (Fig. 5). Photo 752 

looking north; (b) Contact of the Low’s Granite and King Granite (King Gt) units on the 753 

eastern cliffs of the Western Plateau. Photo looking north. Field of view ~300 m; (c) 754 

Looking east towards Low’s Gully from the Donkey Granite outcrops of the Western 755 

Plateau, north of the Donkey’s Ears (Fig. 5); (d) Contact of the Donkey Granite (Donkey 756 

Gt) within the King Granite on the Western Plateau showing the resulting topographic 757 

feature of the Donkey’s Ears Peak. Photo looking NE from the summit trail; (e) Magma 758 

mingling between The Donkey Granite (dark grey unit) and the King Granite (light grey 759 

unit) on the NW contact on the Western Plateau. Photo looking south. Sledgehammer 760 

for scale; (f) Contact of the King Granite and Paka Porphyritic Granite (Paka Pph) on the 761 

southern flanks of Mt Kinabalu where the contact dips steeply south beneath the Paka 762 

Porphyritic Granite. Photo looking west; (g) Contact between the King Granite and Paka 763 

Porphyritic Granite on the east of the Eastern Plateau showing the Paka Porphyritic 764 

Granite dipping beneath the King Granite. Photo looking north. (h) Pyroxene monzonite 765 

(Pyx Mon) dykes intruding the Alexandra Tonalite Granodiorite on the north end of the 766 

Western Plateau, showing their preferential erosion and vegetation. Photo looking west. 767 

Note: Photographs taken in 2011, prior to the damage to the Donkey’s Ears Peak during 768 

the earthquake of 2015. 769 
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 772 

Fig. 11. Stereonets of poles to planes for fault (n = 46), aplite dyke (n = 77) and intrusive 773 

dyke (n = 15) orientations on Mt Kinabalu with probability density contours at 10% intervals 774 

(Vollmer 2015). The maximum eigenvectors and their great circles are shown (black circles 775 

and thick black lines), as are the interpreted principal stress directions. The intrusive dyke 776 

orientations are bimodal and the maximum eigenvectors are shown for each domain 777 

(black and white circles with corresponding great circles). 778 
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 781 

Fig. 12. Illustrations of the relationships between planar dyke (a and c) and fault (b and 782 

d) orientations relative to the principal stress axes in compressional and extensional 783 

regimes. σ1 – Maximum compressive stress; σ2 – Intermediate compressive stress; σ3 – 784 

Minimum compressive stress; θ1 – Angle between the fault plane and the σ1 axis. 785 


