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Abstract

A computationally efficient gradient-based optimization approach for inverse
material characterization from incomplete system response measurements
that can utilize a generally applicable parameterization (e.g., finite element-
type parameterization) is presented and evaluated. The key to this inverse
characterization algorithm is the use of a direct inversion strategy with Gap-
py proper orthogonal decomposition (POD) response field estimation to ini-
tialize the inverse solution estimate prior to gradient-based optimization.
Gappy POD is used to estimate the complete (i.e., all components over the
entire spatial domain) system response field from incomplete (e.g., partial
spatial distribution) measurements obtained from some type of system test-
ing along with some amount of a priori information regarding the potential
distribution of the unknown material property. The estimated complete sys-
tem response is used within a physics-based direct inversion procedure with
a finite element-type parameterization to estimate the spatial distribution
of the desired unknown material property with minimal computational ex-
pense. Then, this estimated spatial distribution of the unknown material
property is used to initialize a gradient-based optimization approach, which
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uses the adjoint method for computationally efficient gradient calculation-
s, to produce the final estimate of the material property distribution. The
three-step ((1) Gappy POD, (2) direct inversion, and (3) gradient-based op-
timization) inverse characterization approach is evaluated through simulated
test problems based on the characterization of elastic modulus distributions
with localized variations (e.g., inclusions) within simple structures. Overall,
this inverse characterization approach is shown to efficiently and consistent-
ly provide accurate inverse characterization estimates for material property
distributions from incomplete response field measurements. Moreover, the
solution procedure is shown to be capable of extrapolating significantly be-
yond the initial assumptions regarding the potential nature of the unknown
material property distribution.

Keywords:
Material characterization; Gappy proper orthogonal decomposition; Adjoint
method; Gradient-based optimization; Direct Inversion; Computational
inverse mechanics;

1. Introduction

Computational methods for the solution of inverse problems (e.g., char-
acterization, design, etc.) in mechanics (e.g., relating to solid mechanics,
heat transfer, etc.) are becoming ever more popular in a variety of fields in
science and engineering. In particular, applications in the characterization
of material property distributions span interest areas from civil engineering
(e.g., structural damage characterization [1, 2]) to medicine (e.g., tissue char-
acterization for disease diagnosis [3, 4]), where quantitative estimation of a
variety of material parameters can provide critical information relating to
the state of the system. A common structure of quantitative inverse materi-
al characterization approaches is to couple a numerical representation of the
system forward problem (e.g., a finite element representation of the system
response given the material properties) with some type of optimization to
estimate the material properties that lead to a “best match” between the re-
sponse estimated by the forward numerical representation and the available
experimentally measured response. Such computational methods to estimate
inverse solutions provide quantitative solutions and are generally applicable
regardless of the physics of interest and response measurement type. How-
ever, there are several significant challenges depending on the application of
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interest as well, with a wide range of variations in the inverse solution method
specifics. Common differences include variations in the parameterization of
the unknown material field, numerical analysis technique, and optimization
approach, with each having significant tradeoffs in terms of generalization of
the applicability, solution accuracy, and computational efficiency.

One way in which computational inverse solution strategies can be divided
is into those that are iterative and those that are non-iterative (i.e., direct).
A common direct approach is to relate the measured response to the un-
known material property distribution parameters based on the manipulation
of the forward boundary value problem and a least-squares criteria, which
creates a solution process similar to that of solving the forward problem itself
(e.g., similar in process to a finite element analysis to predict the deforma-
tion response of a solid given geometry, material properties, and boundary
conditions) [5, 6, 7]. Thus, the solution estimate can be obtained at a cost on
the order of a single numerical analysis of the forward problem, even with a
relatively generalized parameterization of the spatial distribution of the un-
known property (e.g., finite element-type parameterization). However, one
common challenge of the direct inversion approaches is that the entire (or
nearly entire) spatial distribution (i.e., full-field) of the system response (e.g.,
displacement) must be measured to successfully characterize a distribution
of unknown material properties. In addition, direct approaches are often
relatively noise sensitive, with solution quality degrading relatively quickly
with increasing levels of measurement noise.

Iterative optimization-based approaches are typically better equipped
than direct methods to estimate inverse solutions provided with response
measurements from only a portion of the system domain (i.e., partial-field
measurements) or otherwise incomplete measurement information (e.g., sin-
gle directional components of displacement). Conceptually these iterative
approaches can be further divided into those that use non-gradient-based
optimization (e.g., random search, genetic algorithm, etc.) [8, 9] and those
that use gradient-based optimization (e.g., Newton’s method, conjugate gra-
dient, etc.) [4, 10]. Non-gradient-based methods often have more significant
global search capabilities in comparison to the gradient-based optimization
approaches, which can become trapped in local minima (i.e., an inaccurate
solution). However, non-gradient-based methods typically require substan-
tially more iterations (i.e., computational time) to converge to a solution
approximation than gradient-based approaches, which can be prohibitive for
many applications. Moreover, the computational expense of non-gradient-
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based methods increases substantially with increasing number of unknown
parameters (i.e. the curse of dimensionality), leading to the use of simplified
(i.e., less generally applicable) parameterizations of the unknown property
field. In contrast, gradient-based methods are not only substantially more
computationally efficient overall, but are also not as affected by the curse of
dimensionality, particularly if using an adjoint approach or something similar
to calculate the gradients [11, 12, 13]. Therefore, gradient-based methods are
capable of converging to a solution estimate with relative computational effi-
ciency, even with a generally applicable high-dimensional finite-element type
parameterization of the unknown material property field. Unfortunately, as
stated, gradient-based methods are local in nature, and unless the initial es-
timate of the unknown property field provided is relatively accurate, the final
solution estimate is likely to be inaccurate. Furthermore, limitations in the
amount of measurement data and/or high-dimensional parameterizations of
the unknown field often leads to complicated (non-convex) error surfaces for
the optimization, and while regularization approaches can somewhat relieve
this challenge [14, 4, 15], the importance of the initial estimate accuracy is
increased significantly.

