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As the size of engineered systems grows, problems in reliability theory can become computationally challenging,
often due to the combinatorial growth in the number of cut sets. In this paper we demonstrate how Multilevel
Monte Carlo (MLMC) — a simulation approach which is typically used for stochastic differential equation
models — can be applied in reliability problems by carefully controlling the bias-variance tradeoff in
approximating large system behaviour. In this first exposition of MLMC methods in reliability problems we

address the canonical problem of estimating the expectation of a functional of system lifetime for non-repairable
and repairable components, demonstrating the computational advantages compared to classical Monte Carlo
methods. The difference in computational complexity can be orders of magnitude for very large or complicated
system structures, or where the desired precision is lower.

1. Introduction

It can prove to be computationally intractable to perform classical
reliability analysis of very large engineered systems when the number
of cut (path) sets grows combinatorially. It is well understood that
working instead with subsets of the cut (path) sets or bounding
structural designs can provide probability bounds in many reliability
problems [4], but such bounds can be crude or may not be well
characterised at all.

Evaluation of the reliability of engineered systems is a crucial part
of system design and often scenario planning may involve repeated
evaluation of the reliability for changing system configurations or
component types meaning rapid simulation is highly desirable. For
simplicity of exposition we herein consider the canonical problem of
estimating the expectation of a functional of system lifetime both with
and without a component repair process, showing the approach
developed is easily generalised to other reliability problems which
depend on cut (path) sets for the analysis.

In the case of static reliability analysis, there are many methods
aside from Monte Carlo simulation using the cut (path) sets, including
Sum of Disjoint Products (SDP) methods [22,30,27] and methods
based on Binary Decision Diagrams (BDD) [25] or multistate BDD
extensions [29]. On the other hand, these approaches are less prevalent
in dynamic reliability problems where there are component dependen-
cies, for example through system shocks, repair or maintenance
programmes, and cascading failures among others. There have been
recent developments in dynamic fault trees [20,26,21] which apply
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where event sequence ordering influences the reliability, including
repairable systems [19]. When there are arbitrary dependencies, the
most generally applicable approach is direct Monte Carlo simulation
(e.g. [7]), so that acceleration of Monte Carlo techniques is important
to address a broad range of the most complex reliability scenarios.
Monte Carlo acceleration through importance sampling [15], or the use
of control variates [28] have been suggested in the context of reliability
estimation, but they are either restricted to the static case and require
regular updates and sorting of all the cut sets (as for [15]), or could be
combined with the MLMC paradigm (as for [28]).

Indeed, also note that interest may not be in the reliability at a
particular fixed mission time, but instead in: some expectation of a
functional of system lifetime; or in ascertaining a quantile of system
lifetime (i.e. the time to which one is 99.9% certain the system will
survive); or in estimation of the entire system lifetime distribution. In
these situations Monte Carlo methods are typically the only tractable
approach.

Multilevel Monte Carlo (MLMC) methods — pioneered by
Heinrich [14] and Giles [10] — are now standard for estimation of
expectations of functionals of processes defined by stochastic differ-
ential equations (SDEs). However, the MLMC approach is in fact a
general paradigm for accelerating any Monte Carlo based method
(whether standard, importance sampling, etc), if one can link the
accuracy of the estimator with the complexity of generating a sample,
while at the same time controlling the variance of the difference for
approximations with different accuracy. The main contribution in this
paper is development of a Multilevel Monte Carlo (MLMC) approach to
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reliability problems. In this way, we show how any reliability problem
using Monte Carlo simulation over cut (path) sets can be substantially
accelerated, extending the size of systems and complexity of depen-
dencies which are within reach for reliability evaluation.

In Section 2, we recap the traditional cut set method of simulating
system lifetimes which does not scale well to large systems even when
the cut sets are known. This motivates the approach taken in this work.
In Section 3 we recap standard Monte Carlo theory and set out the
error and computational cost metrics which will enable comparison
with our MLMC based approach. The fundamental MLMC methodol-
ogy and our adaptation to the reliability setting then follow in Section
4, before numerical results demonstrating the kind of substantial
computational improvements which can be achieved are covered in
Section 5,6.

