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Abstract

Echolocation is the ability to use sound-echoes to infer spatial information about the environ-

ment. Some blind people have developed extraordinary proficiency in echolocation using

mouth-clicks. The first step of human biosonar is the transmission (mouth click) and subse-

quent reception of the resultant sound through the ear. Existing head-related transfer func-

tion (HRTF) data bases provide descriptions of reception of the resultant sound. For the

current report, we collected a large database of click emissions with three blind people

expertly trained in echolocation, which allowed us to perform unprecedented analyses. Spe-

cifically, the current report provides the first ever description of the spatial distribution (i.e.

beam pattern) of human expert echolocation transmissions, as well as spectro-temporal

descriptions at a level of detail not available before. Our data show that transmission levels

are fairly constant within a 60˚ cone emanating from the mouth, but levels drop gradually at

further angles, more than for speech. In terms of spectro-temporal features, our data show

that emissions are consistently very brief (~3ms duration) with peak frequencies 2-4kHz,

but with energy also at 10kHz. This differs from previous reports of durations 3-15ms and

peak frequencies 2-8kHz, which were based on less detailed measurements. Based on our

measurements we propose to model transmissions as sum of monotones modulated by a

decaying exponential, with angular attenuation by a modified cardioid. We provide model

parameters for each echolocator. These results are a step towards developing computa-

tional models of human biosonar. For example, in bats, spatial and spectro-temporal fea-

tures of emissions have been used to derive and test model based hypotheses about

behaviour. The data we present here suggest similar research opportunities within the

context of human echolocation. Relatedly, the data are a basis to develop synthetic models

of human echolocation that could be virtual (i.e. simulated) or real (i.e. loudspeaker,
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microphones), and which will help understanding the link between physical principles and

human behaviour.

Author summary

Echolocation is the ability to use sound-echoes to infer spatial information about the envi-

ronment. It is well known from certain species of bats or marine mammals. Remarkably,

some blind people have developed extraordinary proficiency in echolocation using

mouth-clicks. Human echolocation work has built on scant theoretical foundations to

date. The current report characterizes the transmission (i.e. mouth click) that people use

for echolocation, and in this way provides data that can be used to advance the field in a

theory guided way. We collected a large database of mouth clicks with three blind people

expertly trained in echolocation. This allowed us to perform unprecedented analyses. Spe-

cifically, the current report provides the first ever description of the beam pattern of

human expert echolocation transmissions, as well as spectro-temporal descriptions at a

level of detail not available before. Based on our measurements we also propose a mathe-

matical model to synthesize transmissions. Thus, the data are a basis to develop synthetic

models of human echolocation, which are essential for understanding characteristics of

click echoes and human echolocation behaviour in tasks such as localising or recognising

an object, navigating around it etc.

Introduction

Echolocation is the ability to use sound reverberation to get information about the distal spa-

tial environment. It has long been established that certain species of bats or marine mammals

use echolocation, e.g. to navigate and locate prey [1]. Research has also demonstrated that

humans are capable of echolocation [2–4]. In fact, there are some blind people who have

trained themselves to use mouth-clicks to achieve extraordinary levels of echolocation perfor-

mance, in some cases rivalling performance of bats [5]. Human echolocation is a biosonar sys-

tem, and thus relies on both signal transmission (mouth-click) and signal reception (the ears).

Head related transfer functions (e.g. HRTF data bases) can be used to model characteristics of

signal reception. But, to date there is no description of transmitted mouth clicks other than

approximations of their duration or peak frequencies in the straight ahead direction [6,7,8].

For the current report, we collected a large database of click emissions with three blind people

expertly trained in echolocation, which allowed us to perform unprecedented analyses. Specifi-

cally, here we provide the first ever descriptions of acoustic properties of human expert echolo-

cation clicks in the spatial domain (i.e. the emission beam pattern), as well as descriptions in

spectral and time domains at a level of detail not previously available in the literature [6,7,8].