The present work investigates an approach to utilize information that is
available a priori regarding the nature of the unknown property distribution
(e.g., that the distribution has localized variations) to initialize a gradient
based optimization procedure to achieve a unique level of efficiency and accu-
racy to estimate generalized (i.e., arbitrarily shaped) distributions of material
properties from partial-field measurements without the need for regulariza-
tion or any kind of direct initial solution estimate. This work is a direct
extension of the prior work of the authors that displayed the capability of
a highly computationally efficient direct inversion characterization strategy
using Gappy proper orthogonal decomposition (POD) [16]. The prior work
showed the promise of using Gappy POD to significantly improve the quali-
ty of direct inversion characterization solution estimates without significant
additional computing cost (particularly in terms of the online portion of the
process). Alternatively, the present work shows the capability to improve
solution quality even further by utilizing this Gappy POD-direct inversion
approach to initialize a gradient-based optimization process. In particular,
the approach is presented in the context of characterizing the spatial distri-
bution of the elastic modulus (i.e., elastography) provided with displacement
response measurements over some portion of the solid domain. The approach
utilizes the Gappy POD machine learning technique to build a data recon-
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struction tool based on the available a priori solution knowledge that can
estimate the full-field response distribution given the available partial-field
measurements. The estimated full-field response is then applied within a
direct inversion strategy with a general finite element-type parameterization
of the unknown field to produce an initial estimate of the spatial distribution
of the unknown material property over the entire domain. Lastly, this initial
estimate is refined with a gradient-based optimization strategy using the ad-
joint method for computationally efficient gradient calculations to produce
the final estimate of the material property distribution.

The following section presents the details of the inverse material char-
acterization algorithm, including (1) the description of the gradient-based
optimization approach with adjoint method, (2) the Gappy POD approach
to reconstruct a full-field response estimate from given partial-field measure-
ments, and (3) the direct inversion algorithm to estimate the spatial distri-
bution of elastic modulus provided with the full-field displacement response
distribution reconstructed from Gappy POD and the boundary conditions
corresponding to the test method used to produce the measurements. Then,
simulated examples relating to characterization of localized elastic modulus
distributions in solids are presented to examine the capabilities of the gener-
alized inverse characterization approach, which is followed by the concluding
remarks.

2. Inverse Material Characterization Algorithm

2.1. Optimization-Based Inversion

As discussed, although potentially applicable to a variety of differen-
t physical systems, material properties, and testing methods, the inverse
characterization approach is presented in the specific context of characteri-
zation of the elastic modulus spatial distribution of a solid from partial-field
displacement measurements. In particular, for the following presentation, it
is assumed that some type of steady-state dynamic mechanical testing has
been applied, with the solid of interest excited to steady state at one or
more excitation frequencies and the resulting steady-state displacement am-
plitude measured at several locations throughout the solid. Thus, neglecting
body forces and damping, assuming displacements and strains are small, and
assuming that the system variables vary harmonically in time at angular exci-
tation frequency ω, the steady-state dynamic governing equations describing
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the associated forward elasticity problem (i.e., the strong form) can be given
as:

∇ · σ(x, ω) + ω2ρ(x)u(x, ω) = 0, ∀x ∈ Ω, (1)

σ(x, ω) = CIV (x) : ε(x, ω), (2)

ε(x, ω) =
1

2

(
∇u(x, ω) + (∇u(x, ω))T

)
, (3)

σ(x, ω) · n(x) = T (x, ω), ∀x ∈ ΓT , (4)

and
u(x, ω) = u0(x, ω), ∀x ∈ Γu, (5)

where ρ(x) is the mass density, σ(x, ω) is the Cauchy stress amplitude ten-
sor, u(x, ω) is the displacement amplitude vector, Ω is the domain of the
structure, ε(x, ω) is the small strain amplitude tensor, CIV (x) is the 4th-
order elasticity tensor, n(x) is the unit outward normal vector to the surface
of the domain, T (x, ω) and ΓT are the applied traction amplitude vector and
the portion of the domain surface where this traction is applied, respective-
ly, and u0(x, ω) and Γu are the applied displacement amplitude vector and
the portion of the domain surface where displacement is known, respectively.
Note that the entire formulation is applicable and easily converted to the
static case by simply setting the momentum term to zero.

The first step in setting up the optimization-based computational inverse
solution procedure is to construct an appropriate objective functional. This
objective functional should somehow quantify the difference between the ex-
perimentally measured system response and the corresponding response that
is predicted by the numerical representation of the system (i.e., solution to
Eqns. (1)-(5)) given an estimate to the unknown material properties, as
(note that dependencies on x and ω should be inferred and were left off of
the following presentation for brevity):

f(p) =
∥∥u (p)− uM

∥∥
ΩM , (6)

where, for this example, uM would be the experimentally measured displace-
ment amplitudes, u(p) is the numerical simulated displacement amplitudes
for a given estimate to the material parameter vector, p, and ‖·‖ΩM is some
chosen suitable metric norm that combines the contribution of all measure-
ment locations and excitation frequencies to produce a scalar measurement
error. Then, all that is necessary is to apply a suitable optimization algo-
rithm, to minimize the objective functional, f , with respect to the unknown
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material parameters, subject to the constraint of the above boundary value
problem (BVP) and any physical bounds on the unknown parameters. There
are several different gradient-based optimization algorithms that can be (and
have been in prior studies [17]) applied to minimize the objective functional
with respect to the unknown material parameters, and thereby, estimate the
inverse problem solution. For example, the standard interior point method
was used for the examples presented herein, which among other algorith-
mic details that can be found in [18], uses the gradient to approximate the
inverse of the Hessian with a BFGS method [17] to update the solution es-
timate at each iteration. Therefore, much like many other commonly used
gradient-based optimization algorithms, the gradient is the main driver of
the optimization, and therefore, the most critical calculation within the op-
timization procedure.

