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Abstract

We study a random walk on a complex of finitely many half-lines joined at
a common origin; jumps are heavy-tailed and of two types, either one-sided
(towards the origin) or two-sided (symmetric). Transmission between half-
lines via the origin is governed by an irreducible Markov transition matrix,
with associated stationary distribution µk. If χk is 1 for one-sided half-lines
k and 1/2 for two-sided half-lines, and αk is the tail exponent of the jumps
on half-line k, we show that the recurrence classification for the case where
all αkχk ∈ (0, 1) is determined by the sign of

∑
k µk cot(χkπαk). In the

case of two half-lines, the model fits naturally on R and is a version of the
oscillating random walk of Kemperman. In that case, the cotangent criterion
for recurrence becomes linear in α1 and α2; our general setting exhibits the
essential non-linearity in the cotangent criterion. For the general model, we
also show existence and non-existence of polynomial moments of return times.
Our moments results are sharp (and new) for several cases of the oscillating
random walk; they are apparently even new for the case of a homogeneous
random walk on R with symmetric increments of tail exponent α ∈ (1, 2).

Key words: Random walk, heavy tails, recurrence, transience, passage time mo-
ments, Lyapunov functions, oscillating random walk, cotangent criterion.
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1 Introduction

We study Markov processes on a complex of half-lines R+× S, where S is finite,
and all half-lines are connected at a common origin. On a given half-line, a particle
performs a random walk with a heavy-tailed increment distribution, until it would
exit the half-line, when it switches (in general, at random) to another half-line to
complete its jump.

To motivate the development of the general model, we first discuss informally
some examples; we give formal statements later.
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The one-sided oscillating random walk takes place on two half-lines, which we
may map onto R. From the positive half-line, the increments are negative with dens-
ity proportional to y−1−α, and from the negative half-line the increments are positive
with density proportional to y−1−β, where α, β ∈ (0, 1). The walk is transient if and
only if α + β < 1; this is essentially a result of Kemperman [15].

The oscillating random walk has several variations and has been well studied
over the years (see e.g. [16–19]). This previous work, as we describe in more detail
below, is restricted to the case of two half-lines. We generalize this model to an
arbitrary number of half-lines, labelled by a finite set S, by assigning a rule for
travelling from half-line to half-line.

First we describe a deterministic rule. Let T be a positive integer. Define a
routing schedule of length T to be a sequence σ = (i1, . . . , iT ) of T elements of S,
dictating the sequence in which half-lines are visited, as follows. The walk starts
from line i1, and, on departure from line i1 jumps over the origin to i2, and so on,
until departing iT it returns to i1; on line k ∈ S, the walk jumps towards the origin
with density proportional to y−1−αk where αk ∈ (0, 1). One simple example takes
a cyclic schedule in which σ is a permutation of the elements of S. In any case, a
consequence of our results is that now the walk is transient if and only if∑

k∈S

µk cot(παk) > 0, (1.1)

where µk is the number of times k appears in the sequence σ. In particular, in the
cyclic case the transience criterion is

∑
k∈S cot(παk) > 0.

It is easy to see that, if S contains two elements, the cotangent criterion (1.1) is
equivalent to the previous one for the one-sided oscillating walk (α1 + α2 < 1). For
more than two half-lines the criterion is non-linear, and it was necessary to extend
the model to more than two lines in order to see the essence of the behaviour.

More generally, we may choose a random routing rule between lines: on departure
from half-line i ∈ S, the walk jumps to half-line j ∈ S with probability p(i, j). The
deterministic cyclic routing schedule is a special case in which p(i, i′) = 1 for i′ the
successor to i in the cycle. In fact, this set-up generalizes the arbitrary deterministic
routing schedule described above, as follows. Given the schedule sequence σ of length
T , we may convert this to a cyclic schedule on an extended state-space consisting
of µk copies of line k, and then reading σ as a permutation. So the deterministic
routing model is a special case of the model with Markov routing, which will be the
focus of the rest of the paper.

Our result again will say that (1.1) is the criterion for transience, where µk is now
the stationary distribution associated to the stochastic matrix p(i, j). Our general
model also permits two-sided increments for the walk from some of the lines, which
contribute terms involving cot(παk/2) to the cotangent criterion (1.1). These two-
sided models also generalize previously studied classical models (see e.g. [15,16,22]).
Again, it is only in our general setting that the essential nature of the cotangent
criterion (1.1) becomes apparent.

Rather than R+× S, one could work on Z+× S instead, with mass functions
replacing probability densities; the results would be unchanged.

The paper is organized as follows. In Section 2 we formally define our model and
describe our main results, which as well as a recurrence classification include results
on existence of moments of return times in the recurrent cases. In Section 3 we
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explain how our general model relates to the special case of the oscillating random
walk when S has two elements, and state our results for that model; in this context
the recurrence classification results are already known, but the existence of moments
results are new even here, and are in several important cases sharp. The present
work was also motivated by some problems concerning many-dimensional, partially
homogeneous random walks similar to models studied in [5, 6]: we describe this
connection in Section 4. The main proofs are presented in Sections 5, 6, and 7, the
latter dealing with the critical boundary case which is more delicate and requires
additional work. We collect various technical results in Appendix A.

2 Model and results

Consider (Xn, ξn;n ∈ Z+), a discrete-time, time-homogeneous Markov process with
state space R+× S, where S is a finite non-empty set. The state space is equipped
with the appropriate Borel sets, namely, sets of the form B × A where B ∈ B(R+)
is a Borel set in R+, and A ⊆ S. The process will be described by:

• an irreducible stochastic matrix labelled by S, P = (p(i, j); i, j ∈ S); and

• a collection (wi; i ∈ S) of probability density functions, so wi : R → R+ is a
Borel function with

∫
Rwi(y)dy = 1.

We view R+× S as a complex of half-lines R+× {k}, or branches, connected at a
central origin O := {0}×S; at time n, the coordinate ξn describes which branch the
process is on, and Xn describes the distance along that branch at which the process
sits. We will call Xn a random walk on this complex of branches.

To simplify notation, throughout we write Px,i[ · ] for P[ · | (X0, ξ0) = (x, i)],
the conditional probability starting from (x, i) ∈ R+× S; similarly we use Ex,i for
the corresponding expectation. The transition kernel of the process is given for
(x, i) ∈ R+× S, for all Borel sets B ⊆ R+ and all j ∈ S, by

P [(Xn+1, ξn+1) ∈ B × {j} | (Xn, ξn) = (x, i)] = Px,i [(X1, ξ1) ∈ B × {j}]

= p(i, j)

∫
B

wi(−z − x)dz + 1{i = j}
∫
B

wi(z − x)dz. (2.1)

The dynamics of the process represented by (2.1) can be described algorithmically
as follows. Given (Xn, ξn) = (x, i) ∈ R+× S, generate (independently) a spatial
increment ϕn+1 from the distribution given by wi and a random index ηn+1 ∈ S
according to the distribution p(i, · ). Then,

• if x+ ϕn+1 ≥ 0, set (Xn+1, ξn+1) = (x+ ϕn+1, i); or

• if x+ ϕn+1 < 0, set (Xn+1, ξn+1) = (|x+ ϕn+1|, ηn+1).

In words, the walk takes a wξn-distributed step. If this step would bring the walk
beyond the origin, it passes through the origin and switches onto branch ηn+1 (or,
if ηn+1 happens to be equal to ξn, it reflects back along the same branch).

The finite irreducible stochastic matrix P is associated with a (unique) positive
invariant probability distribution (µk; k ∈ S) satisfying∑

j∈S

µjp(j, k)− µk = 0, for all k ∈ S. (2.2)
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For future reference, we state the following.

(A0) Let P = (p(i, j); i, j ∈ S) be an irreducible stochastic matrix, and let (µk; k ∈
S) denote the corresponding invariant distribution.

Our interest here is when the wi are heavy tailed. We allow two classes of distri-
bution for the wi: one-sided or symmetric. It is convenient, then, to partition S as
S = Sone ∪ Ssym where Sone and Ssym are disjoint sets, representing those branches
on which the walk takes, respectively, one-sided and symmetric jumps. The wk are
then described by a collection of positive parameters (αk; k ∈ S).

For a probability density function v : R → R+, an exponent α ∈ (0,∞), and a
constant c ∈ (0,∞), we write v ∈ Dα,c to mean that there exists c : R+→ (0,∞)
with supy c(y) <∞ and limy→∞ c(y) = c for which

v(y) =

{
c(y)y−1−α if y > 0

0 if y ≤ 0.
(2.3)

If v ∈ Dα,c is such that (2.3) holds and c(y) satisfies the stronger condition
c(y) = c+O(y−δ) for some δ > 0, then we write v ∈ D+

α,c.
Our assumption on the increment distributions wi is as follows.

(A1) Suppose that, for each k ∈ S, we have an exponent αk ∈ (0,∞), a constant
ck ∈ (0,∞), and a density function vk ∈ Dαk,ck . Then suppose that, for all
y ∈ R, wk is given by

wk(y) =

{
vk(−y) if k ∈ Sone

1
2
vk(|y|) if k ∈ Ssym.

(2.4)

We say that Xn is recurrent if lim infn→∞Xn = 0, a.s., and transient if
limn→∞Xn = ∞, a.s. An irreducibility argument shows that our Markov chain
(Xn, ξn) displays the usual recurrence/transience dichotomy and exactly one of these
two situations holds; however, our proofs establish this behaviour directly using se-
mimartingale arguments, and so we may avoid discussion of irreducibility here.

Throughout we define, for k ∈ S,

χk :=
1 + 1{k ∈ Sone}

2
=

{
1
2

if k ∈ Ssym;

1 if k ∈ Sone.

Our first main result gives a recurrence classification for the process.

Theorem 2.1. Suppose that (A0) and (A1) hold.

(a) Suppose that maxk∈S χkαk ≥ 1. Then Xn is recurrent.

(b) Suppose that maxk∈S χkαk < 1.

(i) If
∑

k∈S µk cot(χkπαk) < 0, then Xn is recurrent.

(ii) If
∑

k∈S µk cot(χkπαk) > 0, then Xn is transient.

(iii) Suppose in addition that the densities vk of (A1) belong to D+
αk,ck

for each
k. Then

∑
k∈S µk cot(χkπαk) = 0 implies that Xn is recurrent.
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In the recurrent cases, it is of interest to quantify recurrence via existence or
non-existence of passage-time moments. For a > 0, let τa := min{n ≥ 0 : Xn ≤ a},
where throughout the paper we adopt the usual convention that min ∅ := +∞. The
next result shows that in all the recurrent cases, excluding the boundary case in
Theorem 2.1(b)(iii), the tails of τa are polynomial.

Theorem 2.2. Suppose that (A0) and (A1) hold. In cases (a) and (b)(i) of The-
orem 2.1, there exists 0 < q? <∞ such that for all x > a and all k ∈ S,

Ex,k[τ qa ] <∞, for q < q? and Ex,k[τ qa ] =∞, for q > q?.

Remark 2.3. One would like to precisely locate q?; here we only locate q? within an
interval, i.e., we show that there exist q0 and q1 with 0 < q0 < q1 < ∞ such that
Ex,k[τ qa ] < ∞ for q < q0 and Ex,k[τ qa ] = ∞ for q > q1. The existence of a critical
q? follows from the monotonicity of the map q 7→ Ex,k[τ qc ], but obtaining a sharp
estimate of its value remains an open problem in the general case.

We do have sharp results in several particular cases for two half-lines, in which
case our model reduces to the oscillating random walk considered by Kemper-
man [15] and others. We present these sharp moments results (Theorems 3.2 and 3.4)
in the next section, which discusses in detail the case of the oscillating random walk,
and also describes how our recurrence results relate to the known results for this
classical model.

3 Oscillating random walks and related examples

3.1 Two half-lines become one line

In the case of our general model in which S consists of two elements, S = {−1,+1},
say, it is natural and convenient to represent our random walk on the whole real line
R. Namely, if ω(x, k) := kx for x ∈ R+ and k = ±1, we let Zn = ω(Xn, ξn).