2. Simulating system lifetimes

Consider a coherent system with n components. Let x,(7), ..., x,(t)
denote the operational status (1= working, 0= failed) of the compo-
nents at time t and consider the random variable for the lifetime of
component ¢ to be T, ~ F(r), where F.(-) are positively supported
lifetime distributions which are not necessarily independent or iden-
tical. We will depict a system as an undirected network comprising a set
of nodes (vertices) S, and a set of edges E, where nodes are considered
unreliable and edges are perfectly reliable (note that any setting with
imperfect edge reliability can be easily transformed to a corresponding
representation where they are perfectly reliable [2]).

The system is considered to be functional as long as there is a path
from left to right which passes only though functioning nodes, see
Fig. 1. This is usually represented mathematically by the structure
function, ¢: {0, 1}" — {0, 1}, which maps component status to system
status.

Herein, our focus is on an equivalent means of evaluation based on
cut sets. A set of components, C, is said to be a cut set of the system if
the system is failed whenever all the components in C are failed. A cut
set is said to be a minimal cut set if no subset of it is also a cut set.
Then, the set of all minimal cut sets, C, characterises the operational
state of a system completely and is equivalent to knowledge of the
structure function [6]. In addition to the cut sets characterising the
operational state of the system given the binary operational state of the
components, they also immediately provide the system failure time if
the individual component failure times are known [5]:

Ty =fy(T;, ... T,) = min{max{t.}}.

CeC | ceC
Thus, the failure time for the system depends on the system structure
and the failure time distributions for each node.

The traditional approach to estimating the expectation of a func-
tional of the lifetime of a system given the lifetime distributions of the
components is to perform a simple Monte Carlo simulation. That is,

cut set

Fig. 1. A sample network with a minimal cut set.
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N
1 ) . )
Elg(Ty)] = - D s(f (0, .., 1) where 1 ~ F().
i=1
The overall runtime for this approach depends on three quantities:

1. Variance of the estimator. Due to the random nature of component
failure times, the estimator is a random variable: higher variance
estimators will require more iterations to achieve an accurate
estimate;

. Target accuracy of the estimate. Naturally, the higher the desired
accuracy, the longer the algorithm will take due to more iterations
being required;

. Number of cut sets. As the system size grows, the number of cut sets
has a combinatorial growth, making the approach impractical for
very large systems.

Less brute force approaches are possible with the restrictive
assumption of iid components by making use of the system signa-
ture [18,23]. More recent work on the survival signature [8] has
generalised the signature to multiple types of component, with the
weaker assumption of exchangeability between components. However,
if a large number of the components are of different types or there are
highly dependent failures, then the survival signature will also grow
exponentially in complexity. It can also accommodate a repair pro-
cess [9] through expression as a new component type, though this
increases the complexity if too many repairs occur. Hence, in this work,
we first address the most general possible setting in which any form of
component lifetime and dependence structure is allowed, requiring
only knowledge of component lifetimes and the cut sets of the system.
However, note that it should be possible to specialise this approach to
work with the survival signature which we hope to address in future
research.

3. Monte Carlo algorithms

To simplify presentation, hereinafter we only consider estimating
expected failure time directly, rather than some functional of the failure
time, though this is mostly without loss of generality (see Section 4 for
details). Therefore, assume that for a given system S, we want to
estimate the expected failure time.

ETy = Ef,(T;, ..., T,).

There are many approaches to simulation which may differ in terms
of convergence to the true value as well as computational character-
istics. In order to compare them, we present some useful cost and error
expressions in the following subsection.

3.1. Performance measures: error and cost definitions

We start by defining the two main quantities, which will be used
throughout this paper to compare methodologies. Given an estimator 7
of the quantity [ET;, the Mean Squared Error (MSE) of any Monte Carlo
based method is:

error = [E[(YA'S - [ETS)Z].
The classical decomposition of the MSE yields:
E[(% - E1,] = E[(%; + €T, - €T - €7)°] = €[(7; - €7)’]

+ (7, - ETy)? 6]

where (ET; — [ETS)2 is the squared bias error, while [E[(7; — [ET"S)Z] is the
error due to Monte Carlo variance. The first is a systematic error arising
from the fact that we might not sample our random variable exactly,
but rather use a suitable approximation, while the second error comes
from the randomised nature of any Monte Carlo algorithm. For
example, in traditional Monte Carlo applications, one samples exactly
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so that the first error is zero and only the Monte Carlo variance needs to
be treated carefully.