We also provide model fits to our measurements, and introduce a method to synthesize artifi-

cial clicks at various positions in space and for each of our three expert echolocators. Com-

bined with existing HRTF databases this can be used for synthetic echo-acoustics. The data we

present here open avenues for future research. For example, in bats, the spatial distribution of

emissions have been used to formulate and test model based hypothesis about behaviour

[9,10] and similar might be possible in humans. Also, the question arises if people may adapt

their emissions pending situational demands, as it has been observed in bats [9–16]. Relatedly,

the data are a basis to develop synthetic models of human echolocation that could be virtual
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(i.e. simulated) or real (i.e. loudspeaker, microphones), and which will help understanding the

link between physical principles and human behaviour. For example, understanding charac-

teristics of click echoes from various objects could be used to understand human echolocation

behaviour in tasks such as localising or recognising an object, navigating around it etc. To

undertake this type of work large amounts of data are required (for example, a radar reflectiv-

ity measurement of a single object typically requires thousands of measurements), which are

impractical to ask from human subjects, and where synthetic models are needed. In the follow-

ing sections we describe our measurement set-up, data analysis and results. We finish with the

description of click synthesis, before discussion of limitations and implications of our work.

Methods

The experiment was conducted following the British Psychological Society (BPS) code of prac-

tice and according to the World Medical Organization Declaration of Helsinki. All procedures

had been approved by the Durham University department of Psychology ethics committee.

Participants volunteered to take part in the study. Information and consent forms were pro-

vided in an accessible format, and we obtained informed consent from all participants.

Participants

Three blind people with expertise in echolocation participated. EE1: male, 49 years at time of

testing; enucleated in infancy because of retinoblastoma; reported to have used echolocation

on a daily basis as long as he can remember. EE2: male, 33 years at time of testing; lost sight

aged 14 years due to optic nerve atrophy; reported to have used echolocation on a daily basis

since he was 15 years old. EE3: male, 31 years at time of testing; lost sight gradually from birth

due to Glaucoma; since early childhood (approx 3 yrs) only bright light detection; reported to

have used echolocation on a daily basis since he was 12 years old. All participants had normal

hearing as assessed via pure tone audiometry (250-6000Hz). EE1 through EE3 use echoloca-

tion to go about their daily life, including activities such as hiking and travelling unfamiliar

cities, playing ball and riding bicycles. There are also previous data on echo-acoustic angular

resolution for EE1-EE3. EE1 and EE2 had previously taken part in a 2-interval 2-alternative

forced choice echo-acoustic localization test [17] and had obtained 75% thresholds of 4˚ and

9˚, respectively (for method details see [17]). All participants had also taken part in an echo-

acoustic Vernier acuity test [5] and had obtained thresholds of 1.4˚, 7.6˚ and 1.2˚, respectively

(for details see [5]).

Set-up and apparatus

The experiment was conducted in a sound-insulated and echo-acoustic dampened room

(approx. 2.9m x 4.2m x 4.9m, 24dBA noise-floor; lined with acoustic foam wedges that effec-

tively absorb frequencies above 315 Hz). Participants were positioned in the centre of the

room. The elevation of a participant’s mouth with respect to the floor was: EE1: 154cm. EE2:

170cm. EE3: 143cm. The floor was covered with foam baffles.

Recordings were made with DPA SMK-SC4060 miniature microphones (DPA micro-

phones, Denmark) (with protective grid removed) and TASCAM DR100-MKII recorder

(TEAC Corporation, Japan) at 24bit and 96kHz. A reference microphone was placed 50cm in

front of the participant, at mouth level, whilst the other microphone was moved around the

participant to capture variation in clicks as a function of azimuth and elevation. In the hori-

zontal plane (mouth level) we measured a span of 270˚ in 10˚ steps starting to the right of the

participant at both 40cm and 100cm distance. In the vertical plane we measured a span of 260˚

in 10˚ steps starting 40˚ below the mouth level plane to the front at 40cm distance.
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Participants were not allowed to move their head during recording so as not to introduce

error into microphone placements, as these were done with respect to the mouth. To achieve

this we used a custom made set of tactile markers so that participants could move in between

trials, but could reliably place their head in the correct position and orientation for recording.

Instruction to participants

Participants were instructed to make clicks as they normally would in their daily life. The

room was empty except for the microphones, and the participants knew this.

