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Abstract

The concept of survival signature has recently been introduced as an alternative
to the signature for reliability quantification of systems. While these two concepts
are closely related for systems consisting of a single type of component, the survival
signature is also suitable for systems with multiple types of component, which is
not the case for the signature. This also enables the use of the survival signature
for reliability of networks. In this paper we present the use of the survival signature
for reliability quantification of systems and networks from a Bayesian perspective.
We assume that data are available on tested components which are exchangeable
with those in the actual system or network of interest. These data consist of failure
times and possibly right-censoring times. We present both a nonparametric and
parametric approach.

Keywords: Bayesian methods; networks; nonparametrics; parametric lifetime dis-
tributions; system reliability.

1 Introduction

Quantification of reliability of systems and networks is of obvious importance in many
application areas and has been the subject of a large literature. In recent years, the
concept of system signature has become a popular tool to assist such quantification
of reliability for systems consisting of components with random failure times that are
independent and identically distributed (iid), although this can be relaxed to assuming
exchangeability. We will refer to such components as components of a single type. A
detailed introduction and overview to system signatures is presented by Samaniego(14),
some recent advances are reviewed by Eryilmaz (11). The signature of an m-component
system is the vector with j-th component qj the probability that the system fails at the
j-th ordered failure time of its components, assuming that each component will fail only
once after which it remains in a failed state. Generalisation of the signature to systems
with multiple types of component would require computation of the probabilities of all

Note: this is a preprint of a paper which has now been accepted. It can now be found by the
following reference:
Aslett, L.J.M., Coolen, F.P.A, and Wilson, S.P. (2014), Bayesian Inference for Reliability of Systems
and Networks using the Survival Signature. Risk Analysis, to appear.
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possible different orderings of the order statistics of the different component lifetime
distributions, which is very complex and not feasible for real-world systems (9), although
Boland, Samaniego and Vestrup (6) show links between domination theory and signatures,
allowing the former to be used for computational purposes and the latter for interpretation
in the network reliability setting.

Recently, Coolen and Coolen-Maturi (9) introduced the system survival signature as
an alternative to the system signature. For systems consisting of a single type of com-
ponent the survival signature is closely related to the signature. Crucially, the survival
signature is also suitable for systems with multiple types of component, making it far
more attractive for application to real world systems and networks. Consequently, life-
times of components of different types are not iid, overcoming one of the long standing
limitations of the signature. In this paper we present the use of the survival signature for
reliability quantification of systems and networks from a Bayesian perspective. We as-
sume that data are available on tested components of each type that occurs in the system,
so on tested components which are not themselves in the system but are exchangeable
with those of the same type in the actual system or network of interest. For ease of
presentation, we restrict attention to test data consisting only of failure times, inclusion
of right-censored observations being possible through standard statistical methods. We
present both nonparametric and parametric Bayesian approaches, where particularly the
former is straightforward to implement. For the parametric approach, we illustrate both
the use of conjugate priors and models requiring advanced computational methods.

The related but reverse question of learning component reliability from system failure
time data has been addressed in recent works using the signature for both a nonparamet-
ric (4) and parametric (2,13) setting. This setting is not considered in the current work for
the survival signature, but presents an interesting avenue of future research.

Section 2 presents a brief introductory overview to the survival signature and its use
for quantification of system reliability. The use of the survival signature for reliability
assessment of networks is introduced in Section 3. Sections 4 and 5 present Bayesian
nonparametric and parametric approaches to such reliability quantification, respectively,
illustrated through examples. Section 6 concludes the paper with some remarks on related
research challenges.

2 Survival signature

For a system consisting of m components with iid failure times (this assumption can be
relaxed to exchangeable failure times), we define the state vector x = (x1, x2, . . . , xm) ∈
{0, 1}m with xi = 1 if the i-th component functions and xi = 0 if not. The labelling
of the components is arbitrary but must be fixed to define x. The structure function
ϕ : {0, 1}m → {0, 1}, defined for all possible x, takes the value 1 if the system functions
and 0 if the system does not function for state vector x. Coolen and Coolen-Maturi (9)

defined the survival signature, denoted by Φ(l), for l = 1, . . . ,m, as the probability that
the system functions given that precisely l of its components function. For coherent
systems, Φ(l) is an increasing function of l, and it is natural to assume that Φ(0) = 0
and Φ(m) = 1. There are

(
m
l

)
state vectors x with precisely l components xi = 1, so with∑m

i=1 xi = l; let Sl denote the set of these state vectors. Due to the iid assumption for
the failure times of the m components, all these state vectors are equally likely to occur
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(this also holds under the weaker assumption of exchangeability), hence

Φ(l) =

(
m

l

)−1∑
x∈Sl

ϕ(x) (1)

Coolen and Coolen-Maturi (9) called Φ(l) the survival signature because, by its definition,
it is closely related to survival of the system, and it is close in nature to the system
signature as will soon be clear.