The cost of any Monte Carlo based algorithm is typically taken to be
the expected runtime in order to achieve a prescribed accuracy. A more
convenient approach for theoretical comparison between different
methods is to define

cost = [E(#random number generations and operations).

We now recap traditional Monte Carlo and then introduce
Multilevel Monte Carlo, in each case highlighting their corresponding
results for these two measures of performance.

3.2. Traditional (or single-level) Monte Carlo algorithm

The traditional Monte Carlo estimator is based on N replications of
simulating the system lifetime, via the minimal cut sets, by simulating
the component lifetimes. That is, given system simulations
7, = fS(t](”, ) the traditional Monte Carlo estimator has the form

e tn

s _ 1 S 0 0
Iy = N ;ﬂ(ﬁ s ). @

For reasons that will become clear in the sequel, it is useful to refer to
this as the single-level Monte Carlo algorithm because it emphasises
the relationship to Multilevel Monte Carlo.
This single-level Monte Carlo estimate has variance proportional to
N
Var(fy) = Var[l
N

S 1 < 1
7| = — Varj 7;| = —Var(g).
£o)- (2]
The estimator (2) is clearly unbiased, because there is no approxima-
tion involved in estimating the failure time, so the error measure
introduced earlier only has this second variance term,

errofy;c = N _IV’dI(TI-).

Indeed, more generally the well known central limit result for standard

Monte Carlo means that:

 Var(z)
N

P|IT; - ETy > £ ~ P(Zl > 2)

for Z ~ N(O, 1).
Thus, for a desired level of accuracy ¢ > 0 with confidence level
1 — a, we require

n= zrf,QVar(ri)e_z

Monte Carlo simulations, where the quantile z,,, is chosen to ensure
that P(Z > z,,,) = a/2.

Naturally z,,,, is a constant for any fixed level of confidence, so the
variable compute costs in simulation are

coStyc = Var(rl-)-e_2~#C,

(3)

where #C denotes the number of minimal cut sets for the system.

4. Multilevel Monte Carlo

To simplify presentation we again only consider estimating ex-
pected failure time directly, rather than some functional of the failure
time. Note that there is no loss of generality, so long as the functional of
interest is Lipschitz continuous (or bounded for discrete measures).
The most common functional of interest that this would exclude is
computing expectations of quantiles. However, this problem can be
treated with a smoothing approach, as discussed for the MLMC setting
in [13]. In all other cases, the presentation below carries over in the
natural fashion.
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4.1. General MLMC

We first introduce MLMC in generality before specialising this to
the reliability problem considered herein. Consider a sequence of
estimators 7, T, ..., which approximates T, with increasing accuracy,
but also increasing cost. By linearity of expectation, we have

L
E(T,) = E(Ty) + Y E[T, - T,_,],
=1

and therefore we can use the following unbiased estimator for [E[7;],

L &
I ENCERTED)

=1 ¢ n=1

No

1 0
— Y 1"+
w2

The inclusion of the level # in the superscript (¢, n) indicates that the
samples used at each level of correction are independent, but crucially
note that the differences themselves use common samples. Note the
terminology ‘correction’ arises from the fact that each 7, is generally
not an unbiased estimate any more.

Let V4 and costy be the variance and the expected cost of one
sample of T, and let V,, cost, be the variance and expected cost of one
sample of 7, — T,_,. Then the overall expected cost and variance of the
multilevel estimator are Zézo N,-cost, and Z?zo N;'.V,, respectively.

More generally, this means that provided the product V,-cost,
decreases with # (i.e. the cost increases with level slower than the
variance decreases), then one can achieve significant computational
savings, which can be formalised in Theorem 1 from [10].

Theorem 1. Let 7; denote a random variable, and let 7, denote the
corresponding level # numerical approximation.
If there exist independent estimators Y, based on N, Monte Carlo

samples, and positive constants «a, S, 7, ¢, ¢;, ¢ such that
a> %min(ﬂ, y) and
LIET, - Tl < 277

E(Ty), =0

2.EY,) =
2 {rE(Tf -T,_), £>0
3. Var(¥,) < ¢, N;'277¢
4. cost, < ¢;2'7, where cost, is the expected computational complex-

ity of Y,

then there exists a positive constant ¢, such that for any ¢ < ¢~' there
are values L and N, for which the multilevel estimator

L
Y=Y,
£=0
has a mean-square-error with bound

MSE = E[(y - E[T,])?] < ¢

with a computational complexity C with bound

e, p>v,
costy e < ¢ e 2(log ), f=7,
¢ 8—2—(7—13)/11, <.