By far the most challenging aspect (at least computationally) of calcu-
lating the gradient of the objective functional presented above is the need to
calculate the partial derivative of the displacement response with respect to
the material parameters (p), with the relationship between those two quan-
tities being defined by the above BVP. As such, to maintain computational
efficiency, the present work used the adjoint method for the gradient calcula-
tion [15]. The adjoint method requires only two numerical solutions of BVPs
to calculate the necessary gradient, the given BVP and a corresponding ad-
joint BVP, with both having the same approximate computational expense.
Therefore, the adjoint method represents a substantial computational sav-
ings in comparison to alternate methods, such as finite difference methods,
which require at least N + 1 BVP solutions, or direct differentiation of the
BVP, which requires N BVP solutions, where N is the number of unknown
parameters in the optimization problem [4]. Particularly for generalized (e.g.,
finite element-type) parameterizations of the unknown property with large
numbers of parameters to be determined, the adjoint method, or something
similar, is a necessity for practical applicability.

As discussed in the Introduction, providing a sufficiently accurate initial
guess for the unknown material parameters is critical to ensuring an accurate
final solution estimate using the computational inverse characterization pro-
cedure with gradient-based optimization. The importance of this initial guess
is even further heightened when applying a generalized parameterization of
the unknown field and when not using any kind of solution regularization (as
is the case in the above presentation). To overcome this challenge/limitation,
the present work uniquely uses a direct inversion strategy to estimate an ini-
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tial guess for the unknown material property distribution, which is detailed
in the following.

2.2. Direct Inversion with Gappy POD

Overall, the procedure to obtain an initial material distribution estimate
provided with partial field measurement data involves first applying the Gap-
py POD machine learning tool to reconstruct a full-field estimate of the mea-
surement data. Then this full-field measurement estimate is used to directly
invert the governing equations describing the physics of the tested system to
estimate the unknown material property distribution. Details of this Gappy
POD-direct inversion approach utilized for obtaining an initial estimate of
the unknown material property distribution can be found in the prior work
of the authors [16], and only key points are discussed briefly herein.

Gappy POD is an extension of the traditional POD approach that was
first developed and presented by Everson and Sirovich [19] for the purpose
of filling in missing information to reconstruct marred photos. Subsequent-
ly, Gappy POD has shown substantial capabilities to accurately reconstruct
physical processes from partial-field measurement data, especially for fluid
flow problems [20, 21, 22, 23, 24].

The Gappy POD process begins with the standard POD method. Given
a set of n fields (referred to as “snapshots”), {uk (x)}nk=1, POD can be inter-
preted as an approach to determine the set of m orthogonal basis functions
(i.e., modes), {φi(x)}mi=1, that are optimal in the average L2-error sense for
representing each given field and, if the given fields are representative, any
similar field as:

u (x) ≈ u∗ (x) =
m∑
i=1

aiφi (x) , (7)

where ai is the modal coefficient corresponding to the ithe mode (φi(x)).
Then, the POD optimization problem to define these modes can be written
as:

Minimize
{φi(x)}mi=1

〈
‖u(x)− u∗(x)‖2

L2(Ω)

〉
, (8)

where

〈u〉 =
1

n

n∑
k=1

uk, (9)

and u∗ is the best approximation of the snapshots from the modes (i.e., the
projection of each snapshot onto the modes). Based on this optimization
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problem and applying the method of snapshots (see [25] for additional de-
tails), a maximum of n POD modes can be calculated through the solution
of the following eigenvalue problem:

1

n

n∑
k=1

AjkCk = λCj, (10)

where

Ajk =

∫
Ω

uj (x) · uk (x) dx, (11)

and then the ith mode is given as:

φi (x) =
1

λ(i)n

n∑
k=1

uk (x)C
(i)
k . (12)

Gappy POD diverges from standard POD in how the modes are utilized.
If the full spatial distribution of a field is available, the modal coefficients (ai)
needed to reconstruct that field with the POD modes can be easily obtained
by projecting the modes onto the field as:

ai =

∫
Ω

u (x) · φi (x) dx. (13)

Alternatively, the objective of Gappy POD is to provide a means to recon-
struct the full spatial distribution of a field using the POD modes, but with
only a partial spatial distribution of the field given. Defining û (x) as the
given partial distribution of the field of interest such that û (x) is (incorrect-
ly) 0 anywhere data is unavailable, then û (x) can be expressed in terms of
the corresponding, but unknown, full spatial distribution as:

û (x) = β (x,u)u (x) , (14)

where β (x,u) is a mask function that is defined as 0 where data is unavail-
able and 1 where data is available. Assuming that the full spatial distribution
can be approximated with the POD modes as defined in Eqn. (7), an ap-
proximation of û (x) can be written in terms of the POD modes as:

û∗ (x) = β (x,u)
m∑
i=1

aiφi (x) . (15)
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Then, based upon a least-squares criteria, the optimal set of modal coeffi-
cients to reconstruct the full spatial distribution of the field can be defined
as that which minimizes an error function of the form:

ε =

∫
Ω

[
β (x,u)u (x)− β (x,u)

m∑
i=1

aiφi(x)

]2

dx. (16)

Applying the necessary condition for extrema of a function by setting the
derivative of the error function with respect to the modal coefficients to zero,
the optimal set of modal coefficients, {a}, to reconstruct the full spatial
distribution of the field can be determined from the solution of:

Ma = f , (17)

where

Mij =

∫
Ω

β (x,u)φi(x) · φj(x) dx. (18)

and

fi =

∫
Ω

β (x,u)u(x) · φi(x) dx. (19)

A last important implementation aspect for this Gappy POD approach is
that only a portion (m << n) of the set of modes that can be obtained
with POD are typically necessary to be retained for further use in the full-
field estimation process. As the associated eigenvalues from the solution of
Eqn. (10) relate to the value of each mode for the representation of the
given dataset, typically some heuristic is used based on the relative sum of
the associated eigenvalues to determine the modes to retain for further use
[21, 22].

