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Abstract: In the second part of this study, the interaction of a finite-length crack with a glide 

and a screw dislocation is examined within the framework of couple-stress elasticity. The 

loading from the two defects on the crack results to plane and antiplane shear modes of 

fracture, respectively. Both problems are attacked using the distributed dislocation technique 

and the cracks are modeled using distributions of discrete glide or screw dislocations. The 

antiplane strain case is governed by a single hyper-singular integral equation with a cubic 

singularity, whereas the plane strain case by a singular integral equation. In both cases, the 

integral equations are numerically solved using appropriate collocation techniques. The 

results obtained herein show that a crack under antiplane conditions closes in a smoother way 

as compared to the classical elasticity result. Further, the evaluation of the energy release rate 

in the crack tips reveals an ‘alternating’ behavior between strengthening and weakening 

effects in the plane strain case, depending on the defect’s distance from the crack tip and the 

magnitude of the characteristic material length. On the other hand, the energy release rate in 

the antiplane mode shows a strengthening effect when couple-stresses are considered. 
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1. Introduction 

 

In Part II of this study, the interaction problems of a finite-length crack with a glide
2
 and a 

screw dislocation are examined in the framework of couple-stress-theory. Both defects lie 

along the crack plane and are not emitted from the crack-tip. The glide dislocation results in 

an in-plane shear mode, while the screw dislocation produces a purely antiplane deformation. 

The problems are tackled employing the distributed dislocation technique (DDT). The DDT 

has its origins in the pioneering works of Bilby et al. (1963) and Bilby and Eshelby (1968). 

Ever since, it has been utilized to analyze various crack problems in classical elasticity and 

more recently has been extended in the context of couple-stress elasticity (Gourgiotis and 

Georgiadis, 2007, 2008). The main advantage of the technique is that it provides detailed 

full-field solutions at the expense of relatively little analytical demands compared e.g. to the 

technique of dual integral equations while requiring a relatively small computational cost 

compared to the Finite Element or Boundary Element methods. A thorough review on this 

technique and its applications is given by Hills et al. (1996). 

The two boundary value problems are presented in parallel in each Section of this 

article. Contrary to the interaction problem between a finite-length crack and a climb 

dislocation presented in Part I, the corrective solution for the interaction with a glide 

dislocation is achieved by a continuous distribution of glide dislocations only. Therefore, the 

plane shear mode problem is mathematically less involved than the opening mode problem. 

In classical elasticity the two problems are described by the same singular integral equation. 

On the other hand, the corrective stresses in the antiplane problem are generated by a 

continuous distributions of screw dislocations. The stress field for a discrete glide dislocation 

is obtained using Mindlin’s stress functions while those of a discrete screw dislocation using 

the Fourier integral transform. Moreover, the plane-strain problem is described by a singular 

integral equation, whereas the antiplane problem by a hyper-singular integral equation with a 

cubic singularity. The integral equations are solved numerically using appropriate collocation 

techniques. Similar to Part I, the energy release rate (J-integral) in both crack tips is 

evaluated. In the plane problem an interesting ‘alternating’ behavior between strengthening 

and weakening is revealed, depending on the distance of the discrete glide dislocation from 

the crack tip and the magnitude of the characteristic material length. Finally, in the antiplane 

                                                      
2 The jargon term ‘glide’ refers to an edge dislocation with its Burgers vector parallel to the cut made to create 

the defect (Hills et al. 1996). 
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problem a strengthening effect is observed regardless of the distance of the screw dislocation 

to the crack tip.  

 

2. Basic equations of couple-stress elasticity in plane and antiplane strain 

The couple-stress elasticity is the simplest theory of elasticity in which couple-stresses arise. 

The basic assumptions in this theory are: (i) every material particle has three degrees of 

freedom (just as in classical theory), (ii) the Euler-Cauchy Stress Principle is augmented with 

a non-vanishing couple-stress vector, (iii) the strain energy density depends not only upon the 

strain tensor (as in classical elasticity) but also upon the gradient of rotation vector (curvature 

tensor). The basic concepts of the linear three-dimensional couple-stress elasticity can be 

found in the fundamental papers of Toupin (1962), Mindlin and Tiersten (1962), and Koiter 

(1964). 

 

2.1 Plane strain 

In this Section, we recall briefly certain pertinent elements of the plane strain couple-stress 

theory that are essential to our analysis. A more detailed description of the plane strain theory 

can be found in Section 2 in Part I of this study. 