Remark 2. We will informally illustrate the idea behind MLMC on a
simple example with just two levels. Consider just two approximations
T and Ty, where k < L, with sample costs cost, < cost, . It is clear, that
the cost of one sample for 7, — 7, is roughly cost,. Now assume, that

Vi = VarT, = VarT;, andV, = Var(T; — T),

where V, < V,. Then we have
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N

ET, = ET, + E(T, - T,) => T = % P
n=1

M

1 (L)
— My
ng

~T=

1 R0 ,
N ; (18 = 189).

We see that the overall cost of Monte Carlo estimators, according to (3),
can be expressed as

cost(T) = 672"/1'COS'[L

cost(T) = e 2 (cost,-Vj + cost;- V),
which gives us a condition

costy,

cost;

~ — \4
cost(T) > cost(T) = 1 > 72

i
In other words, provided there exists a good coupling between
estimators 7, and 7;, we have reduced computational cost even for
two levels. The two-level Monte Carlo method in the context of Monte
Carlo path simulation has been suggested and analysed in [16].

Remark 3. Multilevel provides the greatest benefit when g >y,
because this is the case for which we get the best asymptotic
performance. y represents the parameter for the exponential increase
of the cost of producing a sample, while § corresponds to the parameter
for the exponential decay in the variance of the sample at a given level.
There are 3 cases:

B < y. The number of samples required by the MLMC estimator
decays at a slower rate than the increase of the sampling cost at each
level. In this case the overall cost is proportional to the cost of the
last level.

B =y. This is most common in practice [12]. The decay of the
variance is balanced with the increase of the cost, therefore the
contribution to the overall cost is the same from all the levels.

B > y. In this most desirable case, the overall cost is dominated by
level # = 0, since consecutive levels will have a decaying contribution
to the cost.

When not available analytically, estimation of @, # and y is usually done
by empirically regressing using diagnostic quantities in the manner
demonstrated in Sections 5 and 6 for our examples.

Remark 4. Multilevel Monte Carlo became popular after the seminal
work of Mike Giles [10] for estimating expectations of functionals
[E(f(X,)), where X, is the solution of a stochastic differential equation. In
the general Multilevel Monte Carlo path simulation setting, 7, from
Theorem 1 is the functional value, evaluated via an approximation
arising from a discretisation method, e.g. the Euler-Maruyama method
[17].

4.2. MLMC for system reliability

Theorem 1 suggests that one may want to try getting a coarser
Monte Carlo estimate of the system lifetime, perhaps by considering
only a subset of the collection of minimal cut sets.

ccC> min{max{t,-}}

CeC'| ieC

=T¢>T5= min{max{ti}}.
cec | iec

On its own T’y is a biased estimator, so although a traditional
single-level Monte Carlo estimator based on it may have lower
computational cost, it will have increased MSE because the first error
term in (1) can no longer be ignored. However, by using this coarse
estimate inside an MLMC approach, we aim to improve the overall
performance. To this end we introduce the sequence of estimators
Ty, ..., T, based on a nested sequence of minimal cut sets,
Cy C -+ C C, = C. Note that here T; = T, which is not typically true
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in a general MLMC setting.
The crucial ingredient is the finite telescopic sum

L L
E(Ty) = E(T) + ), E(T, - T,_) = Y E(Y,)
=1 =0
As described above, we independently estimate each term, and
within each term, 7, and 7,_, use the same random component
simulations:

Nt, - -
EY) ~N' Y @ -9
j=1

with each level having cost being bounded from above by ¢-Var(¥,)-#C,.
Here c is a constant independent of # and the desired target accuracy.
We choose #C, — the number of minimal cut sets at level #— to be a
proxy for the upper bound on the cost of each level, because for a fixed
system the number of elements in each minimal cut set is independent
of the target accuracy. In other words, as we double the number of
minimal cut sets in each level, their number is a straightforward way to
construct a meaningful and easy upper bound for the cost of one
sample.
Thus, the overall MLMC variance is

A2

at a cost of Z;=()1\lf~#cf. Therefore, given a fixed target accuracy
(variance), if we choose a sample size N, ~ ,/Var(Y,)/#C, on each level,
this will minimise the computational cost. That is, for a desired
accuracy ¢ > 0, the overall cost is:

L
= > N;'Var(¥,)
=0

2
L L

costyyc = 2 N#C, = 8‘2(2 JVar(Yf)-#C[]
=0 =0

Recall that,

C))

coStyc = Var(r,-)~e_2~#C,

This means that:

1. If we have a good coupling between the approximations, or
equivalently Var(Y,) decays rapidly, then we can achieve considerable
savings compared to the single-level Monte Carlo algorithm.