One additional note is that the Gappy POD approach can also act as
somewhat of a noise filter during the reconstruction process, thereby pro-
viding an added benefit of reducing the effects of measurement noise on the
subsequent direct inversion solution procedure. However, any reconstructed
full-field response is still only an approximation of the true full-field response,
with the accuracy of the response estimation and direct inversion solution es-
timate significantly dependent upon the amount of measurement data (higher
accuracy with more data).

The direct inversion procedure utilized herein (discussed in the context
of elastography) first assumes that the elastic modulus distribution can be
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approximated in a finite element format similar to the format of the standard
displacement approximation [16]. Thus, utilizing the full-field solution esti-
mate provided by Gappy POD and applying a standard weak form Galerkin
procedure, the finite element equations for the direct inversion elastography
problem to determine nodal values describing the elastic modulus (E) from
the nodal values describing the full-field displacement response (u) can be
written as:

KIE = PI +MIu, (20)

where

KI =
∑

element

∫
Ωe

[BδE(x)]T [DI ][Bu(x)]{ue}[NE(x)] dx, (21)

MI =
∑

element

∫
Ωe

ρ(x)ω2[NδE(x)]T [Nu(x)] dx, (22)

PI =
∑

element

∫
Γe
T

[NδE(x)]TT (x, ω) dx, (23)

DI is is the matrix derived from the elasticity matrix D (i.e., the Voigt
notation version of CIV ) after separating the elastic modulus (E(x)) (i.e.,
D = DIE(x)), NE(x) is the matrix of shape functions for elastic modulus
interpolation, NδE(x) is the expanded version (to match the dimensions of
the displacement) of the matrix of shape functions for elastic modulus inter-
polation, Nu(x) is the standard matrix of shape functions for displacement
interpolation, and BE(x), BδE(x), and Bu(x) are the respective matrices
of these shape function spatial derivatives. Lastly, a least-squares approach
can be applied to solve the non-square system described by Eqn. (20), such
that the nodal values of elastic modulus can be determined as:

E =
(
KT
IKI

)−1
KT
I (PI +MIu) . (24)

One final important point is that it is necessary to eliminate the equations
corresponding to the essential boundary conditions in the forward BVP prior
to the solution of Eqn. (24). Eliminating these equations is a common
approach that is necessary to obtain a well-behaved solution to the direct
inversion problem. Thus, prior to solving Eqn. (24) the rows in Eqn. (20)
corresponding to nodes where essential boundary conditions are present are
set to zero, such that:

KI [i, :] = 0, if xi ∈ Γu, for i = 1, 2, ..., N, (25)
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MIu[i] = 0, if xi ∈ Γu, for i = 1, 2, ..., N, (26)

and
PI [i] = 0, if xi ∈ Γu, for i = 1, 2, ..., N. (27)

2.3. Algorithm for Inverse Material Characterization Combining Direct In-
version and Optimization-Based Inversion

The three-step ((1) Gappy POD, (2) direct inversion and (3) gradient-
based optimization) inverse material characterization algorithm can be sum-
marized as follows:

Given: The structure geometry, boundary conditions, and partial field mea-
surements from a nondestructive test, and any available material prop-
erties.

Find: The unknown material property distribution.

Step 1: Sample a set of potential distributions for the unknown material
property and generate corresponding full-field structural responses un-
der the nondestructive testing conditions.

Step 2: Calculate the POD modes from the set of full-field structural re-
sponses and select the modes to be retained based on eigenvalue energy.

Step 3: Reconstruct the full-field structural response from the given partial-
field measurements with Gappy POD.

Step 4: Direct inversion for the unknown material property distribution
with reconstructed full-field structural response.

Step 5: Apply gradient-based optimization to further improve the initial
estimate of material property distribution provided by direct inversion
with Gappy POD.

3. Examples and Discussion

Two sets of numerically simulated inverse characterization problems were
considered to evaluate the potential benefits and capabilities of the gradient-
based optimization approach initialized with direct inversion from Gappy
POD response approximation. Both example sets involved characterization
of an elastic modulus distribution with localized inclusions (hard or soft)
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Figure 1: Schematic for the numerically simulated examples representing characterization
of an elastic modulus distribution with an inclusion based on mechanical testing involving
the excitation and measurement points shown.

in plate structures from partial-field response measurements. Furthermore,
both inverse characterization problems were based upon some type of sim-
ulated nondestructive testing (dynamic or static) in the linear range of the
solid behavior (such that the governing equations shown in Section 2 apply),
with an actuation force applied uniformly to the top surface, the bottom sur-
face fixed, and with the horizontal and vertical displacement response to the
loading measured at 10 uniformly spaced discrete locations on both the left
and right surfaces. Fig. 1 shows a schematic of the example cases, including
the boundary conditions and sensor locations.

The “experimental” nondestructive test measurements were simulated
using the standard finite element method. Furthermore, triangular elements
with quadratic interpolation were used, and the mesh was ensured to be suf-
ficiently refined to provide accurate results for the problem space considered.
In addition, both examples used the plane stress assumption to reduce the
computational expense. To add realism to the simulated experiments, for all
trials 1% Gaussian white noise was also added to the simulated measurements
as:

uexpn = uexp (1 + 0.01υ) , (28)

where uexpn and uexp are the simulated experimental displacement measure-
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ments with noise and without noise, respectively, and υ is a normally dis-
tributed random variable with unit variance and zero mean. Note that testing
(not shown here for brevity) showed a significant tradeoff between the level
of noise and the amount of measurement information in terms of the final
solution accuracy. The testing showed that the more measurement informa-
tion (i.e., the more sensor locations) the more tolerant the inverse solution
procedure would be to measurement noise.