The simplest case has no reflection at the origin, only transmission, i.e. p(i, j) =
1{i 6= j}, so that µ = (1

2
, 1

2
). Then, for B ⊆ R a Borel set,

P[Zn+1 ∈ B | (Xn, ξn) = (x, i)] =

Px,i[(X1, ξ1) ∈ B+×{+1}] + Px,i[(X1, ξ1) ∈ B−×{−1}],

where B+ = B∩R+ and B− = {−x : x ∈ B, x < 0}. In particular, by (2.1), writing
w+ for w+1, for x ∈ R+,

P[Zn+1 ∈ B | (Xn, ξn) = (x,+1)] =

∫
B+

w+(z − x)dz +

∫
B−

w+(−z − x)dz

=

∫
B

w+(z − x)dz,

and, similarly, writing w−(y) for w−1(−y), for x ∈ R+,

P[Zn+1 ∈ B | (Xn, ξn) = (x,−1)] =

∫
B

w−(z + x)dz.
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For x 6= 0, ω is invertible with

ω−1(x) =

{
(|x|,+1) if x > 0

(|x|,−1) if x < 0,

and hence we have for x ∈ R \ {0} and Borel B ⊆ R,

P[Zn+1 ∈ B | Zn = x] =

{∫
B
w+(z − x)dz if x > 0∫

B
w−(z − x)dz if x < 0.

(3.1)

We may make an arbitrary non-trivial choice for the transition law at Zn = 0
without affecting the behaviour of the process, and then (3.1) shows that Zn is a
time-homogeneous Markov process on R. Now Zn is recurrent if lim infn→∞ |Zn| = 0,
a.s., or transient if limn→∞ |Zn| = ∞, a.s. The one-dimensional case described
at (3.1) has received significant attention over the years. We describe several of the
classical models that have been considered.

3.2 Examples and further results

Homogeneous symmetric random walk

The most classical case is the following.

(Sym) Let α ∈ (0,∞). For v ∈ Dα,c, suppose that w+(y) = w−(y) = 1
2
v(|y|) for

y ∈ R.

In this case, Zn describes a random walk with i.i.d. symmetric increments.

Theorem 3.1. Suppose that (Sym) holds. Then the symmetric random walk is
transient if α < 1 and recurrent if α > 1. If, in addition, v ∈ D+

α,c, then the case
α = 1 is recurrent.

Theorem 3.1 follows from our Theorem 2.1, since in this case∑
k∈S

µk cot(χkπαk) = cot(πα/2).

Since it deals with a sum of i.i.d. random variables, Theorem 3.1 may be deduced
from the classical theorem of Chung and Fuchs [7], via e.g. the formulation of
Shepp [22]. The method of the present paper provides an alternative to the classical
(Fourier analytic) approach that generalizes beyond the i.i.d. setting. (Note that
Theorem 3.1 is not, formally, a consequence of Shepp’s most accessible result, The-
orem 5 of [22], since v does not necessarily correspond to a unimodal distribution in
Shepp’s sense.)

With τa as defined previously, in the setting of the present section we have
τa = min{n ≥ 0 : |Zn| ≤ a}. Use Ex[ · ] as shorthand for E[ · | Z0 = x]. We have the
following result on existence of passage-time moments, whose proof is in Section 6;
while part (i) is well known, we could find no reference for part (ii).

Theorem 3.2. Suppose that (Sym) holds, and that α > 1. Let x /∈ [−a, a].

(i) If α ≥ 2, then Ex[τ qa ] <∞ if q < 1/2 and Ex[τ qa ] =∞ if q > 1/2.
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(ii) If α ∈ (1, 2), then Ex[τ qa ] <∞ if q < 1− 1
α

and Ex[τ qa ] =∞ if q > 1− 1
α

.

Our main interest concerns spatially inhomogeneous models, i.e., in which wx
depends on x, typically only through sgn x, the sign of x. Such models are known as
oscillating random walks, and were studied by Kemperman [15], to whom the model
was suggested in 1960 by Anatole Joffe and Peter Ney (see [15, p. 29]).

One-sided oscillating random walk

The next example, following [15], is a one-sided oscillating random walk :

(Osc1) Let α, β ∈ (0,∞). For v+ ∈ Dα,c+ and v− ∈ Dβ,c− , suppose that

w+(y) = v+(−y), and w−(y) = v−(y).

In other words, the walk always jumps in the direction of (and possibly over) the
origin, with tail exponent α from the positive half-line and exponent β from the
negative half-line. The following recurrence classification applies.

Theorem 3.3. Suppose that (Osc1) holds. Then the one-sided oscillating random
walk is transient if α+β < 1 and recurrent if α+β > 1. If, in addition, v+ ∈ D+

α,c+

and v− ∈ D+
β,c−

, then the case α + β = 1 is recurrent.

Theorem 3.3 was obtained in the discrete-space case by Kemperman [15, p. 21];
it follows from our Theorem 2.1, since in this case∑

k∈S

µk cot(χkπαk) =
1

2
cot(πα) +

1

2
cot(πβ) =

sin(π(α + β))

2 sin(πα) sin(πβ)
.

The special case of (Osc1) in which α = β was called antisymmetric by Kemper-
man; here Theorem 3.3 shows that the walk is transient for α < 1/2 and recurrent
for α > 1/2. We have the following moments result, proved in Section 6.

Theorem 3.4. Suppose that (Osc1) holds, and that α = β > 1/2. Let x /∈ [−a, a].

(i) If α ≥ 1, then Ex[τ qa ] <∞ if q < α and Ex[τ qa ] =∞ if q > α.

(ii) If α ∈ (1/2, 1), then Ex[τ qa ] <∞ if q < 2− 1
α

and Ex[τ qa ] =∞ if q > 2− 1
α

.

Open Problem. Obtain sharp moments results for general α, β ∈ (0, 1).

Two-sided oscillating random walk

Another model in the vein of [15] is a two-sided oscillating random walk :

(Osc2) Let α, β ∈ (0,∞). For v+ ∈ Dα,c+ and v− ∈ Dβ,c− , suppose that

w+(y) =
1

2
v+(|y|), and w−(y) =

1

2
v−(|y|).

Now the jumps of the walk are symmetric, as under (Sym), but with a tail exponent
depending upon which side of the origin the walk is currently on, as under (Osc1).

The most general recurrence classification result for the model (Osc2) is due
to Sandrić [19]. A somewhat less general, discrete-space version was obtained by
Rogozin and Foss (Theorem 2 of [16, p. 159]), building on [15]. Analogous results
in continuous time were given in [4, 11]. Here is the result.
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Theorem 3.5. Suppose that (Osc2) holds. Then the two-sided oscillating random
walk is transient if α+β < 2 and recurrent if α+β > 2. If, in addition, v+ ∈ D+

α,c+

and v− ∈ D+
β,c−

, then the case α + β = 2 is recurrent.

Theorem 3.5 also follows from our Theorem 2.1, since in this case∑
k∈S

µk cot(χkπαk) =
1

2
cot(πα/2) +

1

2
cot(πβ/2) =

sin(π(α + β)/2)

2 sin(πα/2) sin(πβ/2)
.

Open Problem. Obtain sharp moments results for α, β ∈ (0, 2).

Mixed oscillating random walk

A final model is another oscillating walk that mixes the one- and two-sided models:

(Osc3) Let α, β ∈ (0,∞). For v+ ∈ Dα,c+ and v− ∈ Dβ,c− , suppose that

w+(y) =
1

2
v+(|y|), and w−(y) = v−(y).

In the discrete-space case, Theorem 2 of Rogozin and Foss [16, p. 159] gives the
recurrence classification.

Theorem 3.6. Suppose that (Osc3) holds. Then the mixed oscillating random walk
is transient if α + 2β < 2 and recurrent if α + 2β > 2. If, in addition, v+ ∈ D+

α,c+

and v− ∈ D+
β,c−

, then the case α + 2β = 2 is recurrent.

Theorem 3.6 also follows from our Theorem 2.1, since in this case∑
k∈S

µk cot(χkπαk) =
1

2
cot(πα/2) +

1

2
cot(πβ) =

sin(π(α + 2β)/2)

2 sin(πα/2) sin(πβ)
.

3.3 Additional remarks

It is possible to generalize the model further by permitting the local transition
density to vary within each half-line. Then we have the transition kernel

P[Zn+1 ∈ B | Zn = x] =

∫
B

wx(z − x)dz, (3.2)

for all Borel sets B ⊆ R. Here the local transition densities wx : R→ R+ are Borel
functions. Variations of the oscillating random walk, within the general setting of
(3.2), have also been studied in the literature. Sandrić [18, 19] supposes that the
wx satisfy, for each x ∈ R, wx(y) ∼ c(x)|y|−1−α(x) as |y| → ∞ for some measurable
functions c and α; he refers to this as a stable-like Markov chain. Under a uniformity
condition on the wx, and other mild technical conditions, Sandrić [18] obtained, via
Foster–Lyapunov methods similar in spirit to those of the present paper, sufficient
conditions for recurrence and transience: essentially lim infx→∞ α(x) > 1 is sufficient
for recurrence and lim supx→∞ α(x) < 1 is sufficient for transience. These results
can be seen as a generalization of Theorem 3.1. Some related results for models in
continuous-time (Lévy processes) are given in [20, 21, 23]. Further results and an
overview of the literature are provided in Sandrić’s PhD thesis [17].
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4 Many-dimensional random walks

The next two examples show how versions of the oscillating random walk of Section 3
arise as embedded Markov chains in certain two-dimensional random walks.

Example 4.1. Consider ξn = (ξ
(1)
n , ξ

(2)
n ), n ∈ Z+, a nearest-neighbour random walk

on Z2 with transition probabilities

P[ξn+1 = (y1, y2) | ξn = (x1, x2)] = p(x1, x2; y1, y2).

Suppose that the probabilities are given for x2 6= 0 by,

p(x1, x2;x1, x2 + 1) = p(x1, x2;x1, x2 − 1) =
1

3
;

p(x1, x2;x1 + 1, x2) =
1

3
1{x2 < 0};

p(x1, x2;x1 − 1, x2) =
1

3
1{x2 > 0}; (4.1)

(the rest being zero) and for x2 = 0 by p(x1, 0;x1, 1) = 1 for all x1 > 0,
p(x1, 0;x1,−1) = 1 for all x1 < 0, and p(0, 0; 0, 1) = p(0, 0; 0,−1) = 1/2. See
Figure 1 for an illustration.

−400 −200 0 200 400

−
20

0
−

10
0

0
10

0
20

0

Figure 1: Pictorial representation of the non-homogeneous nearest-neighbour random
walk on Z2 of Example 4.2, plus a simulated trajectory of 5000 steps of the walk. We
conjecture that the walk is recurrent.

Set τ0 := 0 and define recursively τk+1 = min{n > τk : ξ
(2)
n = 0} for k ≥ 0;

consider the embedded Markov chain Xn = ξ
(1)
τn . We show that Xn is a discrete

version of the oscillating random walk described in Section 3. Indeed, |ξ(2)
n | is a

reflecting random walk on Z+ with increments taking values −1, 0,+1 each with
probability 1/3. We then (see e.g. [9, p. 415]) have that for some constant c ∈ (0,∞),

P[τ1 > r] = (c+ o(1))r−1/2, as r →∞.

Suppose that ξ
(1)
0 = x > 0. Since between times τ0 and τ1, ξ

(1)
n is monotone, we have

P[ξ(1)
τ1
− ξ(1)

τ0
< −r] ≥ P[τ1 > 3r + r3/4]− P[ξ

(1)

3r+r3/4
− ξ(1)

0 ≥ −r].
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Here, by the Azuma–Hoeffding inequality, for some ε > 0 and all r ≥ 1,

P[ξ
(1)

3r+r3/4
− ξ(1)

0 ≥ −r] ≤ exp{−εr1/2}.