Description/Analysis of clicks

All analysis were done using Matlab (The Mathworks, Natick, USA) and custom written rou-

tines. The frequency content of the click, the spatial form of the click (how the click power dis-

tributes in space), and the time-domain envelope of the click were considered. Individual

clicks were extracted from audio files by peak detection, and isolating 300 samples prior to the

peak and 399 post the peak. Visual inspection confirmed accurate selection of clicks as well as

rejection of bad samples (e.g. clipping). The numbers of clicks that passed criteria for EE1

were 1280 (azimuth, 100cm), 1199 (azimuth, 40cm) and 885 (elevation), for EE2 they were

1577 (azimuth, 100cm), 1441 (azimuth, 40cm) and 1065 (elevation), and for EE3 they were

816 (azimuth, 100cm), 756 (azimuth, 40cm) and 560 (elevation). The average numbers of

clicks for any spatial position for EE1, EE2 and EE3 were 40.5 (SD: 8.9), 49.2 (SD: 13.5) and

25.7 (SD: 5.2), respectively. Supporting S1 Table provides a complete breakdown. Average

inter-click intervals for EE1, EE2 and EE3 were 526ms (SD: 112, median: 496), 738ms (SD: 58,

median: 721) and 682ms (SD: 71, median: 672), respectively. Fig 1 illustrates waveforms of

three representative clicks for each of the three echolocators.

It is important to note that the waveforms of clicks produced by a single echolocator are

replicable, but that there is also some click to click variability. Correlation coefficients calcu-

lated in the time-domain between any two extracted clicks for EE1 were 0.98 (max), 0.14

(min), 0.77 (median), 0.74 (mean), for EE2 0.99 (max), 0.11 (min), 0.78 (median), 0.75 (mean),

for EE3 0.96 (max), 0.12 (min), 0.53 (median), 0.54 (mean).

Spectral content

Analyses on spectral content were carried out on recordings from the reference microphone,

for all clicks for 100cm azimuth conditions for each echolocator. The reference microphone

was always placed at 50cm straight ahead from the echolocator, even if the target microphone

moved to various positions. For each click the discrete Fourier transform and spectrogram

were calculated and used to obtain average power spectral density (PSD) estimates and spec-

trograms. Spectrograms were calculated using a Kaiser-Bessel window (β = 3) of 192 samples

(2ms), and 191 samples overlap.

Spatial distribution

The directivity pattern in the horizontal plane (ϕ = 0˚, θ = {−90˚,−80˚,. . .,180˚}) and in the ver-

tical plane (ϕ = {−40˚,−30˚,. . .,−140˚}, θ = 0˚) was evaluated. To suppress unsystematic click-

to-click variation, the power of signals measured at the target microphone were normalized by

the corresponding signal powers measured at the reference microphone. As several clicks were

produced at each angular position the mean power ratio was calculated for each position as
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shown in Eq 1.

D y; �ð Þ ¼
1

Nðy; �Þ
PNðy;�Þ

n¼1

PT� 1

t¼1
CðtÞ2n;sig

PT� 1

t¼1
CðtÞ2n;ref

ð1Þ

In Eq 1, which calculates the total power directivity pattern as the mean ratio of target to

reference powers at each angular position, C(t)n,sig is the nth click recorded at the target micro-

phone and C(t)n,ref is the same click recorded at the reference microphone. N(θ,ϕ) is the total

number of clicks at a given azimuth and elevation position, and T is the click duration in sam-

ples. Subsequently, azimuthal directivity patterns were fitted in order to mathematically

describe them. A sufficient fit was found to be a modified cardioid fit, i.e. pure cardioid

(numerator) modified by an ellipse (denominator). This is given in Eq 2, where α and β are

constants which varied between echolocators, and that were estimated by performing a non-

linear least squares fit with a trust-region algorithm implemented in the Matlab optimization

toolbox [18].

R yð Þ ¼
� ð1þ cosðyÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2cos2ðyÞ þ b
2sin2ðyÞ

q ð2Þ

A similar analysis was performed to investigate the directionality of different frequency

components for more detailed reproduction of the clicks. Processing for this was similar to

that used to form the total directivity patterns, but substituted the total click power for the

power contained within specific frequency bands. This power can be estimated by summing

Fig 1. Illustrations of click waveforms. Illustrations of waveforms of three clicks for each of the three

echolocators.

https://doi.org/10.1371/journal.pcbi.1005670.g001
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the PSD estimate calculated over an appropriate range of frequencies as shown in Eq 3.