It was assumed that a priori knowledge would be available that the elastic
modulus distributions to be characterized in the examples would be localized
(e.g., as could be expected in applications of damage characterization of civil
structures [26] or tumor characterization of biological structures [13]). As
such, the snapshot response fields used for the Gappy POD procedure were
generated using a Gaussian radial basis function (RBF) representation of
the elastic modulus (see [27, 28, 29] for other similar works utilizing a RBF
representation to define localized elastic modulus variations), as:

E(x) = E0

[
1 + α · exp

(
−(x− c)2

r2

)]
, (29)

where E0 is the elastic modulus of the matrix material, α is the relative
change in elastic modulus at the inclusion center, c, is the location of the
inclusion center, and r is the breadth of the inclusion. Note, as will be shown
in the following example cases, although snapshots were generated based
upon single circular inclusion cases (defined by Eqn. (29)), the approach
presented is capable of being applied to substantially more complicated cases
(e.g., multiple inclusions and/or irregularly shaped inclusions).

The finite element method was again used to generate all snapshots for
the POD process. In addition, the criteria used to determine the number of
modes (m) out of the total number available (n) to use for data reconstruc-
tion with Gappy POD was to select the mode with the highest associated
eigenvalue λ as well as the minimum number of the remaining modes, such
that: ∑m

j=2 λ
(j)∑n

i=2 λ
(i)
× 100% > 99.9% (30)

This criteria was determined to be sufficient to ensure that enough modes
were retained from POD for Gappy POD to produce accurate reconstruc-
tions, while excluding the modes associated with low eigenvalues that can
often cause the matrix [M ] in Eqn. (17) to be ill-conditioned.
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The specific objective function used for the gradient-based optimization
procedure to estimate the inverse solutions in both examples was the square
of the l2-error as:

f(p) = ‖u (p)− uexpn‖2
l2
, (31)

In addition, the same finite element-type parameterization of the unknown
elastic modulus distribution was utilized for both the direct inversion and
subsequent gradient-based optimization processes (note that all meshes, in-
cluding both the forward and inverse problems, were verified to be sufficiently
refined for accurately analyzing all potential system responses and material
property distributions). As noted previously, the interior point optimization
method [18] was the specific gradient-based optimization algorithm chosen,
with the adjoint method utilized to calculate the necessary gradient at each
iteration, to minimize the associated objective function and estimate the
solution to the example inverse characterization problems. The scientific
analysis software MATLAB [30] was used to implement the interior point
method, largely with default settings, including calculation of the Hessian
with a dense quasi-Newton approximation in which both Newton steps and
conjugate gradient steps were both allowed at each iteration. For all cas-
es, the stopping criteria was set to 50 iterations, which was sufficient for
convergence.

3.1. Example 1: Steady-State Dynamic Test of Hard Matrix with Soft Inclu-
sions

The first example consisted of a simulated 1 m × 1 m aluminum plate.
The entire material (matrix and inclusions) was assumed to be known to
have a Poisson’s ratio of 0.3 and a density of 2700 kg/m3. The simulated
steady-state dynamic test was implemented by applying the harmonic exci-
tation at a frequency of 20 Hz and amplitude of 1 kN/m (factoring out the
arbitrary thickness) uniformly to the top surface of the plate. This particu-
lar scenario could be relevant to applications in nondestructive evaluation of
civil or aerospace structures (e.g., characterizing damage in structural com-
ponents as could be represented by a reduction in stiffness) from frequency
response-based testing.

For the process of generating the snapshots for POD, the elastic modulus
of the background material (i.e., matrix material) was assumed to be fixed at
69.0 GPa. Alternatively, the parameters defining the inclusion based on the
RBF description were assumed to be variable. The specific parameter values
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Figure 2: Schematic of the nine inclusion centers used separately to generate the snapshots
for POD for the numerically simulated examples.

used to create the snapshots were chosen arbitrarily by uniformly sampling
the space of the four variable parameters (the two spatial coordinates, ampli-
tude, and breadth). Three values were chosen for each spatial coordinate of
the inclusion center and two values were chosen each for the amplitude and
breadth of the inclusion, and one last scenario with no inclusion (i.e., homo-
geneous matrix material) was added, for a total of 37 parameter combinations
used to create snapshots. Fig. 2 shows the nine location combinations of the
inclusion center used to generate the snapshots. The values of the other two
parameters used to create the parameter combinations were chosen based on
an expectation of what the lower and upper-end would be for the applica-
tion, using −0.3 and −0.7 for the amplitude parameter α (i.e., modulus at
soft inclusion center of 21 GPa and 48 GPa) and 0.1 m and 0.3 m for the
breadth parameter r. To be clear, again note that each of elastic modulus
distribution realizations used to create a snapshot contained only one inclu-
sion (other than the homogeneous case, which contained none). 13 out of the
37 total available POD modes were necessary to satisfy the criteria defined
in Eqn. 30 and were retained for the Gappy POD reconstruction process.
Also note that to provide a fair evaluation of the methods presented, none of
the modulus distributions considered in the test cases matched the modulus
distributions used to generate the snapshots.