Let Ct ∈ {0, 1, . . . ,m} denote the number of components in the system that function
at time t > 0. Given the cumulative distribution function F (t) for the failure times of
the components, it is clear that, for l ∈ {0, 1, . . . ,m}

P (Ct = l) =

(
m

l

)
[F (t)]m−l[1− F (t)]l (2)

This leads to

P (TS > t) =
m∑
l=0

Φ(l)P (Ct = l) (3)

It is clear from Equation (3) that the term Φ(l) takes the structure of the system into
account and is separated from the information about the failure time distribution for the
components, which is included through the term P (Ct = l). This means that the survival
signature achieves the same separation of these two aspects as the signature does, which
is the main advantage of the system signature (14). This is not surprising, as the survival
signature and the system signature are closely related. Indeed, it is easily seen that the
following equality holds for coherent systems (9)

Φ(l) =
m∑

j=m−l+1

qj (4)

Equation (4) is logical when considering that the right-hand side is the probability
that the system failure time occurs at the moment of the (m−l+1)-th ordered component
failure time or later. This is exactly the moment at which the number of functioning com-
ponents in the system decreases from l to l− 1, hence the system would have functioned
with l components functioning. Due to this direct relation between the survival signature
and the system signature, for systems consisting of a single type of component with iid
failure times, it is clear that the analytic possibilities provided by the signature are also
provided by the survival signature (9,14). For example, methods for comparison of two sys-
tems based on the survival signatures were presented by Coolen and Coolen-Maturi (9).
However, for systems with multiple types of components the survival signature remains
straightforward and thus is far more attractive than the signature.

Consider a system with K ≥ 2 types of components, with mk components of type k ∈
{1, 2, . . . , K} and

∑K
k=1mk = m. Assume that the random failure times of components

of the same type are iid, while full independence is assumed for the random failure times
of components of different types. Due to the arbitrary ordering of the components in
the state vector, components of the same type can be grouped together, leading to a
state vector that can be written as x = (x1, x2, . . . , xK), with xk = (xk1, x

k
2, . . . , x

k
mk

) the
sub-vector representing the states of the components of type k. Let the ordered random
failure times of the mk components of type k be denoted by T k

jk:mk
.
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The survival signature for such a system is denoted by Φ(l1, l2, . . . , lK), for lk =
0, 1, . . . ,mk, which is defined to be the probability that a system functions given that
precisely lk of its mk components of type k function, for each k ∈ {1, 2, . . . , K} (9). There
are

(
mk

lk

)
state vectors xk with precisely lk of its mk components xki equal to 1, so with∑mk

i=1 x
k
i = lk; let Sk

l denote the set of these state vectors for components of type k.
Furthermore, let Sl1,...,lK denote the set of all state vectors for the whole system for which∑mk

i=1 x
k
i = lk, k = 1, 2, . . . , K. Due to the iid assumption for the failure times of the mk

components of type k, all the state vectors xk ∈ Sk
l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1
]
×

∑
x∈Sl1,...,lK

ϕ(x) (5)

Let Ck
t ∈ {0, 1, . . . ,mk} denote the number of components of type k in the system that

function at time t > 0. If the probability distribution for the failure time of components
of type k is known and has CDF Fk(t), then for lk ∈ {0, 1, . . . ,mk}, k = 1, 2, . . . , K,

P

( ∩
k=1,...,K

{Ck
t = lk}

)
=

K∏
k=1

P (Ck
t = lk)

=
K∏
k=1

(
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk (6)

The probability that the system functions at time t > 0 is

P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P

(
K∩
k=1

{Ck
t = lk}

)
(7)

The survival signature Φ(l1, . . . , lK) must be derived for all
∏K

k=1(mk + 1) different
(l1, . . . , lK). This information must anyhow be extracted from the system if one wishes
to assess its reliability. The survival signature only has to be calculated once for any
system, similar to the (survival) signature for systems with a single type of component.
The main advantage of (7) is that again the information about system structure is fully
separated from the information about the components’ failure times, and the inclusion
of the failure time distributions is straightforward due to the assumed independence of
failure times of components of different types.