Similarly,

P[ξ(1)
τ1
− ξ(1)

τ0
< −r] ≤ P[τ1 > 3r − r3/4] + P[ξ

(1)

3r−r3/4 − ξ
(1)
0 ≤ −r],

where P[ξ
(1)

3r−r3/4 − ξ
(1)
0 ≤ −r] ≤ exp{−εr1/2}. Combining these bounds, and using

the symmetric argument for {ξ(1)
τ1 > r} when ξ

(1)
0 = x < 0, we see that for r > 0,

P[Xn+1 −Xn < −r | Xn = x] = u(r), if x > 0, and

P[Xn+1 −Xn > r | Xn = x] = u(r), if x < 0, (4.2)

where u(r) = (c+ o(1))r−1/2. Thus Xn satisfies a discrete-space analogue of (Osc1)
with α = β = 1/2. This is the critical case identified in Theorem 3.3, but that
result does not cover this case due to the rate of convergence estimate for u; a finer
analysis is required. We conjecture that the walk is recurrent. 4

Example 4.2. We present two variations on the previous example, which are su-
perficially similar but turn out to be less delicate. First, modify the random walk
of the previous example by supposing that (4.1) holds but replacing the behaviour
at x2 = 0 by p(x1, 0;x1, 1) = p(x1, 0;x1,−1) = 1/2 for all x1 ∈ Z. See the left-hand
part of Figure 2 for an illustration.

The embedded process Xn now has, for all x ∈ Z and for r ≥ 0,

P[Xn+1 −Xn < −r | Xn = x] = P[Xn+1 −Xn > r | Xn = x] = u(r), (4.3)

where u(r) = (c/2)(1 + o(1))r−1/2. Thus Xn is a random walk with symmetric
increments, and the discrete version of our Theorem 3.1 (and also a result of [22])
implies that the walk is transient. This walk was studied by Campanino and Petritis
[5, 6], who proved transience via different methods.

Figure 2: Pictorial representation of the two non-homogeneous nearest-neighbour random
walks on Z2 of Example 4.2. Each of these walks is transient.
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Next, modify the random walk of Example 4.1 by supposing that (4.1) holds
but replacing the behaviour at x2 = 0 by p(x1, 0;x1, 1) = p(x1, 0;x1,−1) = 1/2 if
x1 ≥ 0, and p(x1, 0;x1,−1) = 1 for x1 < 0. See the right-hand part of Figure 2 for an
illustration. This time the walk takes a symmetric increment as at (4.3) when x ≥ 0
but a one-sided increment as at (4.2) when x < 0. In this case the discrete version
of our Theorem 3.6 (and also a result of [16]) shows that the walk is transient. 4

One may obtain the general model on Z+× S as an embedded process for a
random walk on complexes of half-spaces, generalizing the examples considered here;
we leave this to the interested reader.

5 Recurrence classification in the non-critical

cases

5.1 Lyapunov functions

Our proofs are based on demonstrating appropriate Lyapunov functions; that is, for
suitable ϕ : R+× S → R+ we study Yn = ϕ(Xn, ξn) such that Yn has appropriate
local supermartingale or submartingale properties for the one-step mean increments

Dϕ(x, i) := E [ϕ(Xn+1, ξn+1)− ϕ(Xn, ξn) | (Xn, ξn) = (x, i)]

= Ex,i [ϕ(X1, ξ1)− ϕ(X0, ξ0)] .

First we note some consequences of the transition law (2.1). Let ϕ : R+×S → R+

be measurable. Then, we have from (2.1) that, for (x, i) ∈ R+× S,

Dϕ(x, i) =
∑
j∈S

p(i, j)

∫ −x
−∞

(ϕ(−x− y, j)− ϕ(x, i))wi(y)dy

+

∫ ∞
−x

(ϕ(x+ y, i)− ϕ(x, i))wi(y)dy. (5.1)

Our primary Lyapunov function is roughly of the form x 7→ |x|ν , ν ∈ R, but
weighted according to an S-dependent component (realised by a collection of mul-
tiplicative weights λk); these weights provide a crucial technical tool.

For ν ∈ R and x ∈ R we write

fν(x) := (1 + |x|)ν .

Then, for parameters λk > 0 for each k ∈ S, define for x ∈ R+ and k ∈ S,

fν(x, k) := λkfν(x) = λk(1 + x)ν . (5.2)

Now for this Lyapunov function, (5.1) gives

Dfν(x, i) =
∑
j∈S

p(i, j)

∫ −x
−∞

(λjfν(x+ y)− λifν(x))wi(y)dy

+ λi

∫ ∞
−x

(fν(x+ y)− fν(x))wi(y)dy. (5.3)

11



Depending on whether i ∈ Ssym or i ∈ Sone, the above integrals can be expressed in
terms of vi as follows. For i ∈ Ssym,

Dfν(x, i) =
∑
j∈S

p(i, j)
λj
2

∫ ∞
x

fν(y − x)vi(y)dy − λi
2

∫ ∞
x

fν(x)vi(y)dy

+
λi
2

∫ x

0

(fν(x+ y) + fν(x− y)− 2fν(x)) vi(y)dy

+
λi
2

∫ ∞
x

(fν(x+ y)− fν(x)) vi(y)dy. (5.4)

For i ∈ Sone,

Dfν(x, i) =
∑
j∈S

p(i, j)λj

∫ ∞
x

fν(y − x)vi(y)dy − λi
∫ ∞
x

fν(x)vi(y)dy

+ λi

∫ x

0

(fν(x− y)− fν(x)) vi(y)dy. (5.5)

5.2 Estimates of functional increments

In the course of our proofs, we need various integral estimates that can be expressed
in terms of classical transcendental functions. For the convenience of the reader,
we gather all necessary integrals in Lemmas 5.1 and 5.2; the proofs of these results
are deferred until Section A.2. Recall that the Euler gamma function Γ satisfies
the functional equation zΓ(z) = Γ(z + 1), and the hypergeometric function mFn is
defined via a power series (see [1]).

Lemma 5.1. Suppose that α > 0 and −1 < ν < α. Then

iν,α0 :=

∫ ∞
1

(1 + u)ν − 1

u1+α
du =

1

α− ν 2F1(−ν, α− ν;α− ν + 1;−1)− 1

α
;

iα2,0 :=

∫ ∞
1

1

u1+α
du =

1

α
;

iν,α2,1 :=

∫ ∞
1

(u− 1)ν

u1+α
du =

Γ(1 + ν)Γ(α− ν)

Γ(1 + α)
.

Suppose that α ∈ (0, 2) and ν > −1. Then

iν,α1 :=

∫ 1

0

(1 + u)ν + (1− u)ν − 2

u1+α
du =

ν(ν − 1)

2− α 4F3(1, 1−ν
2
, 1−α

2
, 3−ν

2
; 3

2
, 2, 2−α

2
; 1).

Suppose that α ∈ (0, 1) and ν > −1. Then

ĩν,α1 :=

∫ 1

0

(1− u)ν − 1

u1+α
du =

1

α

(
1− Γ(1 + ν)Γ(1− α)

Γ(1− α + ν)

)
.

Recall that the digamma function is ψ(z) = d
dz

log Γ(z) = Γ′(z)/Γ(z), which has
ψ(1) = −γ where γ ≈ 0.5772 is Euler’s constant.

Lemma 5.2. Suppose that α > 0. Then

jα0 :=

∫ ∞
1

log(1 + u)

u1+α
du =

1

α

(
ψ(α)− ψ(α

2
)
)

;
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jα2 :=

∫ ∞
1

log(u− 1)

u1+α
du = − 1

α
(γ + ψ(α)).

Suppose that α ∈ (0, 2). Then

jα1 :=

∫ 1

0

log(1− u2)

u1+α
du =

1

α

(
γ + ψ(1− α

2
)
)
.

Suppose that α ∈ (0, 1). Then

j̃α1 :=

∫ 1

0

log(1− u)

u1+α
du =

1

α
(γ + ψ(1− α)) .

Remark 5.3. The j integrals can be obtained as derivatives with respect to ν of the
i integrals, evaluated at ν = 0.

The next result collects estimates for our integrals in the expected functional
increments (5.4) and (5.5) in terms of the integrals in Lemma 5.1.

Lemma 5.4. Suppose that v ∈ Dα,c. For α > 0 and −1 < ν < α we have∫ ∞
x

fν(y − x)v(y)dy = cxν−αiν,α2,1 + o(xν−α); (5.6)∫ ∞
x

fν(x)v(y)dy = cxν−αiν,α2,0 + o(xν−α); (5.7)∫ ∞
x

(fν(x+ y)− fν(x)) v(y)dy = cxν−αiν,α0 + o(xν−α). (5.8)

For α ∈ (0, 2) and ν > −1 we have∫ x

0

(fν(x+ y) + fν(x− y)− 2fν(x)) v(y)dy = cxν−αiν,α1 + o(xν−α). (5.9)

For α ∈ (0, 1) and ν > −1 we have∫ x

0

(fν(x− y)− fν(x)) v(y)dy = cxν−αĩν,α1 + o(xν−α). (5.10)

Moreover, if v ∈ D+
α,c then stronger versions of all of the above estimates hold with

o(xν−α) replaced by O(xν−α−δ) for some δ > 0.

Proof. These estimates are mostly quite straightforward, so we do not give all the
details. We spell out the estimate in (5.6); the others are similar. We have∫ ∞

x

fν(y − x)v(y)dy = xν
∫ ∞
x

(
1+y
x
− 1
)ν
c(y)y−1−αdy.

With the substitution u = 1+y
x

, this last expression becomes

x1+ν

∫ ∞
1+x
x

(u− 1)νu−1−α(x− u−1)−1−αc(ux− 1)du.
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Let ε ∈ (0, c). Then there exists y0 ∈ R+ such that |c(y) − c| < ε for all y ≥ y0,
so that |c(ux − 1) − c| < ε for all u in the range of integration, provided x ≥ y0.
Writing

f(u) = (u− 1)νu−1−α, and g(u) = (x− u−1)−1−αc(ux− 1),

for the duration of the proof, we have that∫ ∞
x

fν(y − x)v(y)dy = x1+ν

∫ ∞
1+x
x

f(u)g(u)du. (5.11)

For u ≥ 1+x
x

and x ≥ y0, we have

g− := (c− ε)x−1−α ≤ g(u) ≤ (c+ ε)(x− 1)−1−α =: g+,

so that g+ − g− ≤ 2ε(x − 1)−1−α + C1x
−2−α for a constant C1 < ∞ not depending

on x ≥ y0 or ε. Moreover, it is easy to see that
∫∞

1
|f(u)|du ≤ C2 for a constant C2

depending only on ν and α, provided ν ∈ (−1, α). Hence Lemma A.3 shows that∣∣∣∣∣
∫ ∞

1+x
x

f(u)g(u)du− (c− ε)x−1−α
∫ ∞

1+x
x

f(u)du

∣∣∣∣∣ ≤ 2C2ε(x− 1)−1−α + C1C2x
−2−α,

for all x ≥ y0. Since also∣∣∣∣∣
∫ ∞

1+x
x

f(u)du− iν,α2,1

∣∣∣∣∣ ≤
∫ 1+x

x

1

|f(u)|du→ 0,

as x→∞, it follows that for any ε > 0 we may choose x sufficiently large so that∣∣∣∣∣
∫ ∞

1+x
x

f(u)g(u)du− cx−1−αiν,α2,1

∣∣∣∣∣ ≤ εx−1−α,

and since ε > 0 was arbitrary, we obtain (5.6) from (5.11).

We also need the following simple estimates for ranges of α when the asymptotics
for the final two integrals in Lemma 5.4 are not valid.

Lemma 5.5. Suppose that v ∈ Dα,c.

(i) For α ≥ 2 and any ν ∈ (0, 1), there exist ε > 0 and x0 ∈ R+ such that, for all
x ≥ x0,∫ x

0

(fν(x+ y) + fν(x− y)− 2fν(x)) v(y)dy ≤

{
−εxν−2 log x if α = 2,

−εxν−2 if α > 2.

(ii) For α ≥ 1 and any ν > 0, there exist ε > 0 and x0 ∈ R+ such that, for all
x ≥ x0, ∫ x

0

(fν(x− y)− fν(x)) v(y)dy ≤

{
−εxν−1 log x if α = 1,

−εxν−1 if α > 1.
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Proof. For part (i), set aν(z) = (1 + z)ν + (1− z)ν − 2, so that∫ x

0

(fν(x+ y) + fν(x− y)− 2fν(x)) v(y)dy = (1 + x)ν
∫ x

0

aν
(

y
1+x

)
c(y)y−1−α.