D y; �; fhi; floð Þ ¼
1

Nðy; �Þ
PNðy;�Þ

n¼1

Pf¼fhi
f¼flo

Pðf Þn;sig
Pf¼fhi

f¼flo
Pðf Þn;ref

ð3Þ

In Eq 3, which calculates frequency-dependent directivity patterns as the mean ratio of

target to reference power contained within a given frequency band at each angular position,

P(f)n,sig and P(f)n,ref are the powers contained within each frequency f in the interval [flo,fhi], for

the nth clicks recorded at the target and reference microphones, respectively.

Time domain envelope

Typically the envelope of a signal is evaluated by low-pass filtering the signal, but this assumes

a smoothly varying signal and performs poorly on the echolocators’ click by smoothing out

their rapid-onset. To resolve this issue the click envelope was estimated by taking the absolute

value of each click time sample, calculating peak positions, and interpolating the envelope

between the peaks using a Piecewise Cubic Hermite Interpolating Polynomial (pchip) method

implemented in Matlab [19]. Peaks were excluded if their height or prominence fell below 2%

of the maximum peak height. This envelope estimate was then fitted with an exponential

decay function mediated by a step function according to Eq 4.

EðtÞ ¼ a expð� bt � cÞ Hðt � cÞ ð4Þ

In Eq 4, H(t) is the Heaviside step function, and a,b,c are rise magnitude (a), decay time

constant (b), and onset time (c), i.e. constants which varied between echolocators, and that

were estimated by performing a non-linear least absolute residual fit with a trust-region algo-

rithm implemented in the Matlab optimization toolbox [18].

Results

Spectral content

Average spectrograms and PSD estimates shown in Fig 2 for EE1, EE2 and EE3 demonstrate

that main frequency components are present and remain unchanged in frequency over the

duration of the click. Grey shaded areas denote +/- 1SD around the average PSD (middle

panels). To further illustrate the variation that each echolocator makes from click to click the

foreground of the bottom plots of Fig 2 show a subset of the click PSD estimates for each echo-

locator, from which it can be seen that for EE1, while the main component at 3.39 kHz is pres-

ent and remains relatively unchanged between clicks, there is variation in frequency content

between the clicks elsewhere in the spectrum. In the background of the bottom plots of Fig 2

the averaged PSD estimates for the entire set of echolocator clicks are shown. Comparing PSD

and spectrograms across individuals it is also visible that there are differences across EE1, EE2

and EE3 in terms of the spectral content of their clicks. Specifically, both EE1 and EE3 appear

to have higher centre frequencies and broader spectral content when compared to EE2. Yet,

peak frequencies for EE1-EE3 are all within 2-4kHz range, and all echolocators also had energy

at ~10kHz. Even though energy at 10kHz was low compared to energy at peak, it was a local

increase, as opposed to a smooth drop-off from peak towards the high end of the spectrum,

for example. Table 1 provides information about peak frequencies from Fig 2 in numerical

format. It is interesting to note, that within our three participants those who have emissions

with higher frequency content had obtained better angular resolution in previous behavioural

tests. For example, angular resolution thresholds for EE1 vs. EE2 based on [17] were 4˚ and 9˚

respectively, and for EE3, EE1 and EE2 based on [5] were 1.2˚, 1.4˚ and 7.6˚, respectively.
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Spatial distribution

Fig 3 top and middle rows present the average directivity diagrams produced for the echoloca-

tors in the horizontal plane for overall sound energy at 100cm and 40cm respectively using Eq

1. These figures are relative intensity plots, normalised to the maximum average intensity

found in each data set. The figures show that click intensity is at a maximum in the forward

direction (θ = 0˚) and stays fairly constant within a 60˚ cone emanating from the mouth, and

smoothly and gradually decreases towards the reverse direction (θ = 180˚). Patterns are left-

right symmetric. These patterns were fitted with the modified cardioid given in Eq 2. Fig 3 bot-

tom row presents the diagrams produced for the echolocators in the vertical plane for overall

sound energy at 40cm. The vertical plane directivity diagrams show that the behaviour in the

vertical plane is similar to that in the horizontal plane, but with more variation (likely due to

the shape of the head which is not front-back symmetric). Data are available in supporting

S2 Table.