The survival signature Φ(l1, . . . , lK), as introduced for K ≥ 1 different types of com-
ponent, can be used as long as the failure times of components of the same type are
exchangeable. In this paper we actually adopt the stronger assumption of iid failure
times as this allows P (Ck

t = lk) to be written in terms of Fk(t), as shown in Equation
(6). Furthermore, we assumed that the failure times of components of different types are
fully independent, which justifies the first equality in Equation (6). The main idea of the
survival signature, however, can be applied without these assumptions, in which case the
joint probability at the left-hand side of Equation (6) must be specified.

Computation of the survival signature is complicated for systems of realistic size.
Aslett (3) has presented a function in the statistical software R to compute the survival
signature, which works well for systems of quite considerable size and is used in the exam-
ples in Sections 4 and 5. Recently, Coolen, Coolen-Maturi and Al-nefaiee (10) presented
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Figure 1: Topology of a simple network of 4 nodes and 7 links. Start and end nodes are
shaded and assumed to function always.

some results that can be useful in particular situations, namely to combine survival sig-
natures of subsystems in either series or parallel configuration and to adapt the survival
signature in case of component replacement. Computation of the survival signature for
large systems and networks presents interesting opportunities for further research.

3 Reliability of networks

Network reliability is an important application of system reliability. It is seeing an in-
crease in interest as society is seen to be more vulnerable to failure of power supply and
telecommunications networks(7). A key property of such networks, that differs from what
has been considered so far, is that both nodes and links are unreliable. This immediately
presents problems for any analysis with the system signature because there are now at
least 2 component types (links and nodes). Unless one is prepared to assume that links
and nodes have the same failure probability or failure time distribution, so that there is
still one component type, it cannot be used. However, this presents no problems to the
survival signature.

We begin with a simple model of a network that consists of both links and nodes that
may fail. For example, it may represent a telecommunications network where nodes are
routers and links are cables, or a power network where nodes are transformers or other
equipment to manage the supply and links are power lines. Figure 1 shows a simple
network of 4 nodes and 7 links. This network can be transformed so that each link is
represented by a node, so that the only unreliable parts of the system are nodes, as in
Figure 2.

In the simplest case, all nodes are assumed independent or exchangeable, while all
links are assumed independent or exchangeable. This leads to a system with two types of
component and is the focus of this section. The survival signature can be evaluated in the
usual way. The existence of different types of nodes and links can also be accommodated
by adding to the number of component types.

In this simple case, assume that there are mN nodes and mL links in the net-
work, and let m = mN + mL. The state vector is then x = (xN , xL) ∈ {0, 1}m, with
xN = (xN1, . . . , xNmN

) representing the state of the nodes and xL = (xL1, . . . , xLmL
) rep-

resenting the state of the links. The system state is ϕ(x). Following the development and
notation of the previous section, we have the survival signature for lN nodes and lL links
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Figure 2: The network of Figure 1 with links represented as nodes so that nodes are the
only unreliable components.

Table I: The survival signature of the network in Figure 1. Φ(lN , lL) = 0 for all combina-
tions of (lN , lL) not shown.

lN lL Φ(lN , lL) lN lL Φ(lN , lL) lN lL Φ(lN , lL)
2 3 0.014 3 3 0.043 4 3 0.086
2 4 0.057 3 4 0.171 4 4 0.343
2 5 0.143 3 5 0.393 4 5 0.714
2 6 0.286 3 6 0.643 4 6 0.857
2 7 0.500 3 7 0.750 4 7 1.000

is

Φ(lN , lL) =

(
mN

lN

)−1(
mL

lL

)−1 ∑
x∈SlN lL

ϕ(x),

where SlN lL = {x |
∑mN

i=1 xNi = lN ,
∑mL

i=1 xLi = lL} is the set of node and link states where
exactly lN nodes and lL links are working. Table I shows the survival signature of the
network in Figure 1.