Suppose that α ≥ 2 and ν ∈ (0, 1). For ν ∈ (0, 1), calculus shows that aν(z)
has a single local maximum at z = 0, so that aν(z) ≤ 0 for all z. Moreover,
Taylor’s theorem shows that for any ν ∈ (0, 1) there exists δν ∈ (0, 1) such that
aν(z) ≤ −(ν/2)(1 − ν)z2 for all z ∈ [0, δν ]. Also, c(y) ≥ c/2 > 0 for all y ≥ y0

sufficiently large. Hence, for all x ≥ y0/δν ,∫ x

0

aν
(

y
1+x

)
c(y)y−1−αdy ≤

∫ δνx

y0

aν
(

y
1+x

)
c(y)y−1−αdy

≤ −cν(1− ν)

4(1 + x)2

∫ δνx

y0

y1−αdy,

which yields part (i) of the lemma.
For part (ii), suppose that α ≥ 1 and ν > 0. For any ν > 0, there exists δν ∈ (0, 1)

such that (1− z)ν − 1 ≤ −(ν/2)z for all z ∈ [0, δν ]. Moreover, c(y) ≥ c/2 > 0 for all
y ≥ y0 sufficiently large. Hence, since the integrand is non-positive, for x > y0/δν ,

(1 + x)ν
∫ x

0

((
1− y

1+x

)ν − 1
)
c(y)y−1−αdy ≤ c

2
(1 + x)ν

∫ δνx

y0

((
1− y

1+x

)ν − 1
)
y−1−αdy

≤ −cν(1 + x)ν

4(1 + x)

∫ δνx

y0

y−αdy,

and part (ii) follows.

Lemma 5.6. Suppose that (A1) holds and χiαi < 1. Then for ν ∈ (−1, 1 ∧ αi),
[ ∈ {one, sym}, and i ∈ S[, as x→∞,

Dfν(x, i) = χiλicix
ν−αiiν,αi2,1

(
(Pλ)i
λi

+R[(αi, ν)

)
+ o(xν−αi),

where λ = (λk; k ∈ S),

Rsym(α, ν) =
iν,α0 + iν,α1 − iα2,0

iν,α2,1

, and Rone(α, ν) =
ĩν,α1 − iα2,0
iν,α2,1

.

Moreover, if vi ∈ D+
αi,ci

then, for some δ > 0,

Dfν(x, i) = χiλicix
ν−αiiν,αi2,1

(
(Pλ)i
λi

+R[(αi, ν)

)
+O(xν−αi−δ).

Finally, as ν → 0,

R[(α, ν) =

{
Rsym(α, ν) = −1 + νπ cot(παi/2) + o(ν) if [ = sym

Rone(α, ν) = −1 + νπ cot(παi) + o(ν) if [ = one.
(5.12)
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Proof. The above expressions for Dfν(x, i) follow from (5.4) and (5.5) with
Lemma 5.4.

Additionally, we compute that Rsym(α, 0) = Rone(α, 0) = −1. For ν in a neigh-
bourhood of 0 uniformity of convergence of the integrals over (1,∞) enables us to
differentiate with respect to ν under the integral sign to get

∂

∂ν
Rsym(α, ν)|ν=0 =

jα0 + jα1
i0,α2,1

−Rsym(α, 0)
jα2
i0,α2,1

= ψ
(
1− α

2

)
− ψ

(
α
2

)
= π cot

(
πα
2

)
,

using Lemma 5.2 and the digamma reflection formula (equation 6.3.7 from [1, p.
259]), and then the first formula in (5.12) follows by Taylor’s theorem. Similarly,
for the second formula in (5.12),

∂

∂ν
Rone(α, ν)|ν=0 =

j̃α1
i0,α2,1

−Rone(α, 0)
jα2
i0,α2,1

= ψ(1− α)− ψ(α)

= π cot(πα).

We conclude this subsection with two algebraic results.

Lemma 5.7. Suppose that (A0) holds. Given (bk; k ∈ S) with bk ∈ R for all k,
there exists a solution (θk; k ∈ S) with θk ∈ R for all k to the system of equations∑

j∈S

p(k, j)θj − θk = bk, (k ∈ S), (5.13)

if and only if
∑

k∈S µkbk = 0. Moreover, if a solution to (5.13) exists, we may take
θk > 0 for all k ∈ S.

Proof. As column vectors, we write µ = (µk; k ∈ S) for the stationary probabilities
as given in (A0), b = (bk; k ∈ S), and θ = (θk; k ∈ S). Then in matrix-vector form,
(5.13) reads (P − I)θ = b, while µ satisfies (2.2), which reads (P − I)>µ = 0, the
homogeneous system adjoint to (5.13). (Here I is the identity matrix and 0 is the
vector of all 0s.)

A standard result from linear algebra (a version of the Fredholm alternative)
says that (P − I)θ = b admits a solution θ if and only if the vector b is orthogonal
to any solution x to (P − I)>x = 0; but, by (A0), any such x is a scalar multiple of
µ. In other words, a solution θ to (5.13) exists if and only if µ>b = 0, as claimed.

Finally, since P is a stochastic matrix, (P − I)1 = 0, where 1 is the column
vector of all 1s; hence if θ solves (P − I)θ = b, then so does θ + γ1 for any γ ∈ R.
This implies the final statement in the lemma.

Lemma 5.8. Let U = (Uk,`; k, ` = 0, . . . ,M) be a given upper triangular matrix
having all its upper triangular elements non-negative (Uk,` ≥ 0 for 0 ≤ k < ` ≤ M
and vanishing all other elements) and A = (Ak; k = 1, . . . ,M) a vector with positive
components. Then there exists a unique lower triangular matrix L = (Lk,`; k, ` =
0, . . . ,M) (so diagonal and upper triangular elements vanish) satisfying
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(i) Lm,m−1 = (UL)m,m + Am for m = 1, . . . ,M ;

(ii) Lk,` =
∑k−`−1

r=0 L`+r+1,`+r = L`+1,` + · · ·+ Lk,k−1 for 0 ≤ ` < k ≤M .

Also, all lower triangular elements of L are positive, i.e. Lk,` > 0 for 0 ≤ ` < k ≤M .

Proof. We construct L inductively. Item (i) demands

Lm,m−1 =
M∑
`=0

Um,`L`,m + Am =
M∑

`=m+1

Um,`L`,m + Am. (5.14)

In the case m = M , with the usual convention that an empty sum is 0, the de-
mand (5.14) is simply LM,M−1 = AM . So we can start our construction taking
LM,M−1 = AM , which is positive by assumption. (Item (ii) makes no demands in
the case k = M , ` = M − 1.)

Suppose now that all matrix elements Lk,` have been computed in the lower-right
corner Λm (1 ≤ m ≤M):

Λm =

Lm,m−1

Lm+1,m−1 Lm+1,m
...

...
. . .

LM,m−1 LM,m . . . LM,M−1

The elements of L involved in statement (i) (for given m) and in statement (ii) for
` = m − 1 are all in Λm; thus as part of our inductive hypothesis we may suppose
that the elements of Λm are such that (i) holds for the given m, and (ii) holds with
` = m− 1 and all m ≤ k ≤M . We have shown that we can achieve this for ΛM .

The inductive step is to construct from Λm (2 ≤ m ≤ M) elements Lk,m−2 for
m− 1 ≤ k ≤M and hence complete the array Λm−1 in such a way that (i) holds for
m− 1 replacing m, that (ii) holds for ` = m− 2, and that all elements are positive.
Now (5.14) reveals the demand of item (i) as

Lm−1,m−2 =
M∑
`=m

Um−1,`L`,m−1 + Am−1,

which we can achieve since the elements of L on the right-hand side are all in Λm,
and since Am−1 > 0 we get Lm−1,m−2 > 0.

The ` = m− 2 case of (ii) demands that for m ≤ k ≤M we have

Lk,m−2 =
k−m+1∑
r=0

Lm−1+r,m−2+r = Lm−1,m−2 + · · ·+ Lk,k−1

which involves only elements of Λm in addition to Lm−1,m−2, which we have already
defined, and positivity of all the Lk,m−2 follows by hypothesis. This gives us the
construction of Λm−1 and establishes the inductive step.

This algorithm can be continued down to Λ1. But then the lower triangular
matrix L is totally determined. The diagonal and upper triangular elements of L
do not influence the construction, and may be set to zero.

17



Corollary 5.9. Let the matrix U and the vector A be as in Lemma 5.8. Let L be
the set of lower triangular matrices L̃ satisfying

(i) L̃m,m−1 > (UL̃)m,m + Am for m = 1, . . . ,M ;

(ii) L̃k,` =
∑k−`−1

r=0 L̃`+r+1,`+r = L̃`+1,` + · · ·+ L̃k,k−1 for 0 ≤ ` < k ≤M ,

viewed as subset of the positive cone V = (0,∞)
M(M−1)

2 . Then L is a non-empty,
open subset of V.

5.3 Supermartingale conditions and recurrence

We use the notation

α := min
k∈S

αk; ᾱ := max
k∈S

αk; α? := min
k∈S
{αk ∧ (1/χk)} and α? := max

k∈S
{αk ∧ (1/χk)} .

We start with the case maxk∈S χkαk < 1. We will obtain a local supermartingale
by choosing the λk carefully. Lemma 5.7, which shows how the stationary prob-
abilities µk enter, is crucial; a similar idea was used for random walks on strips in
Section 3.1 of [10]. Next is our key local supermartingale result in this case.

Proposition 5.10. Suppose that (A0) and (A1) hold, and that maxk∈S χkαk < 1.

(i) If
∑

k∈S µk cot(χkπαk) < 0, then there exist ν ∈ (0, α), λk > 0 (k ∈ S), ε > 0,
and x0 ∈ R+ such that

Dfν(x, i) = Ex,i[fν(X1, ξ1)− fν(X0, ξ0)] ≤ −εxν−ᾱ, for all x ≥ x0 and all i ∈ S.

(ii) If
∑

k∈S µk cot(χkπαk) > 0, then there exist ν ∈ (−1, 0), λk > 0 (k ∈ S),
ε > 0, and x0 ∈ R+ such that

Dfν(x, i) = Ex,i[fν(X1, ξ1)− fν(X0, ξ0)] ≤ −εxν−ᾱ, for all x ≥ x0 and all i ∈ S.

Proof. Write ak = π cot(χkπαk), k ∈ S. First we prove part (i). By hypothesis,∑
k∈S µkak = −δ for some δ > 0. Set bk = −ak−δ for all k ∈ S, so that

∑
k∈S µkbk =

0. Lemma 5.7 shows that for these bk, we can find a collection of θk ∈ (0,∞) so that∑
j∈S

p(i, j)θj − θi + ai = −δ, for all i ∈ S; (5.15)

fix these θk for the rest of the proof. We then choose λ = (λk; k ∈ S) of the form
λk := λk(ν) = 1 + θkν, for some ν ∈ (0, 1 ∧ α).

Since iν,α2,1 > 0 for all α > 0 and all ν ∈ (0, α), Lemma 5.6 shows that Dfν(x, i)
will be negative for all i and all x sufficiently large provided that we can find ν such
that (Pλ)i

λi
+R[(αi, ν) < 0 for all i. By (5.12), writing θ = (θk; k ∈ S),

(Pλ)i
λi

+R[(αi, ν) =
(Pλ)i
λi
− 1 + νai + o(ν)

=
1 + ν(Pθ)i

1 + νθi
− 1 + νai + o(ν)

= ν((Pθ)i − θi) + νai + o(ν) = −νδ + o(ν),
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by (5.15). Therefore, by Lemma 5.6, we can always find sufficiently small ν > 0 and
a vector λ = λ(ν) with strictly positive elements for which Dfν(x, i) ≤ −εxν−αi for
some ε > 0, all i, and all x sufficiently large. Maximizing over i gives part (i).

The argument for part (ii) is similar. Suppose ν ∈ (−1, 0). This time,∑
k∈S µkak = δ for some δ > 0, and we set bk = −ak + δ, so that

∑
k∈S µkbk = 0

once more. Lemma 5.7 now shows that we can find θk so that∑
j∈S

p(i, j)θj − θi + ai = δ, for all i ∈ S. (5.16)

With this choice of θk we again set λk = 1 + θkν; note we may assume λk > 0 for
all k for ν sufficiently small.