Fig 2. Frequency content of clicks for all echolocators. Top: Averaged spectrograms; Middle: Averaged power spectral density (PSD) plots; shaded

regions denote 1 SD around the average; Bottom: Waterfall plots showing a set of PSD estimates for a subset of clicks and the average PSD estimate

(black line at back).

https://doi.org/10.1371/journal.pcbi.1005670.g002
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For comparison, Fig 4 shows directivity patterns for speech based on data published in [20],

and [21], and superimposed the directivity patterns of clicks. It is evident that directivity of

clicks exceeds directivity of speech.

Fig 5 top, middle, and bottom rows show frequency-dependent directivity patterns for hori-

zontal and vertical planes respectively (horizontal measured at 40cm, top, and 100cm, middle).

One can see that EE1 exhibits higher click directivity in azimuth for the high frequency band

compared to the low frequency band. These figures also show that EE3 exhibits higher click

directivity in elevation for the high frequency band compared to the low frequency band. Data

are available in supporting S3 Table.

Envelope

Fig 6 shows three sample EE1 clicks along with the estimated envelope, demonstrating that the

implemented algorithm performs well in estimating the envelope. The median mean squared

error (MSE) of the envelope estimates for each echolocator were .0133 (EE1), .0084 (EE2) and

.0485 (EE3).

Subsequently, the envelope function in Eq 4 was fitted to envelope estimates. R2 values of

fits for EE1 were .9989 (median), .9996, (max), .9887 (min), .9987 (mean), for EE2 they were

.9983 (median), .9995 (max), .9885 (min), .9979 (mean), for EE3 they were .9969 (median),

.9992 (max), .5757 (min), .9958 (mean). Table 2 shows median estimates for rise magnitude

(a), decay time constant (b), and onset time (c) for EE1-EE3 based on envelope fits. Based on

these results duration of EE1, EE2 and EE3’s clicks is 2, 3 and 2ms, respectively (i.e. time for

sound energy to drop to 5% of its original magnitude), or 3, 4 and 3 ms (time to drop to 1% of

original magnitude).

Table 1. Variability of spectrum peaks in frequency and amplitude.

Dist.

(cm)

Peak Peak Frequency

(kHz)

Peak Amplitude

(dB/kHz)

E
E

1

40 1 3.39 ± 0.16 -17.2 ± 1.6

2 5.05 ± 0.30 -25.4 ± 2.4

3 6.68 ± 0.54 -25.7 ± 2.5

4 9.09 ± 0.74 -34.4 ± 4.3

5 11.49 ± 0.52 -33.6 ± 4.1

100 1 3.37 ± 0.16 -17.1 ± 1.5

2 4.99 ± 0.27 -25.3 ± 2.4

3 6.67 ± 0.56 -25.8 ± 2.4

4 9.09 ± 0.68 -34.7 ± 3.9

5 11.49 ± 0.53 -34.2 ± 3.9

E
E

2

40 1 2.07 ± 0.22 -14.9 ± 1.0

2 7.17 ± 0.52 -32.6 ± 4.6

3 10.69 ± 0.50 -30.1 ± 5.1

4 13.35 ± 0.54 -34.7 ± 4.8

100 1 1.95 ± 0.18 -14.7 ± 0.8

2 7.16 ± 0.57 -32.8 ± 4.4

3 10.73 ± 0.58 -32.8 ± 5.4

4 13.51 ± 0.66 -36.1 ± 4.5

E
E

3

40 1 3.63 ± 0.56 -19.2 ± 2.4

2 9.94 ± 1.04 -25.2 ± 3.2

100 1 3.87 ± 0.63 -19.9 ± 2.3

2 9.99 ± 1.12 -25.7 ± 2.9

https://doi.org/10.1371/journal.pcbi.1005670.t001
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Click synthesis

Results gained from click analysis were used to derive artificial clicks. The aim was not to

approximate a single click, but rather to create a click that is typical of the general set for EE1,

EE2, and EE3 at various azimuth angles. The synthetic click for EE3 is less representative

than the synthetic click for EE1 and EE2 due to the larger variation of EE3’s main frequency

components.