Once Φ(lN , lL) is derived, the reliability function of the network, where nodes and
links have failure time distribution functions FN(t) and FL(t) respectively, is:

P (TS > t) =

mN∑
lN=0

mL∑
lL=0

Φ(lN , lL)

(
mN

lN

)(
mL

lL

)
[FN(t)]

mN−lN

× [1− FN(t)]
lN [FL(t)]

mL−lL [1− FL(t)]
lL (8)

Figure 3 plots this reliability function for the network in Figure 1 for 2 different examples
of FN(t) and FL(t).

We note that a feature of network represented as in Figure 2 is that they are composed
of series systems of the form node — link — node. This may facilitate the derivation of
the survival signature by the decomposition method alluded to in the previous section
developed by Coolen, Coolen-Maturi and Al-nefaiee (10). In terms of computing P (TS >
t), an advantage of using Equation (8) is the ease with which one can switch to different
node and link failure time distributions and re-derive the network reliability.
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Figure 3: Two cases of the survival function for the network in Figure 1. In both cases,
the link failure time is exponentially distributed with mean 1. The node failure time is
exponentially distributed with mean 1 (solid line) and Weibull distributed with shape 5
and mean 1 (dashed line).

4 A nonparametric method

We consider the situation where test data are available on each type of component in a
system or network which is used to infer reliability of the components. Using the survival
signature, the uncertainty in the reliability of multiple components can be propagated
to uncertainty in the lifetime of an entire system comprising those types of component.
In this section this is done nonparametrically and will be demonstrated in a standard
parametric setting in the sequel.

The survival signature makes it possible to tackle this problem for systems of a size
which would be prohibitive were the structure function to be used directly. This is due to
the natural separation of system structure and component lifetime which makes posterior
predictive inference easy to generalise to arbitrary systems without resorting to extensive
algebraic manipulation, as will be seen below.

At any fixed time t, the functioning of a single component of type k is Bernoulli(pkt )
distributed for suitable pkt , irrespective of the lifetime distribution of the component.
Correspondingly, the distribution of the number of components still functioning at time
t in a collection of nk iid components of type k is Binomial(nk, p

k
t ).

Let Sk
t ∈ {0, 1, . . . , nk} denote the number of functioning components in a test batch

of nk components of type k. Then, for each t, Sk
t ∼ Binomial(nk, p

k
t ) is a nonparametric

model for the test batch (in the sense that it holds for any parametric lifetime distribution
for the components), with pkt being the unknown parameter of interest.

A natural choice of prior distribution for such a model is pkt ∼ Beta(αk
t , β

k
t ), since

this results in a conjugate posterior distribution. One may choose αk
t = βk

t = 1 ∀ t, k as
a model of prior ‘ignorance’, or for example, if it is believed components are subject to
wear or ‘bathtub curve’ characteristics then these can be apriori modelled with suitably
varying αk

t , β
k
t .
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If testing of component k produces lifetime data tk = {tk1, . . . , tknk
}, then at any fixed

time t this results in an observation from the Binomial model of skt =
∑nk

i=1 I(tki > t),
where I(·) is the indicator function. The conjugate Bayesian posterior for pkt is then:

pkt | skt ∼ Beta(αk
t + skt , β

k
t + nk − skt )

The posterior predictive distribution for the number of components surviving at time
t in a new batch of components is thus Beta-binomially distributed. That is, given a
new batch of mk components of type k, the distribution of the number of components
surviving at time t, Ck

t , is:

Ck
t | skt ∼ Beta-binomial(mk, α

k
t + skt , β

k
t + nk − skt )

Consequently, for a fixed t, the collection of minimal sufficient statistics from each
test batch, {s1t , . . . sKt }, can be used to produce a posterior predictive probability that a
new system, S∗, comprising components of these types survives to time t. That is, the
survival signature enables propagation of the uncertainty in survival of each component
to an entire system based on component level test data:

P (TS∗ > t | s1t , . . . sKt )

=

∫
· · ·
∫
P (TS∗ > t | p1t , . . . pKt )P (p1t | s1t ) . . . P (pKt | sKt ) dp1t . . . dpKt

=

∫
· · ·
∫ [ m1∑

l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P

(
K∩
k=1

{Ck
t = lk | pkt }

)]
× P (p1t | s1t ) . . . P (pKt | sKt ) dp1t . . . dpKt

=

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)
K∏
k=1

∫
P (Ck

t = lk | pkt )P (pkt | skt ) dpkt (9)

with the crucial simplification being that the posterior predictive distribution for each
component is Beta-binomial:∫