3.1.1. Case 1 Results: Single Circular Inclusion

First, the case of a single circular inclusion within the simulated aluminum
plate was examined. A preliminary analysis was done to provide some direc-
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Figure 3: Representative single circular inclusion example of the (a) horizontal and (b)
vertical components of a simulated experimental displacement field with 1% Gaussian
white noise and the (c) horizontal and (d) vertical components of the corresponding re-
constructed full-field displacement from Gappy POD with the partial-field measurements
for the simulated aluminum plate example (color contours are in units of m).

t perspective on the capability of the Gappy POD process to estimate the
full-field displacement response from the 20 measurement locations provid-
ed. Fig. 3 shows a representative example of a full-field simulated response
including the 1% Gaussian white noise (i.e., the “true response”) for a ran-
domly generated single-inclusion elastic modulus distribution in comparison
to the full-field displacement estimation from the 20 measurements of this
noisy simulated response with the Gappy POD procedure. The relative L2

and L∞ errors over the entire domain of this displacement reconstruction
in contrast to the true displacement response are 1.8% and 5.0%, respec-
tively. As such, the analysis of the full-field response estimation procedure
showed that the Gappy POD approach could reconstruct such a displace-
ment response from partial field measurements with a relatively high level of
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Figure 4: Representative single circular inclusion example of (a) the target elastic modulus
distribution, (b) the elastic modulus distribution estimated with gradient-based optimiza-
tion initialized with a homogeneous material distribution, (c) the elastic modulus distribu-
tion estimated with the direct inversion approach with Gappy POD full-field displacement
reconstruction, and (d) the elastic modulus distribution estimated with gradient-based op-
timization initialized with the direct inversion solution for the simulated aluminum plate
example (color contours in units of Pa).

accuracy.
Next, the complete inverse characterization procedure with Gappy POD

response estimation, direct inversion, and gradient-based optimization was
examined. Fig. 4 shows a representative example of a randomly generat-
ed single-inclusion elastic modulus distribution used to simulate experimen-
tal measurements (i.e., the “target distribution”), the corresponding elastic
modulus distribution estimated by the direct inversion procedure with Gap-
py POD full-field response estimation (i.e., the initial guess for the gradient
based optimization), and the corresponding final elastic modulus distribution
estimation from the subsequent gradient-based optimization. In addition, to
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provide a baseline, Fig. 4 also shows results from an attempt to estimate the
elastic modulus distribution applying the gradient-based optimization proce-
dure with a homogeneous (i.e., no inclusion) elastic modulus distribution as
the initial solution guess (as would be a natural selection without any other
information provided), rather than using the results of the direct inversion as
the initial guess. It is clear that without the direct inversion-Gappy POD ini-
tialization procedure, the gradient-based optimization is entirely ineffectual
at providing an accurate estimation of the inverse problem solution, not even
qualitatively indicating the presence of an inclusion. Alternatively, the direct
inversion with Gappy POD was capable of a significantly more accurate es-
timation of the elastic modulus distribution, clearly identifying the presence
of an inclusion, but still with an erroneous prediction of dispersed softening
throughout the domain. Finally, the application of the gradient-based opti-
mization to the results of the direct inversion was able to significantly “clean
up” the approximation, considerably reducing the dispersed softening in the
solution estimation. Moreover, for this specific example, the gradient-based
optimization was able to improve the relative L2-error in the elastic mod-
ulus estimation by almost a factor of two, from a value of 6.4% after the
direct inversion to a final value of 3.6%. The relative L∞-error was reduced
less significantly, going from 23.5% after direct inversion to a final value of
20.9%, but the L∞-error is a less reliable prediction of the solution quality
for localized distributions such as these, since a relatively small shift in the
prediction of the inclusion location can result in a disproportionately high
L∞-error.

As a final test for this case, five trials of the inverse characterization
procedure, each with a different randomly generated single-inclusion elastic
modulus distribution, were performed to examine the consistency of the so-
lution strategy. Table 1 shows the mean and standard deviation over the
five random trials of the relative L2 and L∞ errors corresponding to the e-
lastic modulus distributions estimated with only the direct inversion Gappy
POD procedure and with the complete approach including the subsequent
gradient-based optimization. The results from these random trials were
highly similar to the results from the representative example shown previ-
ously. The inverse procedure was consistently able to accurately predict the
elastic modulus distribution over all trials, and the gradient-based step was
consistently able to significantly refine the estimation in comparison to the
initial guess provided by direct inversion with a relatively small increase in
computational expense when using the adjoint method for gradient calcula-
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Table 1: The mean and standard deviation of the relative L2 and L∞ errors with respect
to the elastic modulus distribution estimated with the direct inversion approach and the
elastic modulus distribution estimated with the gradient-based optimization approach ini-
tialized with the direct inversion result for the five randomly generated trials with a single
circular inclusion for the simulated aluminum plate example.

Approach
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.
Direct Inversion 5.5% 1.2% 27.0% 7.4%

Gradient Optimization
with Direct Inversion

3.7% 1.1% 21.9% 7.2%

tions.

3.1.2. Case 2 Results: Two Circular Inclusions

The second case considered two circular inclusions within the simulated
aluminum plate, and was intended to display the capabilities of the inverse
solution procedure for predicting more complicated material property distri-
butions, and particularly distributions that are fundamentally different than
those used to simulate the snapshots. Furthermore, this case addresses a
common inverse characterization challenge in which the property distribu-
tion may be known priori to be localized, but the number of localizations
(e.g., damage regions) is unknown.

Fig. 5 shows a representative example of a randomly generated two-
inclusion elastic modulus distribution used to simulate experimental mea-
surements, the corresponding initial elastic modulus distribution estimation
from only the direct inversion procedure (with relative L2 and L∞ errors of
10.1% and 33.7%), and the corresponding final elastic modulus distribution
estimation from the subsequent gradient-based optimization (with relative L2

and L∞ errors of 8.8% and 33.6%). Similarly to the previous case, Table 2
additionally shows the mean and standard deviation over five randomly gen-
erated two-inclusion elastic modulus distribution trials of the relative L2 and
L∞ errors corresponding to the elastic modulus distributions estimated with
only the direct inversion Gappy POD procedure and with the complete ap-
proach including the subsequent gradient-based optimization. Although this
case represented a considerably more challenging problem than the single-
inclusion case, the inverse characterization procedure was still able to ac-
curately estimate the elastic modulus distributions, clearly identifying two
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Figure 5: Representative two circular inclusion example of (a) the target elastic modulus
distribution, (b) the elastic modulus distribution estimated with the direct inversion ap-
proach with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus
distribution estimated with gradient-based optimization initialized with the direct inver-
sion solution for the simulated aluminum plate example (color contours in units of Pa).