. Additional savings are possible if we do not calculate all the levels ¥,
but rather stop the algorithm early. This introduces a (small) bias,
but substantially decreases the overall computational cost. As long as
the bias is quantified — and when combined with the estimator
variance gives a MSE (1) below our target accuracy — then we can
still solve the original problem at much lower cost.

Our proposed application to reliability involves a nested se-
quence of minimal cut sets providing improving accuracy:

C,C - CC =C,

so the possible gain from stopping early depends on the way the
minimal cut sets are chosen at each level.

4.2.1. Level selection algorithm

The first point to note is that existing Multilevel Monte Carlo
literature has shown that anything less than geometric decay in the cost
of computation at each level leads to suboptimal gains, see [12].
Therefore, we pre-specify that level # contain [#C/2"~*] minimal cut
sets. The levels will be grown from # = 0 up, adding in those minimal
cut sets which are in some sense optimal for the next level. Thus, we
specify level selection in an inductive fashion. Note, we initially ignore
the possibility of repair for simplicity of presentation and address the
changes involved to accommodate repair in Section 6.2, when we
demonstrate MLMC for repairable components.
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Selection of level ¢ = 0

Level 0 will be simulated most frequently since it is the lowest cost.
Therefore, optimal choice of this level is straightforward: it should
contain the minimal cut sets which provide the best approximation to
T. That is, we wish to assign to level 0 the minimal cut sets which have
smallest expected failure time, since these will most frequently be the
causes of system failure. To achieve this, we propose an initial highly
crude estimate by performing a pilot standard Monte Carlo simulation
of N’ lifetimes of each component in the system, using these to generate
N’ realisations of the failure time associated with each minimal cut set,

N
1 )

n=— Zmax{ty }, VvV CGeC.
N’ = | c€Ci (5)

The cut sets corresponding to the smallest [#C/2"] of these n; are then

chosen to form C,.

Selection of level ¢ > 0

Given that we have chosen levels 0, ..., # — 1 already (that is
Cy C -+ C C,_, are now fixed), we need to select which cut sets to add
from C,;,y = C\C,_,. To maximise the performance of MLMC we would
like to select the cut sets such that

E[T,_, — T;] - max.

In other words, choose

C, =arg max E[T,_, — T,],
cpcC
5.t Cp_|CCp#C=#CI2E™1]

so that the contribution from each level is as large as possible in the
smallest levels, leading to a rapid decay in the size of the contribution
in each level and hence the possibility of terminating the algorithm
early. In particular, note that if ZLk E(T, — T,_)) < ¢, then levels
k, ..., L need not be simulated at all, so that ensuring all large
differences occur in early levels is highly desirable.

Notice that:

EIT,_, - T, < [E[Tf_l - min{Tf_l, gleacx{r,}}],

for any C € C,,. So our choice for sorting cut sets is motivated by the
minimisation of the upper bound for the increments at each level,
which we can implement for any level # in a simple way:

e use the N’ samples and calculated failure times for all cut sets used
in selecting # = 0,
e calculate the following estimates:

|:Tf—1 - min{Tf—l’ max{tc(j)}}],
ceCy

for each C, € C;y-
® Sort §, in a descending order and add cut sets corresponding to the
largest values for §, to C, until #C, = [#C/2"~7].

1
1y

j=1

o =

This choice of number of minimal cut sets on each level guarantees an
exponential increase in the cost, corresponding to y = 1 in Theorem 1.

4.3. Full Multilevel Monte Carlo algorithm for reliability

One of the key features of the Multilevel Monte Carlo algorithm is
its ability to naturally provide stopping criteria for an optimal selection
of the number of levels L to actually simulate, which we illustrate now
along with the full description of the algorithm. For more advanced
approaches to implementation of Multilevel Monte Carlo we refer to
[11,3,12].