P (Ck
t = lk | pkt )P (pkt | skt ) dpkt =

(
mk

lk

)
B(lk + αk

t + skt ,mk − lk + βk
t + nk − skt )

B(αk
t + skt , β

k
t + nk − skt )

(10)

Note in particular that this solution is easily implemented algorithmically because the
survival signature has factorised the survival function by component type. In contrast,
consider the structure function:

ϕ(x) =
s∏

j=1

1−
∏
i∈Cj

(1− xi)


where {C1, . . . , Cs} is the collection of minimal cut sets of the system (5). Then,

P (TS∗ > t | s1t , . . . sKt ) =
∫

· · ·
∫
ϕ(px1

t , . . . , p
xn
t )P (p1t | s1t ) . . . P (pKt | sKt ) dp1t . . . dpKt

where pxi
t is the element of {p1t , . . . , pKt } corresponding to component i. This integral can-

not easily be algorithmically solved because there is no simple factorisation of the different
component types, leading to extensive (perhaps intractable) algebraic manipulation when
system size and number of component types increases.

Finally, we note that if required a full posterior predictive distribution for the system
lifetime can be built up by varying t to construct a survival curve.
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Figure 4: An 11 component system with 4 different types of component. Individual
component labels are above to the left, whilst component type is inside the node.

4.1 Example

We illustrate this approach using the system layout given in Figure 4, with K = 4
types of component. The survival signature is detailed in Appendix A and took about
1.6 seconds to compute using the computeSystemSurvivalSignature() function in the
ReliabilityTheory R package (3). The lifetime, Tk, of component k was taken in each
instance to be:

T1 ∼ Exponential(λ = 0.55)

T2 ∼ Weibull(scale = 1.8, shape = 2.2)

T3 ∼ Log-Normal(µ = 0.4, σ = 0.9)

T4 ∼ Gamma(scale = 0.9, shape = 3.2)

For simplicity, the prior parameters were taken to be αk
t = βk

t = 1 ∀ t, k, and 100
observations were simulated for each Tk to act as test batch data.

The resulting posterior predictive distribution for system survival can be seen in Figure
5, which is constructed by evaluating (9) and (10). This can be programmed with just a
few lines of R code and evaluated at 300 values of t to produce the curve in approximately
2 seconds.

4.2 Further study

The ease that the survival signature provides for studying system reliability given compo-
nent data leads to myriad additional possibilities for analysis. We consider one possible
analysis of interest: given the option to add component redundancy, where should such
redundancy be placed?

Figure 6 shows the posterior predictive survival curves when redundancy is added
for each of the 11 components in turn. This being difficult to read, the bottom graph
also shows the highest (top) to lowest (bottom) ordered survival probability as time
progresses, with only none, component 7 and component 8 redundancy shown for clarity.
No one component entirely dominates in survival function for the addition of redundancy,
although as expected addition of any redundancy does uniformly dominate not adding
redundancy.

For t > 2, addition of redundancy to component 7 uniformly dominates the other
redundancy options, with redundancy on component 8 uniformly the second best choice.
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Figure 5: Posterior predictive survival function for the system along with (true) survival
functions for the individual components.

It is an interesting result that these components are the best choices, both being of type
T4, since this is the type with highest survival until t = 5. This highlights the importance
of a full structural reliability analysis, since a näıve analysis may have assumed that any
of the other 9 components of less reliable type may be preferable choices, the import of
components 7 and 8 not being immediately obvious in a complex structure such as this.

Further avenues can readily be pursued. For example, since a full probability distri-
bution may be derived from the survival function, it would be possible to use a decision
theoretic framework which included component costing and negative utility for system
unavailability in order to assess where redundancy would provide the highest expected
utility for a given scenario.

5 Parametric component lifetime distributions

The nonparametric approach presented in Section 4 provides a very flexible modelling
approach when the desire is to rely on minimal assumptions. However, in those instances
where there is strong cause to believe a parametric model for the component lifetimes,
or perhaps sufficient data to perform model diagnostics, then the exact same survival
signature based framework accommodates completely flexible modelling.