The clicks were modelled as sum of monotones mediated by an envelope function E(t) in a

process developed from [22]. Specifically, Eq 5 was used to build synthetic clicks by extracting

typical click parameters from the database of clicks. The parameters that were extracted for

Fig 3. Directivity diagrams. Top row: Azimuth directivity diagrams for EE mouth-clicks at 40cm. Markers indicate

average of measured data; shaded regions denote 1 SD around the average; red line is fit of a modified cardioid. Middle

row: Azimuth directivity diagrams for EE mouth-clicks at 100cm. Symbol and colour coding as in top row. Bottom row:

Elevation directivity diagrams for EE mouth-clicks. Markers indicate average of measured data; shaded regions denote 1

SD around the average.

https://doi.org/10.1371/journal.pcbi.1005670.g003
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each echolocator were coefficients of the envelope function E(t) (rise magnitude (a), decay

time constant (b), onset time (c)), monotone centre frequencies (f), monotone magnitudes

(N), monotone phases (ϕ), and modified cardioid parameters (α and β). All parameter values

are given in Table 2. Eq 5 provides the monotones model for a synthetic click.

CsynthðtÞ ¼ � RðyÞ EðtÞ
P5

i¼1
Ni cosð2pfit þ �iÞ ð5Þ

To extract monotone centre frequencies and magnitude parameters from the click database,

peak frequencies and amplitudes were extracted for each click from the PSD estimate within a

set of manually-selected frequency bands (EE1: 2–4.5kHz, 4.5–5.8 kHz, 5.8–8.2kHz, 8.2–11

kHz, 11-13kHz; EE2: 1-3kHz, 5.5-9kHz, 9–12.4kHz, 12.4-16kHz; EE3: 2-6kHz, 7.5-12kHz).

The median value of frequency and amplitude for each band were then used. The envelope

function parameters were determined by fitting the function to envelope estimates, and then

using median values of the parameter distribution obtained from these fits. Cardioid parame-

ters α and β were estimated for each echolocator by performing a non-linear least squares fit

with a trust-region algorithm implemented in the Matlab optimization toolbox [18] (compare

section 2.4. Description/Analysis of Clicks).

Fig 7 shows synthetic clicks for EE1, EE2, and EE3 at 0˚ azimuth. Matlab code to synthesize

the clicks is available in supporting S1 Code.

Discussion

The current report provides the first description of the spatial characteristics (i.e. beam pat-

tern) of human echolocation transmissions based on measurements in three blind human

echolocators, as well as spectro-temporal descriptions at a level of detail not available before.

A model to generate the transmission as a function of angle for each echolocator is also pro-

vided. We found that acoustics of transmissions were consistent across echolocators in par-

ticular with respect to duration (~3ms) and directionality. We also found that directionality

of clicks exceeded directionality of speech (as reported by [20] and [21]). Peak frequencies

varied across echolocators, but nonetheless were all within the 2-4kHz range, and all echoloca-

tors also had energy at ~10kHz. Even though energy at 10kHz was low compared to energy at

peak, it was a local increase, as opposed to a smooth drop-off from peak towards the high end

of the spectrum, for example. EE1, EE2 and EE3 produced clicks with average inter-click inter-

vals of 526ms, 738ms and 682ms, respectively. The analysis and synthesis methods we have

used here are new (i.e. sum of monotones modulated by a decaying exponential with angular

Fig 4. Directivity diagrams. Azimuth dependent directivity diagrams for speech based on [20] (magenta) and [21] (cyan)

and for clicks from EE1-EE3 (red lines and blue symbols; plotted as in Fig 3). All measurements from 100cm.

https://doi.org/10.1371/journal.pcbi.1005670.g004
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attenuation provided by a modified cardioid), and only possible because of the detailed mea-

surements we had obtained. The models fit emissions well and are a viable method for syn-

thetic generation.

Fig 5. Frequency dependent directivity diagrams. Top row: Azimuth frequency-dependent directivity diagrams for EE mouth-clicks at 40cm. Lines

indicate average of measured data; shaded regions denote 1 SD around the average; different colours denote different frequency bands. Middle row:

Azimuth frequency-dependent directivity diagrams for EE mouth-clicks at 100cm. Line and colour coding as in top row. Bottom row: Elevation

frequency-dependent directivity diagrams for EE mouth-clicks. Line and colour coding as in top row.

https://doi.org/10.1371/journal.pcbi.1005670.g005
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Interestingly, within our three participants those who had emissions with higher frequency

content had obtained better angular resolution in previous behavioural tests. Angular resolu-

tion thresholds for EE1 vs. EE2 based on [17] were 4˚ and 9˚ respectively, and for EE3, EE1

and EE2 based on [5] were 1.2˚, 1.4˚ and 7.6˚, respectively. This is in agreement with previous

studies that have found relationships between spectral features of clicks and performance, e.g.