According to Theorem 1 and the first assumption in it, we have
asymptotically as £ — oo
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E(Y,) = E(T; - 1),

so that a natural stopping criteria is to choose L minimal such that
Yzl < /2.

Input: Required accuracy € and level specification as per §4.2.

—

. Set the initial number of levels to L:=2. In order to define the optimal
number of samples at each level we need to estimate the variances
onlevels#=0,1,2

. Compute N,:=100 samples on levels £ = 0, 1, 2

. Estimate Var(¥,) and update N, for each level # = 0, ..., L:

w N

N, := max{N,, N,}, where

L
N = |42 Var(r2™ - Y Var(r)2*
k=0
We take the maximum as it may happen that the numerical variance
was initially overestimated and so more simulations were performed
than necessary. If N, has increased less than 1% on all levels, then
skip to step 5.

4. Compute the additional number of samples on each level
¢ =0, ..., L and return to step 3.
5. Upon reaching this step we have converged in terms of MSE due to

the variance. Next we test whether the bias error term is sufficiently
small to terminate, or whether more levels and simulations are
required. If 1Yl > e:

Then: set L :=L + 1, Var(?z) = Var(Y;_,;)/2 and return to step 3;

Else: Terminate algorithm returning Z;zo Y, as the estimate.

There are two extreme cases to bear in mind. In the first case, we have
only a few minimal cut sets (or even only one), which influence the
failure time. This case is treated with the initial choice of the cut sets
and selection as prescribed in §4.2 should ensure the minimal number
of levels is simulated. The second case is when all the cut sets have
similar ‘weight’ in determining the failure time, such as with a fully
connected system with independent and identically distributed failure
times for all components. This case is treated with the doubling of the
number of cut sets with respect to the previous level, which again
assures the mean and variance decay between the levels.

Remark 5. The Multilevel paradigm, with some slight modifications,
also allows construction of efficient numerical algorithms (see [13]) for
estimating the distribution function on a compact interval in a uniform
norm. More specifically, one can construct an algorithm which allows
estimates in the norm

12
E sup IP(T, < 1) —P(T <0 |
1€[tg.n]

which guarantees the uniformity in the error for numerical estimates.
This is the only Monte Carlo based approach whose estimates are
functions, rather than finite dimensional entities, which has uniform
norm as a measure of accuracy.

5. Numerical experiments, no repair
5.1. Systems and component reliability distributions

We generated many random systems to test the MLMC reliability
method proposed hereinbefore. These random systems are generated
by starting from the trivial one component system and with fixed
probabilities either:

® replacing a component with two components in series;
e replacing a component with two components in parallel;
® selecting two edges and inserting a ‘bridging’ component.
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This allowed us to generate a wide range of different systems and in
particular an increasing sequence of related systems with varying
numbers of component.

For all systems we consider three test cases, where the components
have Weibull distributed lifetimes with shape parameter k = 0.5, 1 or 3
and where the scale is chosen uniformly at random on an interval
[2, 10]. Variety in shape parameters corresponds to different applica-
tions in industry (see e.g. [24]). The shape parameter has a substantial
effect on the corresponding density function.

5.2. Numerical results

We ran our algorithm 100 times for systems of different sizes with
independent but differently distributed components, whose reliability
is described above. In each case we considered fixed target accuracies
of e =27 and ¢ = 277, and computed the cost gains achieved for these
fixed accuracies.

5.2.1. Shape parameter k=0.5

The left top and bottom plots on Fig. 2 show the result of diagnostic
runs, where we tested the variance and mean decay, which correspond
to assumptions (3) and (1) from Theorem 1 with g=1 and a=1
respectively (i.e. the slope of decay on the log-scale is —1). This
indicates, that Multilevel Monte Carlo achieves the same convergence
rate as traditional Monte Carlo in terms of accuracy ¢, but can offer
computational savings, due to the fact that most of the samples are
calculated for very small subset of minimal cut sets.

The right plot compares the differences in averaged costs for
Multilevel Monte Carlo and standard Monte Carlo algorithms, which
shows good savings even including the costs for initially selecting the
cut sets for each level.