There are two possible settings. First, in the spirit of the previous Section, the
proposed likelihood model and prior for all components may have a closed form posterior
distribution. Alternatively, given that specific likelihood models are being chosen for
component lifetimes it may not be desirable, or in fact even possible, to specify either a
conjugate prior or some prior leading to a tractably integrable posterior. Finally, a hybrid
may be the case, where some of the components have closed form posterior distributions
whilst others do not. All of these settings can be elegantly handled via the survival
signature.

Let the likelihood model for component k be denoted fk(t;ψk) where the parameter(s)
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Figure 6: Top: Posterior predictive survival function with component redundancy added.
Bottom: highest to lowest posterior survival probability over time.
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of the model are ψk. Without loss of generality, ψk may be a vector of parameters. To
complete the model in the Bayesian paradigm, we take the (joint) prior density for ψk to
be fΨk

(·).
As before, we consider testing of component k to produce lifetime data tk = {tk1, . . . , tknk

}.
This results in the standard Bayesian posterior density:

fΨk |Tk(ψk | tk) ∝ fΨk
(ψk)

nk∏
i=1

fk(t
k
i ;ψk)

Propagating this Bayesian posterior belief in component reliability to the system level
then follows:

P (TS∗ > t | t1, . . . tK)

=

∫
· · ·
∫
P (TS∗ > t |ψ1, . . . ψK)fΨ1 |T 1(dψ1 | t1) . . . fΨK |TK (dψK | tK)

=

∫
· · ·
∫ [ m1∑

l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P

(
K∩
k=1

{Ck
t = lk |ψk}

)]
× fΨ1 |T 1(dψ1 | t1) . . . fΨK |TK (dψK | tK)

=

∫
· · ·
∫ [ m1∑

l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)
K∏
k=1

(
mk

lk

)
[Fk(t;ψk)]

mk−lk [1− Fk(t;ψk)]
lk

]
× fΨ1 |T 1(dψ1 | t1) . . . fΨK |TK (dψK | tK)

=

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)
K∏
k=1

(
mk

lk

)∫
[Fk(t;ψk)]

mk−lk [1− Fk(t;ψk)]
lkfΨk |Tk(dψk | tk)

The penultimate line following from (6). This mirrors part of the derivation in Section 4.
The only terms requiring further consideration are those which are posterior predictive

of lk components out of mk of type k surviving to t:∫
[Fk(t;ψk)]

mk−lk [1− Fk(t;ψk)]
lkfΨk |Tk(dψk | tk) (11)

There are three possibilities:

1. The posterior fΨk |Tk(dψk | tk) is in closed form and the integral is tractable;

2. The posterior fΨk |Tk(dψk | tk) is a known distribution, but the integral is intractable;

3. The posterior fΨk |Tk(dψk | tk) is not in closed form.

However, noting that the integral is simply:

EΨk |Tk

[
[Fk(t;ψk)]

mk−lk [1− Fk(t;ψk)]
lk
]

means that all three possibilities are easily handled, since Monte Carlo or Markov chain
Monte Carlo can be used to evaluate the expectation with respect to the posterior.

In case 1, there is no problem. In case 2, samples can be drawn directly from the
posterior, whilst in case 3 techniques such as importance sampling or Markov chain Monte

12



Carlo can draw samples from the posterior. Thus, for samples ψ
(1)
k , . . . , ψ

(N)
k ∼ Ψk |T k,

we invoke the standard result:

1

N

N∑
i=1

[Fk(t;ψ
(i)
k )]mk−lk [1− Fk(t;ψ

(i)
k )]lk (12)

N→∞−−−→ EΨk |Tk

[
[Fk(t;ψk)]

mk−lk [1− Fk(t;ψk)]
lk
]

to evaluate the required integral. Note that the same samples may be used when com-
puting for different values of t so that the computational burden is not too great.

Also, in particular a mix is possible: when closed forms are possible they lead to great
efficiency for those components, and when not available standard numerical methods can
be employed.