Again, Dfν(x, i) will be non-negative for all i and all x sufficiently large provided

that we can find λ and ν such that (Pλ)i
λi

+R[(αi, ν) < 0 for all i. Following a similar
argument to before, we obtain with (5.16) that

(Pλ)i
λi

+R[(αi, ν) = ν((Pθ)i − θi) + νai + o(ν) = νδ + o(ν).

Thus we can find for ν < 0 close enough to 0 a vector λ = λ(ν) with strictly positive
elements for which Dfν(x, i) ≤ −εxν−αi for all i and all x sufficiently large.

Now we examine the case maxk∈S χkαk ≥ 1.

Proposition 5.11. Suppose that (A0) and (A1) hold, and maxk∈S χkαk ≥ 1. Then
there exist ν ∈ (0, α?), λk > 0 (k ∈ S), ε > 0, and x0 ∈ R+ such that for all i ∈ S,

Dfν(x, i) = Ex,i[fν(X1, ξ1)− fν(X0, ξ0)] ≤ −εxν−α? , for all x ≥ x0. (5.17)

Before starting the proof of this proposition, we introduce the following notation.
For k ∈ S denote by ak = π cot(πχkαk) and define the vector a = (ak; k ∈ S). For
i ∈ S and A ⊆ S, write P (i, A) =

∑
j∈A p(i, j). Define S0 = {i ∈ S : χiαi ≥ 1} and

recursively, for m ≥ 1,

Sm :=
{
i ∈ S \ ∪m−1

`=0 S` : P (i,Sm−1) > 0
}
.

Denote by M := max{m ≥ 0 : Sm 6= ∅}. Since P is irreducible, the collection
(Sm;m = 0, . . . ,M) is a partition of S.

Proof of Proposition 5.11. It suffices to find x0 ∈ R+, ε > 0, ν ∈ (0, α?), and an
open, non-empty subset G of the positive cone C := (0,∞)|S| such that

G ⊆ ∩i∈S{λ ∈ C : Dfν(x, i) satisfies condition (5.17).}

Now for i ∈ S0, inequality (5.17) is satisfied thanks to (5.4), (5.5) and Lemmas 5.4
and 5.5 for every choice of λ (with positive components) and ν ∈ (0, α). Hence the
previous condition reduces to the requirement

G ⊆ ∩i∈S\S0{λ ∈ C : Dfν(x, i) satisfies condition (5.17).} (5.18)

The rest of the proof is devoted into establishing this fact.
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Suppose that i ∈ Sm with m = 1, . . . ,M . Then χiαi < 1 by construction, and
Lemma 5.6 shows that condition (5.17) will be satisfied if the system of inequalities

(Pλ)i
λi

+R[(αi, ν) < 0, i = 1, . . . ,M (5.19)

have non-trivial solutions λ for sufficiently small ν. Thanks to the Lemma 5.6, we
have R[(αi, ν) = −1 + νai + o(ν). We will obtain (5.17) if, for ν sufficiently small,

R = R(P, ν, a) :=
M⋂
m=1

{
λ ∈ C :

(Pλ)i
λi

< 1− νai, i ∈ Sm
}
6= ∅. (5.20)

We seek a solution λ ∈ R (for sufficiently small ν), under the Ansatz that the λj
are constant on every S`, i.e., the vector λ has the form λ̂ with λ̂j = λ(`) for all
j ∈ S`. Suppose that i ∈ Sm. Then p(i, j) = 0 for j ∈ S` with ` < m− 1, so that

(P λ̂)i

λ̂i
=
∑
j∈S

p(i, j)
λ̂j

λ̂i
=

M∑
`=0

P (i,S`)
λ(`)

λ(m)
=

M∑
`=m−1

P (i,S`)
λ(`)

λ(m)
. (5.21)

We introduce the auxiliary matrix ρ = (ρk,`; k, ` ∈ {0, . . . ,M}) defined by ρk,` :=
λ(k)/λ(`). By construction, ρk,k = 1 and ρk,` = 1/ρ`,k. Let

Lk,` =
1

ν
log ρk,` = −1

ν
log ρ`,k =

1

ν

(
log λ(k) − log λ(`)

)
. (5.22)

It suffices to determine the upper triangular part of ρ, or, equivalently, the lower
triangular array (Lk,`; 0 ≤ ` < k ≤M). We do so recursively, starting with LM,M−1.
In the case i ∈ SM , the condition in (5.20) reads, by (5.21),

ρM−1,M <
1− P (i,SM)− νai

P (i,SM−1)
=

P (i,Sc
M)

P (i,SM−1)
− ν ai

P (i,SM−1)
= 1− ν ai

P (i,SM−1)
.

On introducing the constant AM = maxi∈SM
ai

P (i,SM )
, it is enough to choose ρM−1,M <

1−νAM = exp(−νAM)+o(ν). In other words, with ρ`,k = exp(−νLk,`), we see that
the choice LM,M−1 > AM satisfies the condition in (5.20) for i ∈ SM .

Suppose now that we have determined the condition in (5.20) for i ∈ ∪M`=mS`.
Then, for i ∈ Sm−1 the condition amounts, via (5.21), to

ρm−1,mP (i,Sm−1) < 1− νai − P (i,Sm)−
M∑

`=m+1

ρ`,mP (i,S`).

Using the fact that for ` < m we have ρ`,m = exp(−νLm,`) and for ` > m we have
ρ`,m = exp(νL`,m), the above expression becomes, up to o(ν) terms

1− νLm,m−1 <
P (i, (∪M`=mS`)c)
P (i,Sm−1)

− ν
M∑

`=m+1

P (i,Sl)
P (i,Sm−1)

L`,m − ν
ai

P (i,Sm−1)

= 1− ν
M∑

`=m+1

P (i,S`)
P (i,Sm−1)

L`,m − ν
ai

P (i,Sm−1)
.
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Introducing the upper triangular matrix U = (Um,n; 0 ≤ m < n ≤ M) defined by

Um,n = maxi∈Sm
P (i,Sn)

P (i,Sm−1)
for m ≥ 1, and the vector Am = maxi∈Sm

ai
P (i,Sm−1)

for

m = 1, . . . ,M , the condition in (5.20) is satisfied if we solve the recursion

Lm,m−1 > (UL)m,m + Am, for m = M,M − 1, . . . , 1,

with initial condition LM,M−1 > AM and condition L`,m > 0 for 0 ≤ m < ` ≤ M .
Additionally, we have from (5.22) that

Lk,` = Lk,k−1 + Lk−1,k−2 + · · ·+ L`+1,`, 0 ≤ ` < k ≤M.

Hence by Corollary 5.9, there exist non-trivial solutions for the lower triangular
matrix L within an algorithmically determined region L. The positivity of the lower
triangular part of L implies that the components of λ are ordered: λ(m) < λ(m+1)

for 0 ≤ m < M − 1. By choosing λ(M) sufficiently large, we can guarantee that the
first term (and consequently the entire sequence) satisfies λ(0) > 1.

We are almost ready to complete the proof of Theorem 2.1, excluding part
(b)(iii); first we need one more technical result concerning non-confinement.

Lemma 5.12. Suppose that (A0) and (A1) hold. Then lim supn→∞Xn =∞, a.s.

Proof. We claim that for each x ∈ R+, there exists εx > 0 such that

P[Xn+1 −Xn ≥ 1 | (Xn, ξn) = (y, i)] ≥ εx, for all y ∈ [0, x] and all i ∈ S. (5.23)

Indeed, given (x, i) ∈ R+× S, we may choose j ∈ S so that p(i, j) > 0 and we
may choose z0 ≥ x sufficiently large so that, for some ε > 0, vi(z) ≥ εz−1−αi for all
z ≥ z0. Then if y ∈ [0, x],

P[Xn+1 ≥ y + 1 | (Xn, ξn) = (y, i)] ≥ p(i, j)

∫ ∞
2z0+1

εz−1−αidz = εx,i > 0,

which gives (5.23). The local escape property (5.23) implies the lim sup result by a
standard argument.

Proof of Theorem 2.1. We are not yet ready to prove part (b)(iii): we defer that
part of the proof until Section 7.

The other parts of the theorem follow from the supermartingale estimates in
this section together with the technical results from Section A.1. Indeed, under the
conditions of part (a) or (b)(i) of the theorem, we have from Proposition 5.11 or
Proposition 5.10(i) respectively that for suitable ν > 0 and λk,

E[fν(Xn+1, ξn)− fν(Xn, ξn) | Xn, ξn] ≤ 0, on {Xn ≥ x0}.

Thus we may apply Lemma A.1, which together with Lemma 5.12 shows that
lim infn→∞Xn ≤ x0, a.s. Thus there exists an interval I ⊆ [0, x0 + 1] such that
(Xn, ηn) ∈ I × {i} i.o., where i is some fixed element of S. Let τ0 := 0 and for
k ∈ N define τk = min{n > τk−1 + 1 : (Xn, ηn) ∈ I × {i}}. Given i ∈ S, we
may choose j, k ∈ S such that p(i, j) > δ1 and p(j, k) > δ1 for some δ1 > 0; let
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γ = αi ∨ αj. Then we may choose δ2 ∈ (0, 1) and z0 ∈ R+ such that vi(z) > δ2z
−1−γ

and vj(z) > δ2z
−1−γ for all z ≥ z0. Then for any ε ∈ (0, 1),

P[Xτk+2 < ε | Xτk ] ≥ P[Xτk+2 < ε,Xτk+1 ∈ [z0 + 1, z0 + 2], ητk+1 = j | Xτk ]

≥ δ2
1δ

2
2ε(z0 + 3)−1−γ(x0 + z0 + 3)−1−γ,

uniformly in k. Thus Lévy’s extension of the Borel–Cantelli lemma shows Xn < ε
infinitely often. Thus, since ε ∈ (0, 1) was arbitrary, lim infn→∞Xn = 0, a.s.

On the other hand, under the conditions of part (b)(ii) of the theorem, we have
from Proposition 5.10(ii) that for suitable ν < 0 and λk,

E[fν(Xn+1, ξn)− fν(Xn, ξn) | Xn, ξn] ≤ 0, on {Xn ≥ x1},

for any x1 sufficiently large. Thus we may apply Lemma A.2, which shows that for
any ε > 0 there exists x ∈ (x1,∞) for which, for all n ≥ 0,

P
[

inf
m≥n

Xm ≥ x1

∣∣∣ Fn] ≥ 1− ε, on {Xn ≥ x}.

Set σx = min{n ≥ 0 : Xn ≥ x}. Then, on {σx <∞},

P
[

inf
m≥σx

Xm > x1

∣∣∣ Fσx] ≥ 1− ε, a.s.

But on {σx <∞} ∩ {infm≥σx Xm > x1} we have lim infm→∞Xm ≥ x1, so

P
[
lim inf
m→∞

Xm ≥ x1

]
≥ E

[
P
[

inf
m≥σx

Xm > x1

∣∣∣ Fσx]1{σx <∞}]
≥ (1− ε)P[σx <∞] = (1− ε),

by Lemma 5.12. Since ε > 0 was arbitrary, we get lim infm→∞Xm ≥ x1, a.s., and
since x1 was arbitrary we get limm→∞Xm =∞, a.s.

6 Existence or non-existence of moments

6.1 Technical tools

The following result is a straightforward reformulation of Theorem 1 of [2].

Lemma 6.1. Let Yn be an integrable Fn-adapted stochastic process, taking values
in an unbounded subset of R+, with Y0 = x0 fixed. For x > 0, let σx := inf{n ≥ 0 :
Yn ≤ x}. Suppose that there exist δ > 0, x > 0, and γ < 1 such that for any n ≥ 0,

E[Yn+1 − Yn | Fn] ≤ −δY γ
n , on {n < σx}. (6.1)

Then, for any p ∈ [0, 1/(1− γ)), E[σpx] <∞.