5.2.2. Shape parameter k=1

The test case with k=1 (Fig. 3) gives us almost the same mean and
variance decays along with computational gains as in the case with
k=0.5. One can see that in the last levels we see even super linear decay
for the mean and variance, which indicates that the cut sets being
added at those levels have very weak impact on system lifetime
compared to those already chosen, which indicates good performance
for the level selection algorithm.

5.2.3. Shape parameter k=3

The case with k=3 (Fig. 4) shows substantial savings for ¢ = 277, as
also seen in the previous examples, while still showing competitive
results for ¢ = 27*. The reason the gains are more modest here is that,
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Fig. 2. Left: Diagnostic tests for the largest considered system; Right: cost gains for
nested randomly grown systems from 5 to 75 components, with Weibull distribution
having shape parameter k=0.5 and uniformly distributed scale.
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Fig. 4. Left: Diagnostic tests for the largest considered system; Right: cost gains for
nested randomly grown systems from 5 to 75 components, with Weibull distribution
having shape parameter k=3 and uniformly distributed scale.

as we had before, there is very small variance in the standard Monte
Carlo and overall Multilevel Monte Carlo estimators, which puts more
emphasis on the initial level selection costs which are not ¢ dependent,
but are size dependent.

6. Numerical experiments, with repair process

To demonstrate the generality of the method and the substantial
computational benefits available in more interesting scenarios, we
consider the same 70 component system as generated in Section 5 with
a repair process included. The components are again taken to have
shape parameter k=0.5 and uniformly distributed scale on [2, 10], but
now failed components are repaired according to an Exponentially
distributed clock with rate A = 0.05.

Note that the final failure time of all components which lead to
system failure cannot be sampled simultaneously any more, because
repairs may change the state of the system en-route to ultimate failure.
Indeed, the computational complexity of sampling is substantially
greater due to the need to simulate the stochastic process of failure
and repair, repeatedly testing after each system state change whether
the system is still functional. Consequently, obtaining a single Monte
Carlo sample may now require many passes over the collection of cut
sets and moreover there is additional randomness in the runtime to
simulate a single system failure time.
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Fig. 5. A standard Monte Carlo estimate of the distribution of number of repairs before
system failure in the example system. Figure truncated at 300 repairs.

However, the Multilevel paradigm still applies and, as will be seen,
even performs marginally better in this more complex scenario.

6.1. Repair process

The repair process is taken to be Exponential (4 = 0.05). Some full
standard Monte Carlo runs show that this leads to a highly random
number of repairs over the lifetime of the system as depicted in Fig. 5.
Note that this is not so much chosen to be representative of any real
system, but is in fact faster repair than might be expected in order to
increase the difficulty of the problem.

6.2. Level selection for repairable systems

The procedure described for non-repairable systems can be adapted
to this case. The only minor adjustment required is to the level
selection algorithm as described in Section 4.2.1.

Recall that the level selection procedure first involves determining a
failure time for all cut sets. In the non-repairable case, this was simply
a case of computing Eq. (5) for a fixed collection of component
simulations 7). However, the stochastic process of failure and repair
means that ¥ depends on the cut set C; which causes failure, so that in
principle for each j the stochastic process should be simulated
continuously until all cut sets have failed at least once, with the first
failure time being recorded as n; for each C; € C. As such, very rare
failure modes may result in essentially unbounded compute cost.

To address this, we propose simulation of the full stochastic process
of failure and repair until the first instance of failure due to a cut set.
We then simulate the conditional failure time of the still functioning
components given survival to this time without further repairs taking
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Fig. 7. Actual runtimes to perform a single sample on each level for the repairable
example. Note the log-scaled time axis. Density estimates composed from 108 replicates.
Timings are for a single core of a c4.8xlarge Amazon EC2 compute instance using the
AMI from [1].
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Fig. 8. Relative speedup of MLMC versus standard Monte Carlo to achieve estimation of
expected lifetime within an accuracy of e.

place. Note that the exact behaviour beyond the initial cut set failure is
therefore deemed less important: our primary goal is to establish cut
sets which fail early, so exhaustive simulation is redundant. Clearly,
these simulations cannot be used in the final estimate in the way they
could for the non-repairable case.

In every other way, the level selection algorithm is the exact
analogue of that for the non-repairable case, with the objective being
to ensure rapid decay of the mean of each level.