5.1 Example

We illustrate this approach by using the same system layout and component setup as in
the previous Section in order to allow comparison of results between the methods. That
is, the system is as depicted in Figure 4, with K = 4 types of component and the lifetime,
Tk, of component k is taken in each instance to be:

T1 ∼ Exponential(λ1 = 0.55)

T2 ∼ Weibull(scale = λ2 = 1.8, shape = γ1 = 2.2)

T3 ∼ Log-Normal(µ = 0.4, τ = 1.234)

T4 ∼ Gamma(scale = λ3 = 0.9, shape = γ2 = 3.2)

In the parametric case, we take the following prior specifications:

λ1, τ ∼ Gamma(rate = 0.5, shape = 2)

λ2, λ3, γ1, γ2 ∼ Uniform(0, 10)

µ ∼ Normal(mean = 2, sd = 10)

These are relatively vague priors within the realm of what may be expected for com-
ponent lives on the chosen scale.

5.1.1 Components of type 1

The choice of prior for λ1 leads to a conjugate posterior, so that we may immediately
write:

Λ1 | t1 ∼ Gamma(rate = 0.5 + n1t̄
1, shape = n1 + 2)

Then, the required integral, (11), is:

(0.5 + n1t̄
1)n1+2

Γ(n1 + 2)

∫ ∞

0

[1− e−λ1t]3−l1 [e−λ1t]l1λ1+n1
1 e−(0.5+n1 t̄

1)λ1 dλ1 for l1 ∈ {0, 1, 2, 3}

13



Following some routine calculus this results in the following for each l1:

(0.5 + n1t̄
1)n1+2

(
(0.5 + n1t̄

1)−(n1+2) − 3(0.5 + t+ n1t̄
1)−(n1+2)

+3(0.5 + 2t+ n1t̄
1)−(n1+2) − (0.5 + 3t+ n1t̄

1)−(n1+2)
)

for l1 = 0

(0.5 + n1t̄
1)n1+2

(
(0.5 + t+ n1t̄

1)−(n1+2) − 2(0.5 + 2t+ n1t̄
1)−(n1+2)

+(0.5 + 3t+ n1t̄
1)−(n1+2)

)
for l1 = 1

(0.5 + n1t̄
1)n1+2

(
(0.5 + 2t+ n1t̄

1)−(n1+2) − (0.5 + 3t+ n1t̄
1)−(n1+2)

)
for l1 = 2

(0.5 + n1t̄
1)n1+2 (0.5 + 3t+ n1t̄

1)−(n1+2) for l1 = 3

Consequently, this posterior predictive term for components of type 1 is of the first
type described, being tractable to compute algebraically. Hence, computation of the
posterior predictive probabilities for collections of 3 such components is trivially easy
and of negligible computational cost.

5.1.2 Components of type 2 and 4

For these components, there is no closed form for the posterior or posterior predictive
distributions. Consequently, it is necessary to use a numerical method to evaluate the
posterior predictive term required for the survival function of the system.

The standard random-walk Metropolis algorithm (15) with multivariate Normal pro-
posal was employed with covariance selected to result in acceptance rates of 20–30%. In
this instance this required scaling the identity matrix by a factor of 0.2.

In the region of 10, 000 samples proved sufficient to bring the MCMC standard er-
ror sufficiently low when estimated with batch means (12). Alternatively, practitioners
may simply choose a suitable thinning interval to result in 1, 000 effectively independent
samples. In either instance, only seconds of computation are required.

5.1.3 Components of type 3

The following two conjugacy results hold, where τ = 1/σ2 is the precision:

µ | τ, t3 ∼ Normal
(
mean =

[
0.02 + τ

∑
log t3i

]
[0.01 + n3τ ]

−1 , precision = 0.01 + n3τ
)

τ |µ, t3 ∼ Gamma

(
rate =

1

2
+

1

2

∑
(log t3i − µ)2), shape = 2 +

n3

2

)
Consequently a standard Gibbs sampler can be employed and the resulting samples

used in estimating the required expectation (12) as for the previous two component types.

5.1.4 Results

The full analysis runs in a little over 3 minutes on a 7 year old Intel Core 2 Duo laptop.
Figure 7 shows the posterior densities as estimated in 5.1.1–5.1.3. Interestingly, the
component test data resulted in poor posterior accuracy for λ2 and γ1, although not in a
way that substantially affects the expected component lifetime substantially. The effect
is to reduce the tail weight in the Weibull compared to the ground truth which generated
the type 2 components test data. The other posterior densities are reasonable.

The resulting posterior predictive distribution for system survival as propagated by the
system signature can be seen in Figure 8 alongside the non-parametric case and ground
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Figure 7: Posterior densities for each parameter. Vertical lines indicate the ground truth
in the model.

truth. The ground truth is computed by using the known component lifetime distribution
for Fk(·) in (6) and (7). This shows that both parametric and non-parametric system
survival curve estimates are very close to the true system survival.