The following companion result on non-existence of moments is a reformulation
of Corollary 1 of [2].
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Lemma 6.2. Let Yn be an integrable Fn-adapted stochastic process, taking values
in an unbounded subset of R+, with Y0 = x0 fixed. For x > 0, let σx := inf{n ≥ 0 :
Yn ≤ x}. Suppose that there exist C1, C2 > 0, x > 0, p > 0 and r > 1 such that for
any n ≥ 0, on {n < σx} the following hold:

E[Yn+1 − Yn | Fn] ≥ −C1; (6.2)

E[Y r
n+1 − Y r

n | Fn] ≤ C2Y
r−1
n ; (6.3)

E[Y p
n+1 − Y p

n | Fn] ≥ 0. (6.4)

Then for any q > p, E[σqx] =∞ for x0 > x.

6.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Under conditions (a) or (b)(i) of Theorem 2.1, we have from
Propositions 5.11 or 5.10 respectively that there exist positive λk and constants
ε > 0, β > 0 and ν ∈ (0, β) such that,

Dfν(x, i) ≤ −εxν−β, for all x ≥ x0 and all i.

Let Yn = fν(Xn, ξn). Then Yn is bounded above and below by positive constants
times (1+Xn)ν , so we have that (6.1) holds for x sufficiently large with γ = 1−(β/ν).
It follows from Lemma 6.1 that E[σpx] <∞ for p ∈ (0, ν/β), which gives the claimed
existence of moments result.

It is not hard to see that some moments of the return time fail to exist, due to
the heavy-tailed nature of the model, and an argument is easily constructed using
the ‘one big jump’ idea: a similar idea is used in [12]. We sketch the argument. For
any x, i, for all y sufficiently large we have Px,i[X1 ≥ y − x] ≥ εy−ᾱ. Given such
a first jump, with uniformly positive probability the process takes time at least of
order yβ to return to a neighbourhood of zero (where β can be bounded in terms
of α); this can be proved using a suitable maximal inequality as in the proof of
Theorem 2.10 of [12]. Combining these two facts shows that with probability of
order y−ᾱ the return time to a neighbourhood of the origin exceeds order yβ. This
polynomial tail bound yields non-existence of sufficiently high moments.

6.3 Explicit cases: Theorems 3.2 and 3.4

We now restrict attention to the case S = {1, 2} with α1 = α2 = α and χ1 = χ2 = χ,
so both half-lines are of the same type. Take λ1 = λ2 = 1 and ν ∈ (0, α), so that
fν(x, i) = (1 + x)ν . Then Lemma 5.6 shows that, for i ∈ S[, [ ∈ {sym, one},

Dfν(x, i) = χcix
ν−αC[(ν, α) + o(xν−α), (6.5)

where

Csym(ν, α) = iν,α2,1 + iν,α0 + iν,α1 − iα2,0;

Cone(ν, α) = iν,α2,1 + ĩν,α1 − iα2,0.

The two cases we are interested in are the recurrent two-sided symmetric case,
where χ = 1

2
(i.e., S = Ssym) with α > 1, and the recurrent one-sided antisymmetric

case, where χ = 1 (i.e., S = Sone) with α > 1
2
.
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Lemma 6.3. Let [ ∈ {sym, one} and χα ∈ (1
2
, 1). The function ν 7→ C[(ν, α) is

continuous for ν ∈ [0, α) with C(0, α) = 0 and limν↑αC
[(ν, α) = ∞. There exists

ν[0 = ν[0(α) ∈ (0, α) such that C[(ν, α) < 0 for α ∈ (0, ν[0), C[(ν[0, α) = 0, and
C[(ν, α) > 0 for α ∈ (ν[0, α)

Proof. We give the proof only in the case [ = sym; the other case is very similar.
Thus χ = 1

2
, and, for ease of notation, we write just C instead of C[.

Clearly C(0, α) = 0. For ν ≥ 1, convexity of the function z 7→ zν on R+ shows
that (1 + u)ν + (1 − u)ν − 2 ≥ 0 for all u ∈ [0, 1], so that iν,α1 ≥ 0; clearly, iν,α2,1 and
iν,α0 are also non-negative. Hence, by the expression for iν,α2,1 in Lemma 5.1,

lim inf
ν↑α

C(ν, α) ≥ − 1

α
+ lim inf

ν↑α

Γ(ν + 1)Γ(α− ν)

Γ(1 + α)
,

which is +∞. Moreover, by Lemma 5.2 and the subsequent remark,

∂

∂ν
C(ν, α)

∣∣∣∣
ν=0

=
1

α

(
ψ(1− α

2
)− ψ(α

2
)
)

=
π

α
cot(πα

2
),

which is negative for α ∈ (1, 2). Hence C(ν, α) < 0 for ν > 0 small enough.
Since ν 7→ C(ν, α) is a non-constant analytic function on [0, α), its zeros can

accumulate only at α; but this is ruled out by the fact that C(ν, α)→∞ as ν → α.
Hence C( · , α) has only finitely many zeros in [0, α); one is at 0, and there must be
at least one zero in (0, α), by Rolle’s theorem. Define ν− := ν−(α) and ν+ := ν+(α)
to be the smallest and largest such zeros, respectively.

Suppose 0 < ν1 ≤ ν2 < α. By Jensen’s inequality, Ex,i[(1 + X1)ν2 ] ≥
(Ex,i[(1 +X1)ν1 ])ν2/ν1 . Hence

(1 + x)ν2 +Dfν2(x, i) ≥ ((1 + x)ν1 +Dfν1(x, i))
ν2/ν1

= (1 + x)ν2
(
1 + (1 + x)−ν1Dfν1(x, i)

)ν2/ν1
= (1 + x)ν2 +

ν2

ν1

xν2−ν1Dfν1(x, i) + o(xν2−α),

using Taylor’s theorem and the fact that Dfν1(x, i) = O(xν1−α), by (6.5). By another
application of (6.5), it follows that

χcix
ν2−αC(ν2, α) + o(xν2−α) ≥ ν2

ν1

χcix
ν2−αC(ν1, α) + o(xν2−α).

Multiplying by xα−ν2 and taking x→∞, we obtain

C(ν2, α) ≥ ν2

ν1

C(ν1, α), for 0 < ν1 ≤ ν2 < α.

In particular, (i) if C(ν1, α) ≥ 0 then C(ν, α) ≥ 0 for all ν ≥ ν1 > 0; and (ii) if
C(ν1, α) > 0 and ν2 > ν1, we have C(ν2, α) > C(ν1, α). It follows from these two
observations that C(ν, α) = 0 for ν ∈ [ν−, ν+], which is not possible unless ν− = ν+.
Hence there is exactly one zero of C( · , α) in (0, α); call it ν0(α).

Lemma 6.4. The positive zero of C[( · , α) described in Lemma 6.3 is given by
vone

0 (α) = 2α− 1 or vsym
0 (α) = α− 1.
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Proof. First suppose [ = one. Then from Lemma 5.1 we verify that for α ∈ (1
2
, 1),

Cone(2α− 1, α) =
Γ(2α)Γ(1− α)

Γ(1 + α)
− Γ(2α)Γ(1− α)

αΓ(α)
= 0,

since αΓ(α) = Γ(1 + α).
Now suppose that [ = sym and α ∈ (1, 2). To verify Csym(α − 1, α) = 0

it is simpler to work with the integral representations directly, rather than the
hypergeometric functions. After the substitution z = 1/u, we have

iα−1,α
0 =

∫ 1

0

(
(1 + z)α−1 − zα−1

)
dz =

2α − 2

α
.

Similarly, after the same substitution,

iα−1,α
1 =

∫ ∞
1

(
(z + 1)α−1 + (z − 1)α−1 − 2zα−1

)
dz,

which we may evaluate as

iα−1,α
1 = lim

y→∞

∫ y

1

(
(z + 1)α−1 + (z − 1)α−1 − 2zα−1

)
dz

=
2− 2α

α
+

1

α
lim
y→∞

yα
(
(1 + y−1)α + (1− y−1)α − 2

)
=

2− 2α

α
.

Finally we have that iα−1,α
2,1 − iα2,0 = Γ(α)

Γ(1+α)
− 1

α
= 0, so altogether we verify that

Csym(α− 1, α) = 0.

We can now complete the proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. Let Yn = fν(Xn, ξn). First suppose that α ∈ (1, 2). Then we
have from (6.5) together with Lemmas 6.3 and 6.4 that, for any ν ∈ (0, α− 1),

E[Yn+1 − Yn | Fn] ≤ −εY 1−(α/ν)
n , on {Yn ≥ y0},

for some ε > 0 and y0 ∈ R+. It follows from Lemma 6.1 that E[σp] <∞ for p < ν/α
and since ν < α− 1 was arbitrary we get E[σp] <∞ for p < 1− (1/α).

For the non-existence of moments when α ∈ (1, 2), we will apply Lemma 6.2
with Yn = fν(Xn, ξn) = (1 +Xn)ν for some ν ∈ (0, α). Then condition (6.2) follows
from (6.5), which also shows that for r ∈ (1, α/ν),

E[Y r
n+1 − Y r

n | (Xn, ξn) = (x, i)] =
ci
2
xrν−αCsym(rν, α) + o(xrν−α),

so that E[Y r
n+1 − Y r

n | Fn] ≤ ciC
sym(rν, α)Y

r−(α/ν)
n , for all Yn sufficiently large.

Since α/ν > 1 condition (6.3) follows. Finally, we may choose ν < α close enough
to α and then take γ ∈ (α − 1, ν) so that from (6.5), with Lemmas 6.3 and 6.4,

E[Y
γ/ν
n+1−Y

γ/ν
n | Fn] ≥ 0, for all Yn sufficiently large. Thus we may apply Lemma 6.2

to obtain E[σp] = ∞ for p > γ/ν, and taking γ close to α − 1 and ν close to α we
can achieve any p > 1− (1/α), as claimed.
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Next suppose that α ≥ 2. A similar argument to before but this time using
Lemmas 5.4 and 5.5 shows that for any ν ∈ (0, 1),

E[Yn+1 − Yn | Fn] ≤ −εY 1−(2/ν)
n , on {Yn ≥ y0},

for some ε > 0 and y0 ∈ R+. Lemma 6.1 then shows that E[σp] < ∞ for p < ν/2
and since ν ∈ (0, 1) was arbitrary we get E[σp] <∞ for p < 1/2.

We sketch the argument for E[σp] = ∞ when p > 1/2. For ν ∈ (1, α), it is not
hard to show that Dfν(x, i) ≥ 0 for all x sufficiently large, and we may verify the
other conditions of Lemma 6.2 to show that E[σp] =∞ for p > 1/2.

Proof of Theorem 3.4. Most of the proof is similar to that of Theorem 3.2, so we
omit the details. The case where a different argument is required is the non-existence
part of the case α ≥ 1. We have that for some ε > 0 and all y sufficiently large,
Px,i[X1 ≥ y] ≥ ε(x + y)−α. A similar argument to Lemma 5.5 shows that for any
ν ∈ (0, 1), for some C ∈ R+, E[Xν

n+1 − Xν
n | Xn = x] ≥ −C. Then a suitable

maximal inequality implies that with probability at least 1/2, started from X1 ≥ y
it takes at least cyν steps for Xn to return to a neighbourhood of 0, for some c > 0.
Combining the two estimates gives

Px,i[σ ≥ cyν ] ≥ 1

2
(x+ y)−α,

which implies E[σp] = ∞ for p ≥ α/ν, and since ν ∈ (0, 1) was arbitrary we can
achieve any p > α.

7 Recurrence classification in the critical cases

7.1 Logarithmic Lyapunov functions

In this section we prove Theorem 2.1(b)(iii). Throughout this section we write
ak := cot(χkπαk) and suppose that maxk∈S χkαk < 1, that

∑
k∈S µkak = 0, and that

vi ∈ D+
αi,ci

for all i ∈ S, that is, for y > 0, vi(y) = ci(y)y−1−αi , with αi ∈ (0,∞) and
ci(y) = ci +O(y−δ), where δ > 0 may be chosen so as not to depend upon i.