[7].

The fact that echolocators in our study consistently made clicks ~3ms duration does not

imply that this would be an ‘optimal’ duration for human echolocation. Rather, 3ms might be

the minimum duration humans can achieve considering their vocal apparatus and the tissues

involved in generating the click. We may speculate that perhaps, in general, briefer emissions

may present an advantage for expert human echolocators, for example in terms of reproduc-

ibility, immunity to noise, and/or in terms of spatial resolution.

Echolocators in our study had been instructed to make clicks as they usually would during

their everyday activities. The room was empty. In this way the task was a ‘non-target’ task, i.e.

echolocators did not actively echolocate a target. Bats can adjust their emissions dynamically,

for example, some species may shift spectro-temporal aspects of their calls (i.e. duration, spec-

trum, pulse rate) pending on the environmental conditions [10–14], or they may adjust the

direction and/or width of their sound beam when they lock onto a target [9,10,15,16]. The

question arises if blind human expert echolocators may adjust their clicks as well. Our current

report does not speak to this issue because we only measured clicks in a ‘non-target’ setting.

Nonetheless, in regards to the beam pattern it is important to point out that the anatomy of

the human head, mouth and lips poses severe limitations on the flexibility of the width of the

spatial distribution of a click (and speech as well). On the other hand, the direction into which

Fig 6. Time domain envelope. Figures show envelope estimate for three EE1 Clicks, along with the mean squared error

(MSE) of the estimate.

https://doi.org/10.1371/journal.pcbi.1005670.g006

Table 2. Synthetic click parameters for EE1, EE2, and EE3.

f [kHz] N ϕ a b c [ms] α β
EE1 3.54,

5.30,

6.93,

9.97,

11.88

6.58,

2.68,

2.49,

0.868,

1.00

1.59,

1.60,

1.65,

1.72,

1.39

0.388 1.57x103 1.10 0.130 0.282

EE2 2.20,

7.20,

10.78,

13.26

8.40,

1.22,

1.68,

0.98

1.46,

1.57,

1.57,

1.53

2.23 1.05x103 1.97 0.101 0.185

EE3 3.67,

10.01

5.21,

2.70

1.59,

1.56

6.57 1.56x103 2.03 0.963 0.104

https://doi.org/10.1371/journal.pcbi.1005670.t002
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a click is pointed can be varied easily by head-rotation. In regards to spectro-temporal charac-

teristics there is some flexibility, for example by changing the shape of the lips or simply click-

ing at a higher rate (i.e. reducing inter click intervals). Therefore, based on research in bats and

our finding that the click beam pattern is oriented forwards with energy fairly constant within

a 60˚ cone, we might for example expect that people exhibit more variability in head rotation

angle when they scan for a target as compared to when they approach a target, and changes in

head rotation behaviour might be accompanied by changes in click peak frequency or clicking

rate. In sum, our results suggest that future research should address dynamic emission adjust-

ments in people.

There have been previous approximations of duration and peak frequencies of human

echolocation emissions in the straight ahead direction [6,7,8]. These investigations did not

provide any directivity or rate measurements and range of estimates was wide (duration: 3-

15ms; peak frequencies: 2-8kHz), likely due to the fact that samples included sighted people

who do not use echolocation on a daily basis. Rojas and colleagues [8] also commented on

Fig 7. Click synthesis. Synthetic clicks plotted for EE1 (left), EE2 (middle), and EE3 (right) in the frequency-time-domain (top), frequency-domain (middle),

and time-domain (bottom).

https://doi.org/10.1371/journal.pcbi.1005670.g007
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signal properties such as replicability, and immunity to noise, but they did not provide empiri-

cal data to support arguments made. Our analysis of inter-click correlations suggests that

indeed the clicks made by human expert echolocators have a high degree of replicability.

Importantly, in bats it has been shown that spatio-temporal properties of the emission can

explain aspects of echolocation behaviour, e.g. [9,10] and even properties of neural activity,

e.g. [23]. The same might be possible in people, highlighting the importance of the data

reported here for investigating human echolocation in a hypothesis driven way.