6 Concluding remarks

The survival signature has been shown to provide a practical method of propagating
the full knowledge and uncertainty about reliability of several types of component to
the system level in both non-parametric and parametric Bayesian settings. In particu-
lar, the survival signature avoids potentially intractable algebra associated with use of
the structure function directly and so is an algorithmically straightforward approach to
implement.

It has also been shown that reliability of networks, whereby not only nodes but also
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Figure 8: Posterior predictive survival function for the system in both parametric and
non-parametric cases.

links are unreliable, can be easily handled by the survival signature. This enables treat-
ment of point-to-point reliability of telecommunications, power and other networks in a
realistic fashion with links not restricted to being modelled with similar failure charac-
teristics to nodes.

A demonstration was also provided of how this approach opens the possibility of
answering important questions about system reliability, such as optimal component re-
dundancy, whilst fully accounting for system structure. This provides an interesting new
technique for future research into an array of system-level questions which have hitherto
been challenging to answer for systems of non-trivial size.

In practical application the approach shown herein should be appealing, because the
nonparametric option can be used with minimal assumptions. Additionally, the survival
signature is easily computed using the freely available ReliabilityTheory R package(3)

and the overall computation times involved even for fairly large systems is small and so
entirely feasible. Indeed, even in the parametric case, the separation of system struc-
ture and component reliability enables the extensive computational tools available for
statistical inference on component level data (such as MCMC) to dovetail naturally with
quantification of the uncertainty in system lifetime.

In principle both of these approaches can be fully automatically programmed enabling
reliability practitioners to utilise the theory without extensive effort, something which
would not have been possible with the structure function (due to extensive and possibly
intractable algebraic manipulation), or with the signature (due to the constraint that
components must be of the same type). This is something we aim to provide as part of
future research work.
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A Survival signature

The following is the survival signature of the system in Figure 4. All entries with survival
signature equal to either 0 or 1 have been suppressed, these values will be clear from the
monotonicity of the survival signature and the values given in the table.

C1 C2 C3 C4 P(·)
0 1 1 1 1

18

0 1 2 1 1
9

0 1 3 1 1
6

0 2 1 1 1
9

0 2 2 1 2
9

0 2 3 1 1
3

0 3 1 1 1
6

0 3 2 1 1
3

0 3 3 1 1
2

1 0 1 1 1
18

1 0 2 1 1
9

1 0 3 1 1
6

1 1 1 0 1
27

1 1 1 1 1
9

1 1 2 0 2
27

1 1 2 1 2
9

1 1 3 0 1
9

C1 C2 C3 C4 P(·)
1 1 3 1 1

3

1 2 0 0 1
9

1 2 0 1 1
9

1 2 1 0 5
27

1 2 1 1 5
18

1 2 2 0 7
27

1 2 2 1 4
9

1 2 3 0 1
3

1 2 3 1 11
18

1 3 0 0 1
3

1 3 0 1 1
3

1 3 1 0 4
9

1 3 1 1 1
2

1 3 2 0 5
9

1 3 2 1 2
3

1 3 3 0 2
3

1 3 3 1 5
6

C1 C2 C3 C4 P(·)
2 0 1 0 2

9

2 0 1 1 1
3

2 0 2 0 1
3

2 0 2 1 5
9

2 0 3 0 1
3

2 0 3 1 2
3

2 1 1 0 8
27

2 1 1 1 7
18

2 1 2 0 13
27

2 1 2 1 17
27

2 1 3 0 5
9

2 1 3 1 7
9

2 2 0 0 2
9

2 2 0 1 2
9

2 2 1 0 14
27

2 2 1 1 31
54

2 2 2 0 20
27

C1 C2 C3 C4 P(·)
2 2 2 1 7

9

2 2 3 0 8
9

2 2 3 1 17
18

2 3 0 0 2
3

2 3 0 1 2
3

2 3 1 0 7
9

2 3 1 1 7
9

2 3 2 0 8
9

2 3 2 1 8
9

3 0 1 0 2
3

3 0 1 1 5
6

3 1 1 0 7
9

3 1 1 1 8
9

3 2 0 0 1
3

3 2 0 1 1
3
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