To prove recurrence in the critical cases, we need a function that grows more
slowly than any power; now the weights λk are additive rather than multiplicative.
For x ∈ R write g(x) := log(1 + |x|). Then, for x ∈ R+ and k ∈ S, define

g(x, k) := g(x) + λk = log(1 + |x|) + λk, (7.1)

where λk > 0 for all k ∈ S. Also write

h(x, k) := (g(x, k))1/2 = (log(1 + |x|) + λk)
1/2 .

Lemma 5.7 shows that there exist λk > 0 (k ∈ S) such that

ak +
∑
j∈S

p(i, j)(λj − λi) = 0; (7.2)

we fix such a choice of the λk from now on.
We prove recurrence by establishing the following result.
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Lemma 7.1. Suppose that the conditions of Theorem 2.1(b)(iii) hold, and that
(λk; k ∈ S) are such that (7.2) holds. Then there exists x0 ∈ R+ such that

E[h(Xn+1, ξn+1)− h(Xn, ξn) | Xn = x, ξn = i] ≤ 0, for x ≥ x0 and all i ∈ S.

It is not easy to perform the integrals required to estimate Dh(x, i) (and hence
establish Lemma 7.1) directly. However, the integrals for Dg(x, i) are computable
(they appear in Lemma 5.2), and we can use some analysis to relate Dh(x, i) to
Dg(x, i). Thus the first step in our proof of Lemma 7.1 is to estimate Dg(x, i).

For the Lyapunov function g, (5.1) gives for x ∈ R+ and i ∈ S,

Dg(x, i) = E [g(Xn+1, ξn+1)− g(Xn, ξn) | (Xn, ξn) = (x, i)]

=
∑
j∈S

p(i, j)(λj − λi)
∫ −x
−∞

wi(y)dy +

∫ ∞
−∞

(g(x+ y)− g(x))wi(y)dy

= χi
∑
j∈S

p(i, j)(λj − λi)Ti(x) +G[
i(x), (7.3)

where we have used the fact that g(x) is defined for all x ∈ R and symmetric about
0, and we have introduced the notation

Ti(x) :=

∫ ∞
x

vi(y)dy =
ci
αi
x−αi +O(x−αi−δ),

and

G[
i(x) :=

{
1
2

∫∞
−∞ (g(x+ y)− g(x)) vi(|y|)dy if [ = sym∫∞

0
(g(x− y)− g(x)) vi(y)dy if [ = one.

(7.4)

The next lemma, proved in the next subsection, estimates the integrals in (7.4).

Lemma 7.2. Suppose that vi ∈ D+
αi,ci

. Then, for [ ∈ {one, sym}, for α ∈ (0, 1/χi),
for some η > 0, as x→∞,

G[
i(x) = χicix

−αi π

αi
cot(χiπαi) +O(x−αi−η).

Note that Lemma 7.2 together with (7.3) shows that

Dg(x, i) =
χici
αi

(
ai +

∑
j∈S

p(i, j)(λj − λi)

)
x−αi +O(x−αi−η) = O(x−αi−η), (7.5)

by (7.2). This is not enough by itself to establish recurrence, since the sign of the
O(x−αi−η) term is unknown. This is why we need the function h(x, i).

7.2 Proof of recurrence in the critical case

Proof of Lemma 7.2. To ease notation, we drop the subscripts i everywhere for the
duration of this proof. From (7.4) we obtain, for x > 0,

Gsym(x) =
1

2

∫ ∞
x

log

(
1 + y − x

1 + x

)
v(y)dy
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+
1

2

∫ ∞
x

log

(
1 + x+ y

1 + x

)
v(y)dy

+
1

2

∫ x

0

[
log

(
1 + x+ y

1 + x

)
+ log

(
1 + x− y

1 + x

)]
v(y)dy. (7.6)

Let α ∈ (0, 2). The claim in the lemma for [ = sym will follow from the estimates∫ ∞
x

log

(
1 + x+ y

1 + x

)
v(y)dy = cx−αjα0 +O(x−α−η);∫ ∞

x

log

(
1 + y − x

1 + x

)
v(y)dy = cx−αjα2 +O(x−α−η);∫ x

0

[
log

(
1 + x+ y

1 + x

)
+ log

(
1 + x− y

1 + x

)]
v(y)dy = cx−αjα1 +O(x−α−η); (7.7)

since then we obtain from (7.6) with (7.7) and Lemma 5.2 that

Gsym(x) =
c

2
x−α

1

α

(
ψ
(
1− α

2

)
− ψ

(
α
2

))
+O(x−α−η),

which yields the stated result via the digamma reflection formula (equation 6.3.7
from [1, p. 259]). We present here in detail the proof of only the final estimate
in (7.7); the others are similar. Some algebra followed by the substitution u =
y/(1 + x) shows that the third integral in (7.7) is∫ x

0

log

(
1− y2

(1 + x)2

)
c(y)y−1−αdy = (1+x)−α

∫ x
1+x

0

log(1−u2)c(u(1+x))u−1−αdu.

There is a constant C ∈ R+ such that for all x sufficiently large,∫ √
x

1+x

0

∣∣log(1− u2)c(u(1 + x))u−1−α∣∣ du ≤ C

∫ √
x

1+x

0

u1−αdu = O(x(α/2)−1),

using Taylor’s theorem for log and the fact that c(y) is uniformly bounded. On the

other hand, for u >
√
x

1+x
we have c(u(1 + x)) = c+O(x−δ/2), so that∫ x

1+x

√
x

1+x

log(1− u2)c(u(1 + x))u−1−αdu = c

∫ x
1+x

√
x

1+x

log(1− u2)u−1−αdu+O(x−δ/2).

Here we have that∫ x
1+x

√
x

1+x

log(1− u2)u−1−αdu = jα1 +O(x(α/2)−1) +O(x−1 log x).

Combining these estimates and using the fact that α ∈ (0, 2), we obtain the final
estimate in (7.7). The claim in the lemma for [ = one follows after some analogous
computations, which we omit.

Now we relate Dh(x, i) to Dg(x, i), by comparing the individual integral terms.
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Lemma 7.3. Suppose that vi ∈ D+
αi,ci

. Then, for all x and all i,∫ ∞
x

(
h(x+ y, i)− h(x, i)

)
vi(y)dy ≤ 1

2h(x, i)

∫ ∞
x

(g(x+ y)− g(x)) vi(y)dy;∫ x

0

(
h(x− y, i)− h(x, i)

)
vi(y)dy ≤ 1

2h(x, i)

∫ x

0

(g(x− y)− g(x)) vi(y)dy;

and

∫ x

0

(
h(x+ y, i) + h(x− y, i)− 2h(x, i)

)
vi(y)dy

≤ 1

2h(x, i)

∫ x

0

(
g(x+ y) + g(x− y)− 2g(x)

)
vi(y)dy.

Finally, there exists ε > 0 such that, for all i, j ∈ S and all x sufficiently large,∫ ∞
x

(h(y − x, j)− h(x, i)) vi(y)dy ≤ 1

2h(x, i)

∫ ∞
x

(g(y − x, j)− g(x, i)) vi(y)dy

− ε x−αi

log3/2 x
.

Proof. The proof is based on the observation that, since (h(x, i))2 = g(x, i),

h(z, j)− h(x, i) =
g(z, j)− g(x, i)

h(z, j) + h(x, i)
.

Thus, for y ≥ 0,

h(x+ y, i)− h(x, i) =
g(x+ y)− g(x)

h(x+ y, i) + h(x, i)
≤ g(x+ y)− g(x)

2h(x, i)
, (7.8)

since g(x+ y)− g(x) ≥ 0 and h(x+ y, i) ≥ h(x, i). This gives the first inequality in
the lemma. Similarly, for y ∈ [0, x],

h(x− y, i)− h(x, i) =
g(x− y)− g(x)

h(x− y, i) + h(x, i)
≤ g(x− y)− g(x)

2h(x, i)
,

since g(x− y)− g(x) ≤ 0 and h(x− y, i) ≤ h(x, i). This gives the second inequality,
and also yields the third inequality once combined with the y ∈ [0, x] case of (7.8).

Finally, for y ≥ x note that

h(y − x, j)− h(x, i) =
g(y − x, j)− g(x, i)

h(y − x, j) + h(x, i)
. (7.9)

Also note that, for y ≥ x > 0, g(x, i) = g(x) + λi and g(y− x, j) = g(y− x) + λj, so

g(y − x, j)− g(x, i) = log

(
eλj−λi

1 + y − x
1 + x

)
.

So the sign of the expression in (7.9) is non-positive for y ≤ ψ(x) := x − 1 + (1 +
x)eλi−λj and non-negative for y ≥ ψ(x), and

g(ψ(x)− x, j)− g(x, i) = 0. (7.10)
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By the monotonicity in y of the denominator, the expression in (7.9) satisfies

g(y − x, j)− g(x, i)

h(y − x, j) + h(x, i)
≤ g(y − x, j)− g(x, i)

h(ψ(x)− x, j) + h(x, i)

both for y ∈ [0, ψ(x)] and for y ∈ [ψ(x),∞). Here h(ψ(x)−x, j) = h(x, i), by (7.10).
Hence we obtain the bound∫ ∞

x

(h(y − x, j)− h(x, i)) vi(y)dy ≤
∫ ∞
x

(
g(y − x, j)− g(x, i)

2h(x, i)

)
vi(y)dy.

To improve on this estimate, suppose that y ≥ Kx where K ∈ N is such that
Kx > ψ(x). Then, using the fact that the numerator in (7.9) is positive, we may
choose K ∈ N such that for all j and all y ≥ Kx,

h(y−x, j)−h(x, i) ≤ g(y − x, j)− g(x, i)

h((K − 1)x, j) + h(x, i)
≤ g(y − x, j)− g(x, i)

(log(1 + |x|) + λi + 1)1/2 + h(x, i)
,

for K sufficiently large (depending on maxj λj) and and all x sufficiently large. Here

(log(1 + |x|) + λi + 1)1/2 = h(x, i)

(
1 +

1

g(x, i)

)1/2

= h(x, i) +
1 + o(1)

2 log1/2 x
.

It follows that, for some ε > 0, for all x sufficiently large, for y ≥ Kx,

h(y − x, j)− h(x, i) ≤ g(y − x, j)− g(x, i)

2h(x, i)
− ε

(
g(y − x, j)− g(x, i)

log3/2 x

)
.

The final inequality in the lemma now follows since, for all x sufficiently large,∫ ∞
Kx

(g(y − x, j)− g(x, i)) vi(y)dy ≥ ci
2

∫ ∞
Kx

log

(
eλj−λi

(
2 + y

1 + x
− 1

))
y−1−αidy

≥ ci
2
x−αi

∫ ∞
K/2

log
(
eλj−λi(u− 1)

)
u−1−αidu,

where we used the substitution u = 2+y
1+x

. For K sufficiently large the term inside
the logarithm is uniformly positive, and the claimed bound follows.

Now we may complete the proofs of Lemma 7.1 and then Theorem 2.1(b)(iii).

Proof of Lemma 7.1. Lemma 7.3 together with (7.5) shows that,

Dh(x, i) ≤ Dg(x, i)

2h(x, i)
− ε x−αi

log3/2 x
≤ −ε x−αi

log3/2 x
+O(x−αi−η) ≤ 0,

for all x sufficiently large.

Proof of Theorem 2.1(b)(iii). Lemma 7.1 with Lemma A.1 shows that
lim infn→∞Xn ≤ x0, a.s., and then a similar argument to that in the proof
of parts (a) and (b)(i) of Theorem 2.1 shows that lim infn→∞Xn = 0, a.s.
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A Technical results

A.1 Semimartingale results

Lemma A.1. Let (Xn, ξn) be an Fn-adapted process taking values in R+× S. Let
f : R+×S → R+ be such that limx→∞ f(x, i) =∞ for all i ∈ S, and E f(X0, ξ0) <∞.
Suppose that there exist x0 ∈ R+ and C <∞ for which, for all n ≥ 0,

E[f(Xn+1, ξn+1)− f(Xn, ξn) | Fn] ≤ 0, on {Xn > x0}, a.s.;

E[f(Xn+1, ξn+1)− f(Xn, ξn) | Fn] ≤ C, on {Xn ≤ x0}, a.s.