Table 2: The mean and standard deviation of the relative L2 and L∞ errors with respect
to the elastic modulus distribution estimated with the direct inversion approach and the
elastic modulus distribution estimated with the gradient-based optimization approach ini-
tialized with the direct inversion result for the five randomly generated trials with two
circular inclusions for the simulated aluminum plate example.

Approach
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.
Direct Inversion 7.6% 1.4% 32.5% 6.7%

Gradient Optimization
with Direct Inversion

6.5% 1.4% 28.1% 6.5%
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inclusion regions in all tests, even though the snapshot set was built only
from single-inclusion scenarios. Furthermore, the gradient-based optimiza-
tion continued to successfully refine the initial approximation provided by
direct inversion, substantially reducing the erroneous dispersion seen in the
initial estimates of the modulus distributions. However, the increase in com-
plexity did lead to a reduction in the level of solution improvement from
the gradient-based optimization, which was only able to improve the relative
L2-error of the solution estimation by approximately 10%−15% for this case.

3.1.3. Case 3 Results: Single Irregular Inclusion

The final case for the simulated aluminum plate example explored the
potential complexity of the material property distribution further by consid-
ering the presence of an irregularly shaped (i.e., non-circular) inclusion with-
in the domain. Again, Fig. 6 shows a representative example of an elastic
modulus distribution with a randomly selected irregularly shaped inclusion
used to simulate experimental measurements, the corresponding initial elas-
tic modulus distribution estimation from only the direct inversion procedure,
and the corresponding final elastic modulus distribution estimation from the
subsequent gradient-based optimization. Similar to the two inclusion case,
the inverse characterization procedure was still able to predict an accurate
final estimate to the elastic modulus distribution, even though the full-field
response estimation toolset was built only from scenarios with perfectly cir-
cular inclusions and the target was irregular. However, in contrast to the
two inclusion case, the gradient-based optimization step in the process led to
a more substantial improvement in the inverse solution accuracy (closer to
that of the single-inclusion case). In qualitative terms, the direct inversion
solution appears to indicate the presence of two relatively circular inclusions
in the modulus distribution, while the gradient-based refinement correctly
resolves only one irregularly shaped inclusion. Moreover, the relative L2 and
L∞ errors over the domain for the elastic modulus estimation respectively
improved from 8.2% and 47.1% for the initial direct inversion estimation to
5.8% and 36.3% following gradient based optimization (i.e., an improvement
in the relative L2-error of approximately 30% and an improvement in the
relative L∞-error of approximately 23%).

3.2. Example 2: Static Test of Soft Matrix with a Hard Inclusion

To explore a different physical system and potential application, the final
example consisted of a simulated 50 mm × 50 mm tissue block. The entire
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Figure 6: Representative irregular inclusion example of (a) the target elastic modulus dis-
tribution, (b) the elastic modulus distribution estimated with the direct inversion approach
with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus dis-
tribution estimated with gradient-based optimization initialized with the direct inversion
solution for the simulated aluminum plate example (color contours in units of Pa).
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material (matrix and inclusion) was assumed to be known to be nearly incom-
pressible with a Poisson’s ratio of 0.49999. For this example the simulated
test was assumed to be static, with a 0.2 N/mm (factoring out the arbitrary
thickness) excitation applied uniformly to the top surface of the tissue block.
Note that the only difference in the formulation presented herein to convert
to static rather than steady-state dynamic is that the momentum terms are
set to zero. This second example scenario was intended to relate to poten-
tial applications of tissue characterization (e.g., tumor characterization) from
(quasi-) static mechanical testing [10, 13].

Overall, the POD snapshot generation process was almost identical to the
previous simulated aluminum plate example. Again, 37 parameter combina-
tions were used to create the snapshots, and the same nine location combina-
tions of a single circular RBF inclusion center were used as the first example
(Fig. 2). Alternatively, the elastic modulus of the matrix (i.e., healthy)
material was assumed to be fixed at 15 kPa, which was based on normal
glandular breast tissue [6, 5]. The two values of the amplitude parameter
used were 1 and 3 (i.e., modulus at the hard inclusion center of approxi-
mately 30 kPa and 60 kPa), and the two values of the breadth parameter
used were 5 mm and 15 mm. Note that, as before, each snapshot material
property distribution other than the homogeneous case contained only one
inclusion. 15 out of the 37 total available POD modes were necessary to
satisfy the criteria defined in Eqn. 30 and were retained for the Gappy POD
reconstruction process.

3.2.1. Results: Single Irregular Inclusion

One case involving a single irregularly shaped inclusion was considered
for the final simulated experiment with the statically tested tissue block. Fig.
7 shows a representative example of an elastic modulus distribution with a
randomly selected irregularly shaped inclusion used to simulate experimental
measurements, the corresponding initial elastic modulus distribution estima-
tion from only the direct inversion procedure (with relative L2 and L∞ errors
of 21.8% and 53.5%), and the corresponding final elastic modulus distribu-
tion estimation from the subsequent gradient-based optimization(with rela-
tive L2 and L∞ errors of 17.8% and 38.6%). Although a different mechanical
testing method was considered and the properties of the system examined
were substantially different, the inverse characterization results for this tis-
sue block example were consistent with those shown for the aluminum plate
example. The initial direct inversion estimation approximated the location
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Figure 7: Representative irregular inclusion example of (a) the target elastic modulus dis-
tribution, (b) the elastic modulus distribution estimated with the direct inversion approach
with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus dis-
tribution estimated with gradient-based optimization initialized with the direct inversion
solution for the simulated tissue block example (color contours in units of Pa).
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of the inclusion relatively well, but the distribution and magnitude had sig-
nificant error. Moreover, similarly to the prior test case with an irregular
inclusion, although less dramatic, the initial direct inversion results appear
to estimate two inclusions. The gradient-based optimization was then able
to substantially improve the estimation of the elastic modulus distribution,
and indicating a single irregularly shaped inclusion. One possible explana-
tion for the slight increase in the overall solution error for this case compared
to the prior test case could be the increase in the range of the elastic mod-
ulus magnitude for this tissue example. Yet, the final estimate of the elastic
modulus distribution is still clearly a qualitatively accurate estimate of the
location, size, and shape of the hard inclusion, which was produced at the
relatively small computational cost of no more than approximately 100 finite
element analyses (neglecting the one-time cost of creating the POD modes)
without the need to provide a specific initial guess for the inverse solution or
complicated regularization in the optimization procedure.