10-

logs (Variance)

5 10
Level

Fig. 6. Diagnostic plots for the repairable system example.
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6.3. Results

6.3.1. Diagnostics

Fig. 6 (left) shows a mean decay of order 1, which implies that the
expected contribution to the system lifetime estimate halves compared
to the contribution from the previous level. This strong decay,
corresponding to @ = 1 in Theorem 1, means that our sorting approach
does capture the influence of the cut sets, thus allowing estimation of
the failure time with reasonable accuracy, without spending computa-
tional effort on evaluating ‘non-contributing’ cut sets. Recall that the
stronger the mean decay (i.e. the larger is the value a), the fewer levels
we will need, thus the higher will be the computational gain.

Fig. 6 (right) shows the variance decay and indicates the quality of
the coupling. As each level is more expensive to sample than the
previous one, it is desirable to sample it less often, without destroying
the overall variance. The parameter f§ quantifies this in a rigorous way,
in our case having # ~ 1, which implies that the variance on each level
is half that on the previous level, hence halving the number of samples
required.

6.3.2. Computational cost

Recall that the number of cut sets in a level was an accurate proxy
for the computational cost in the non-repairable example (see p.10)
and that y = 1 could then be targeted by doubling the number of cut
sets in each level.

However, in the repairable case this is no longer so, because the
stochastic process of failure and repair adds a random element to the
simulation runtime before ‘system’ failure, with it also depending on
the cut set collection under consideration. Therefore, Fig. 7 shows the
distribution of empirical wall-clock runtimes to produce a single
simulation for each level on a log scale, showing the desired growth
in compute cost. Regressing log,(mean runtime) = a + y¢ results in
y ~ 0.94. Crucially, this means that an exponential improvement in
accuracy is achieved (x = = 1), but with a little below exponential
increase in cost (y ~ 0.94). This means MLMC actually provides
marginally better performance gain in the repairable case than it did
in the non-repairable case (Where a = f =y = 1).

When computing the cost in the repairable case, we can use the
empirical mean compute time for level #, k, say, instead of the number
of cut sets in Eq. (4). Then, for a target accuracy &, the speedup
provided by MLMC is characterised by:

e_zVar(ri)KL
e2(Xhe, JVar(¥x, )

where L, is the earliest level with mean less than e. For varying ¢ this is
depicted in Fig. 8. For coarse estimates, speedups of upto 1000 times
can be achieved. Note that the expected system lifetime is ~205 with
high variance ~69, 000 — this was chosen as an extreme example to test
MLMCs ability to handle very difficult estimation problems.

To put this in perspective, the time to achieve a Monte Carlo
estimate to accuracy ¢ = 1.5 would take about 141 days on a single CPU
core (or nearly 4 days using all cores of the c4.8xlarge Amazon EC2
instance used for testing). Multilevel Monte Carlo would achieve the
same accuracy in 1 day, 4 h on a single CPU core (or just 45 min using
all cores of a c4.8xlarge).

Speedup =

7. Conclusion and future work

We have presented an exciting new application for the Multilevel
paradigm for estimating the reliability of systems, which speeds up
traditional Monte Carlo estimation of system lifetimes and provides a
approach which can easily generalise to other reliability problems
which involve cut (path) sets. We have demonstrated that the proposed
approach to using MLMC in reliability problems achieves the strong
mean and variance decay required to enable truncation of the number
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of levels which must be simulated. This is a very desirable feature for
MLMC, as the standard approach has to go through all the cut sets for
each sample, regardless of target accuracy. Moreover, we have demon-
strated that harder problems (such as repairable systems) achieve
slightly greater gains through just below exponential growth in the cost
of simulating levels (y ~ 0.94) while still having exponential mean and
variance decay (@ = g = 1).

Unlike classic MLMC implementations, where one considers dif-
ferent approximations of a certain stochastic process wherein all of
them are biased, here we introduce approximations based on sorting
the minimal cut sets in a special way, which are biased, but less costly
to simulate. The numerical experiments show substantial savings for
large systems and are promising for further study of reliability and
structural optimisation. Indeed, the ease of extending from non-
repairable to a repairable setting shows the flexibility of the approach
and we anticipate it would be likewise straight-forward to incorporate
shock and stress processes in a similar manner, benefitting ever more
greatly from the acceleration offered by MLMC. Our own future work
will include the extension of our approach in the spirit of [13], and
expanding the applicability of the Multilevel paradigm to other
algorithms established in the reliability community.
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