Then
P
[{

lim sup
n→∞

Xn <∞
}
∪
{

lim inf
n→∞

Xn ≤ x0

}]
= 1.

Proof. First note that, by hypothesis, E f(X1, ξ1) ≤ E f(X0, ξ0) + C < ∞, and,
iterating this argument, it follows that E f(Xn, ξn) <∞ for all n ≥ 0.

Fix n ∈ Z+. For x0 ∈ R+ in the hypothesis of the lemma, write λ = min{m ≥ n :
Xm ≤ x0}. Let Ym = f(Xm∧λ, ξm∧λ). Then (Ym,m ≥ n) is an (Fm,m ≥ n)-adapted
non-negative supermartingale. Hence, by the supermartingale convergence theorem,
there exists Y∞ ∈ R+ such that limm→∞ Ym = Y∞, a.s. In particular,

lim sup
m→∞

f(Xm, ξm) ≤ Y∞, on {λ =∞}.

Set ζi = sup{x ≥ 0 : f(x, i) ≤ 1+Y∞}, which has ζi <∞ a.s. since limx→∞ f(x, i) =
∞. Then lim supm→∞Xm ≤ maxi ζi <∞ on {λ =∞}. Hence

P
[{

lim sup
n→∞

Xn <∞
}
∪
{

inf
m≥n

Xm ≤ x0

}]
= 1.

Since n ∈ Z+ was arbitrary, the result follows:

P
[{

lim sup
n→∞

Xn <∞
}
∪
⋂
n≥0

{
inf
m≥n

Xm ≤ x0

}]
= 1.

Lemma A.2. Let (Xn, ξn) be an Fn-adapted process taking values in R+× S. Let
f : R+× S → R+ be such that supx,i f(x, i) < ∞ and limx→∞ f(x, i) = 0 for all
i ∈ S. Suppose that there exists x1 ∈ R+ for which infy≤x1 f(y, i) > 0 for all i and

E[f(Xn+1, ξn+1)− f(Xn, ξn) | Fn] ≤ 0, on {Xn ≥ x1}, for all n ≥ 0.

Then for any ε > 0 there exists x ∈ (x1,∞) for which, for all n ≥ 0,

P
[

inf
m≥n

Xm ≥ x1

∣∣∣ Fn] ≥ 1− ε, on {Xn ≥ x}.

Proof. Fix n ∈ Z+. For x1 ∈ R+ in the hypothesis of the lemma, write λ = min{m ≥
n : Xm ≤ x1} and set Ym = f(Xm∧λ, ξm∧λ). Then (Ym,m ≥ n) is an (Fm,m ≥ n)-
adapted non-negative supermartingale, and so converges a.s. as m → ∞ to some
Y∞ ∈ R+. Moreover, by the optional stopping theorem for supermartingales,

Yn ≥ E[Y∞ | Fn] ≥ E[Y∞1{λ <∞} | Fn], a.s.
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Here we have that, a.s.,

Y∞1{λ <∞} = lim
m→∞

Ym1{λ <∞} = f(Xλ, ξλ)1{λ <∞}

≥ min
i

inf
y≤x1

f(y, i)1{λ <∞}.

Combining these inequalities we obtain

min
i

inf
y≤x1

f(y, i)P[λ <∞ | Fn] ≤ Yn, a.s.

In particular, on {Xn ≥ x > x1}, we have Yn = f(Xn, ξn) and so

min
i

inf
y≤x1

f(y)P[λ <∞ | Fn] ≤ f(Xn, ξn) ≤ max
i

sup
y≥x

f(y, i).

Since limy→∞ f(y, i) = 0 and infy≤x1 f(y, i) > 0, given ε > 0 we can choose x > x1

large enough so that
maxi supy≥x f(y, i)

mini infy≤x1 f(y, i)
< ε;

the choice of x depends only on f , x1, and ε, and, in particular, does not depend on
n. Then, on {Xn ≥ x}, P[λ <∞ | Fn] < ε, as claimed.

A.2 Proofs of integral computations

Proof of Lemma 5.1. Consider iν,α0 . With the change of variable v = 1/u, we get∫ 1

0

u−1−α(1 + u)νdu =

∫ 1

0

vα−ν−1(1 + v)νdv

=
Γ(α− ν)Γ(1)

Γ(α− ν + 1)
2F1(−ν, α− ν;α− ν + 1;−1),

by the integral representation for the Gauss hypergeometric function (see equation
15.3.1 of [1, p. 558]). The given expression for iν,α0 follows.

The integral iα2,0 is trivial. Consider iν,α2,1 . The substitution v = 1/u gives∫ ∞
1

u−1−α(u− 1)νdu =

∫ 1

0

(1− v)νvα−ν−1dv =
Γ(1 + ν)Γ(α− ν)

Γ(1 + α)
,

by the integral formula for the Beta function (see equation 6.2.1 of [1, p. 258]),
provided ν > −1 and α− ν > 0. Hence we obtain the given expression for iν,α2,1 .

Next consider iν,α1 . By considering separately the asymptotics of the integrand
as u ↓ 0 and u ↑ 1, we see that iν,α1 is finite provided α ∈ (0, 2) and ν > −1. For

u ∈ [−1, 1], we have the Taylor series expansion (1 +u)ν =
∑

n≥0
un

n!
Γ(ν+1)

Γ(ν+1−n)
. Hence

((1 + u)ν + (1− u)ν − 2)u−1−α = 2
∑
n≥1

u2n−1−α

(2n)!

Γ(ν + 1)

Γ(ν + 1− 2n)
.

Here, the power series for n ≥ 2 converges normally (hence uniformly) over |u| ≤
1. This remark allows interchanging summation and integration to obtain iν,α1 =
W ν,α(1), where for |z| ≤ 1 we define

W ν,α(z) := 2
∑
n≥1

zn

2n− α
1

(2n)!

Γ(ν + 1)

Γ(ν + 1− 2n)
(A.1)
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=
1

2− α
ν(ν − 1)z

[
1 +

2− α
4− α

1

4!
(ν − 2)(ν − 3)z

+
2− α
6− α

1

6!
(ν − 2)(ν − 3)(ν − 4)(ν − 5)z2 + . . .

]
=

1

2− α
ν(ν − 1)z

[∑
n≥0

cnz
n

]
,

where cn = 2−α
2n+2−α

1
(2(n+1))!

(ν − 2)(ν − 3) · · · (ν − 2n− 1), for n ≥ 1 and c0 = 1. An
elementary computation yields

cn+1

cn
=

(n+ 1− α/2)(n+ 1− ν/2)(n+ 3/2− ν/2)(n+ 1)

(n+ 2− α/2)(n+ 2)(n+ 1/2)

1

n+ 1
.

Therefore (see [3, page 10] or [13, Equation 5.81, page 207] for a more easily accessible
reference),

∑
n≥0 cnz

n = 4F3(1, 1 − ν
2
, 1 − α

2
, 3−ν

2
, 1; 2, 3

2
, 2 − α

2
; z). Now, the series

defining the generalized hypergeometric function pFq(β1, . . . , βp; γ1, . . . , γq; z) for p =
q + 1 converges for all z with |z| < 1; for z = 1 the series converges for

∑q
i=1 γi >∑p

j=1 βj, a condition that reduces to ν > −1 in the present case. Hence

iν,α1 =
ν(ν − 1)

2− α 4F3(1, 1− ν
2
, 1− α

2
, 3−ν

2
, 1; 2, 3

2
, 2− α

2
; 1).

Finally consider ĩν,α1 . Due to the singularity at u = 0, we compute∫ 1

0

((1− u)ν − 1)u−1−αdu = lim
t↓0

∫ 1

t

((1− u)ν − 1)u−1−αdu.

For the last integral, we get, for α > 0 and t > 0,∫ 1

t

((1− u)ν − 1)u−1−αdu =

∫ 1

t

(1− u)νu−1−αdu+
1− t−α

α
.

With the substitution v = 1−u
1−t , the last integral becomes∫ 1

t

(1− u)νu−1−αdu = (1− t)1+ν

∫ 1

0

vν(1− (1− t)v)−α−1dv

=
(1− t)1+ν

1 + ν
2F1(1 + α, 1 + ν; 2 + ν; 1− t),

provided ν > −1, by the integral representation for the Gauss hypergeometric func-
tion (equation 15.3.1 of [1, p. 558]). Now, by equation 15.3.6 from [1, p. 559],

2F1(1 + α, 1 + ν; 2 + ν; 1− t) =
Γ(2 + ν)Γ(−α)

Γ(1− α + ν)
2F1(1 + α, 1 + ν; 1 + α; t)

+ t−α
1 + ν

α
2F1(1− α + ν, 1; 1 + α; t)

=
Γ(2 + ν)Γ(−α)

Γ(1− α + ν)
+

1 + ν

α
t−α +O(t1−α),

as t ↓ 0, provided α ∈ (0, 1). Combining these results we get∫ 1

t

((1− u)ν − 1)u−1−αdu =
1

α
+

Γ(1 + ν)Γ(−α)

Γ(1− α + ν)
+O(t1−α).

Letting t ↓ 0 and using the fact that −αΓ(−α) = Γ(1 − α) we obtain the given
expression for ĩν,α1 .
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Proof of Lemma 5.2. We appeal to tables of standard integrals (Mellin transforms)
from Section 6.4 of [8]. In particular, the given formulae for jα0 , jα2 , and j̃α1 follow
from, respectively, equations 6.4.17, 6.4.20, and 6.4.19 of [8, pp. 315–316]; also used
are formulas 6.3.7 and 6.3.8 from [1, p. 259] and the fact that ψ(1) = −γ. Lastly,
for jα1 we use the substitution u2 = s to obtain

jα1 =
1

2

∫ 1

0

log(1− s)
s1+(α/2)

ds =
1

2
j̃
α/2
1 .

Finally, we need the following elementary fact.

Lemma A.3. Let A ⊆ R+ be a Borel set, and let f and g be measurable functions
from A to R. Suppose that there exist constants g− and g+ with 0 < g− < g+ < ∞
such that g− ≤ g(u) ≤ g+ for all u ∈ A. Then,∣∣∣∣∫

A

f(u)g(u)du− g−
∫
A

f(u)du

∣∣∣∣ ≤ (g+ − g−)

∫
A

|f(u)|du.

Proof. It suffices to suppose that
∫
A
|f(u)|du < ∞. Then

∫
A
|f(u)g(u)|du ≤

g+

∫
A
|f(u)|du <∞, and∣∣∣∣∫

A

f(u)g(u)du− g−
∫
A

f(u)du

∣∣∣∣ =

∣∣∣∣∫
A

f(u)(g(u)− g−)du

∣∣∣∣
≤
∫
A

|f(u)|(g(u)− g−)du.
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[8] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tables of Integral
Transforms. Vol. I. Based, in part, on notes left by Harry Bateman. McGraw-
Hill, New York, 1954.

[9] W. Feller, An Introduction to Probability Theory and Its Applications, Volume
II, 2nd edition, Wiley, New York, 1971.

[10] G. Fayolle, V.A. Malyshev, and M.V. Menshikov, Topics in the Constructive
Theory of Countable Markov Chains, Cambridge University Press, Cambridge,
1995.

[11] B. Franke, The scaling limit behaviour of periodic stable-like processes,
Bernoulli 12 (2006) 551–570.

[12] O. Hryniv, I.M. MacPhee, M.V. Menshikov, and A.R. Wade, Non-homogeneous
random walks with non-integrable increments and heavy-tailed random walks
on strips, Electron. J. Probab. 17 (2012) article 59.

[13] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics, Addison-
Wesley Publishing Company, Reading, MA, 1994.

[14] N. Guillotin-Plantard and A. Le Ny, Transient random walks on 2D-oriented
lattices, Theory Probab. Appl. 52 (2008) 699–711. Translated from Teor. Veroy-
atn. Primen. 52 (2007) 815–826.

[15] J.H.B. Kemperman, The oscillating random walk, Stochastic Processes Appl. 2
(1974) 1–29.

[16] B.A. Rogozin and S.G. Foss, The recurrence of an oscillating random walk,
Theor. Probability Appl. 23 (1978) 155–162. Translated from Teor. Veroyatn.
Primen. 23 (1978) 161–169.
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