4. Discusions

In inverse characterization, it is appealing to use generalized parame-
terization (e.g., finite element-type parameterization) which doesn’t require
the priori regarding the nature of the unknown system property. However,
inverse problem with high dimensionality will not only present obstacle of
intractable computational cost in terms of time with global minima search
algorithm (e.g., genetic algorithm), not also face the pitfall that the solu-
tion can be easily trapped in local minima with gradient adjoint approach
which can track high dimensionality optimization problem but is local mini-
ma search algorithm in nature. With gradient adjoint approach, a relatively
accurate initial guess of the unknown property field is necessary to ensure
the success of obtaining final accurate solution. For example, as shown in
Figure. 4 (b), the elastic modulus distribution was ineffectually estimated
by gradient adjoint approach with a homogeneous (i.e., no inclusion) elas-
tic modulus distribution in comparison to the target solution illustrated in
Figure. 4 (a). Alternatively, with the initial guess provided by direct inver-
sion with Gappy POD, the gradient adjoint approach was able to provide
much more accurate estimate of elastic modulus distribution in comparison
to Figure. 4 (b). The computational cost with gradient adjoint approach
was solving 50 times of finite element model while the computational cost
to provide good initial guess from direct inversion with Gappy POD is ap-
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proximately solving 38 times finite element model. It is fascinating that a
converged local minima solution can be improved significantly by solving 38
times more finite element model. Noticeably, for a given inverse characteriza-
tion problem it is only necessary to complete one time snapshots generation
for gappy POD algorithm which accounted 37 out of 38 times finite element
solving in our direct inversion with Gappy POD, while direct inversion ac-
counted for 1 time finite element solving. Therefore, the material property
distributions of the same structure at different times in the structure’s life
or similar structures could be evaluated with the same set of snapshots re-
peatedly. Namely, the total computational cost for gradient adjoint approach
with direction inversion with gappy POD will be approximately solving 51
times finite element model if material property distributions of the same or
similar structure are evaluated numerous times during the structure’s ser-
vice life. The claim “computationally efficient” specifically implies that the
inverse characterization with gradient adjoint approach can be noticeably
improved with at most 38 times more finite element solving (i.e., one time
structural property evaluation) and at least approximate 1 time more finite
element solving (i.e., life time repeated structural property evaluation) re-
lated to direct inversion with gappy POD. To be more clear, the gradient
adjoint approach with direct inversion with gappy POD provides a efficient
means to initialized the starting solution of the optimization compared to
normal gradient adjoint approach.

To be clarified, the contributions and novelty to combine gradient ad-
joint approach with direct inversion with gappy POD are not just minimal
or incremental in comparison to our previous work focusing on direct inver-
sion with gappy POD for inverse characterization [16]. The results of the
numerical examples in this work have consistently shown that the solutions
by gradient adjoint approach with direct inversion with gappy POD were
noticeably more accurate than the solutions by direct inversion with gappy
POD only. More importantly, as shown in Figure. 6 and Figure. 7, the
gradient adjoint approach with direct inversion with gappy POD can more
accurately estimate the irregular elastic modulus distributions while direct
inversion with gappy POD can only approximate the irregular elastic modu-
lus distributions with circular elastic modulus distributions, which were used
to simplify the snapshots generation.

Worth to mentioning, the solution initial estimate by direct inversion with
gappy POD only works for relatively smooth material property distribution
(e.g., gaussian distribution of material property degeneration). For discontin-
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uous material property distribution (e.g., cracks), the gappy POD algorithm
were not able to reconstruct the response field from partial measurements
accurately thus resulted in ill-posed solution of the material property esti-
mate.

5. Conclusions

A gradient-based optimization approach for computationally efficient in-
verse material characterization from partial-field system response measure-
ments capable of using a generally applicable parameterization (e.g., finite
element-type parameterization) was presented and analyzed. The approach
first builds a Gappy POD machine learning tool for full-field response estima-
tion from the partial-field measurements using available a priori information
regarding the potential unknown material property distribution. Then, a
physics-based direct inversion approach with a finite element-type parame-
terization uses the Gappy POD estimated full-field response to produce a
first estimate of the spatial distribution of the unknown material property.
Lastly, the direct inversion results of the material property distribution are
further refined with a gradient-based optimization strategy, which uses the
adjoint method to calculate the gradients efficiently, to produce the final es-
timate of the material property distribution. Through numerically simulated
example inverse problems based on the characterization of elastic modulus
distributions with localized variations in simple structures, the inverse char-
acterization approach was shown to efficiently estimate spatial distributions
of the elastic modulus with relatively high solution accuracy from limited
partial-field displacement response measurements. Furthermore, the final
gradient-based optimization component was shown to be a necessary step in
the characterization procedure to provide substantial and physically signif-
icant improvement in the inverse solution estimation in comparison to the
direct inversion estimate alone. In addition, the complete inverse charac-
terization approach was shown to have the capability to accurately predict
material property distributions that are significantly more complicated, and
particularly those that are potentially fundamentally different than the as-
sumed material property distributions used to create the Gappy POD com-
ponent. For instance, the examples presented generated the Gappy POD
response estimation tool assuming elastic modulus distributions with a s-
ingle perfectly circular inclusion. Yet, the inverse characterization approach
was then capable of estimating elastic modulus fields with multiple inclusions
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and inclusions that were irregularly shaped.
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