Human biosonar consists not only of the transmission (e.g. mouth click), but also of the

reception of the resultant sound through the ear. It follows, therefore, that only combining

these two elements will permit precise predictions for echolocation performance, for example,

based on signal strength. One might expect that target detection should be better at angles

with stronger received signal strength as compared to angles with lower received signal

strength. The model of the human biosonar emission we provide here, together with existing

HRTF databases, makes future hypothesis-driven work of this kind possible. There have been

prior studies trying to measure precision and acuity of human echolocation, but these have

exclusively focused on performance in the median plane (see [2–4] for reviews). The current

results clearly suggest that there is merit in characterizing performance at farther angles also.

The data presented here are a basis to develop synthetic models of human echolocation,

which will help understanding the link between physical principles and human behaviour.

Understanding characteristics of click echoes from various objects could be used to under-

stand human echolocation behaviour in tasks such as localising or recognising an object, navi-

gating around it etc. To undertake this type of work large amounts of data are required (for

example, a radar reflectivity measurement of a single object typically requires thousands of

measurements). These are impractical to ask from human subjects. One could also build

instrumentation (e.g. loudspeakers) that can create beam patterns either matching those of

human echolocators, or not, which can then be used to systematically measure effects of beam

patterns on performance. Building of synthetic models and instrumentation requires under-

standing of the properties of the click waveform itself and its spatial distribution after trans-

mission, which is the purpose of this paper.

Echolocation can provide humans with information about the distal environment that

is not limited to spatially localising an object. Specifically, the same echolocation process is

used to reveal information about size, shape and material of objects as well as their spatial loca-

tion (for reviews see [2,3,4]). Developers of artificial sonar and/or radar systems might there-

fore benefit from our results via use of synthetic models because they might be useful for

development of artificial systems that provide multifaceted information about the distal

environment.

Human sonar emissions are well within the audible spectrum. In contrast, echolocating

bats or toothed whales can produce emissions in the ultrasonic range (>20kHz). Whilst fre-

quency sweeps are a common emission in bats, some bat species also use clicks and demon-

strate remarkable echolocation abilities [24]. Based on physics, higher sound frequency

translates into better spatial resolution. As such, one might suspect human echolocators to be

at a disadvantage compared to bats based on acoustics of the emissions alone. Nonetheless,

people have shown to be able to resolve lateral position of objects separated by less than 2˚,

with best performers having shown thresholds between 1.2˚ and 1.9˚ [5]. This compares

favourably to the acuity of some bats when measured in a similar way [25]. Again, the emission

models we provide here in combination with existing HRTF data bases can be used to build

echo-acoustic models to investigate how this human level of performance might be possible.

Virtual echo-acoustic models permit stimulus control not possible in natural environments

and can therefore be a useful tool for understanding echolocation processes, e.g. [26,27]. For
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humans in particular they are also ideal to investigate neural processes in environments that

are not suitable for ‘real’ echolocation due to constraints on space and/or body movement (e.g.

fMRI, MEG, EEG) [28]. Yet, at present, virtual echo-acoustic models for investigating human

echolocation have no empirical basis for their choice of directional propagation of click emis-

sions. It follows that models of emissions such as those provided here are required to use accu-

rate virtual echo-acoustic models to further advance understanding of human echo-acoustic

processing.

Supporting information

S1 Table. Numbers of clicks broken down by participant (EE1, EE2, EE3), condition (azi-

muth 40cm, azimuth 100cm, elevation) and angle. Labelling of angles as in Fig 3, Fig 4 and

Fig 5.

(XLSX)

S2 Table. Elevation directivity data for EE mouth-clicks broken down by participant (EE1,

EE2, EE3) and angle. Labelling of angles as in Fig 3 and Fig 5.

(XLSX)

S3 Table. Frequency-dependent directivity data broken down by participant (EE1, EE2,

EE3), condition (azimuth 40cm, azimuth 100cm, elevation) and angle. Labelling of angles

as in Fig 3, Fig 4 and Fig 5.

(XLSX)

S1 Code. Matlab code to synthesize clicks for each individual (EE1, EE2, EE3).

(ZIP)
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