In the plane-strain case, the equations of force and moment equilibrium in the absence 

of body forces and body couples reduce to 

 

0
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x y

 
 

 
,      0

xy yy

x y

  
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mm

x y
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 
 . (1) 

 

Accordingly, the compatibility equations in terms of the stress and the couple stress 

components assume the following form (Muki and Sternberg, 1965) 

 

   
22 2

2

2 2

yyxx
xy yx xx yy

y x y x


    

 
     

   
 , (2) 

yzxz
mm

y x




 
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   2 22xz xx xx yy xy yxm
y x
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, (4) 
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   2 22yz yy xx yy xy yxm
x y
     

 
     
  

. (5) 

 

Notice that only three of the four equations of compatibility are independent. Indeed, Eqs (3)-

(5) imply (2), while Eqs. (2), (4) and (5) yield Eq. (3). 

The complete solution of Eqs. (1) admits the following representation in terms of the 

Mindlin’s stress functions (Mindlin, 1963) 
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, (6) 

 

and 

 

xzm
x





,  
yzm

y





, (7) 

 

where  ,x y   and  ,x y   are two arbitrary but sufficiently smooth functions.  

Further, substitution of Eqs (6) and (7) into (4) and (5) results in the following pair of 

differential equations, for the stress functions 

 

   2 2 2 22 1
x y


  

        
  

, (8) 

   2 2 2 22 1
y x


  

        
  

, (9) 

 

which, accordingly, lead to the uncoupled PDEs 

 

4Φ 0  ,    2 2 4Ψ Ψ 0    . (10) 

 

Note that the above representation reduces to the classical Airy’s representation as the 

quantities , Ψx , and Ψy  tend to zero. In addition, one can obtain the following relations 
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connecting the displacement gradients in terms of Mindlin’s stress functions (Muki and 

Sternberg, 1965) 

 

2 2
2

2

1
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x y x y
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, (11) 
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. (13) 

 

2.2 Antiplane strain 

Next, we consider a body that occupies a domain in the  ,x y -plane under antiplane strain 

conditions. In this case, the displacement field reduces to 

 

0 ,      0 ,      ( , )x y zu u u w w w x y     . (14) 

 

The non-vanishing components of the strain tensor, the rotation vector, and the curvature 

tensor are defined as (Lubarda, 2003) 
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xz yz
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,      
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2 2 2
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1 1 1
,       ,       

2 2 2
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w w w

x y x y
   

  
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 . (16) 

 

Assuming further a linear and isotropic material response the strain energy density takes the 

following form 

 

      2 2 2 2 2 22 2 2 4xz yz xx yy xy yx xy yxW                      , (17) 

 

where   have the same meaning as the shear modulus in the classical theory, and  ,   are 

the couple-stress moduli with dimensions of [ ]force . Note that for the strain energy density 

to be positive definite, the elastic moduli must satisfy the following inequalities 
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0   ,      0   ,      1 1     .  (18) 

 

Τhe stress and couple-stress components are written in terms of the displacement field as 

 

   2 2 2 2,       xz zxw w w w
x x

   
 
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 

 , (19) 
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y y

   
 
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 . (20) 
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
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2

4 2yy yy xx
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
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2 2
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x y
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 
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2 2

2 2
4 4 2 2yx yx xy

w w
m

y x
    

 
    

 
 . (24) 

 

with    being the characteristic material length of couple-stress isotropic elasticity. 

For future purposes, we also cite the pertinent tractions that can be prescribed on a 

surface defined by the unit normal  0, 1 n  (Mindlin and Tiersten, 1962) 

 

  1

2

n

z yz yz x yyP t m    ,     n

x yxR m . (25) 

 

where yzt  denotes the total shear stress. 

Finally, combining the Eqs (14)-(24), a scalar equilibrium equation is obtained in 

terms of the out-of-plane displacement 

 

2 2 4 0w w     . (26) 

 

It is worth noting that Eq. (26) describes also the bending of Kirchhoff plate with uniform 

prestress. 
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3. Formulation of the crack problems 

3.1 Interaction of a finite-length crack with a glide dislocation 

Consider a straight crack of finite length 2a  in an infinite elastic couple-stress medium and a 

discrete glide dislocation with Burgers vector  , 0, 0xbb  lying at a distance d  from the 

center of the crack (Fig. 1). Plane strain conditions prevail and the dislocation field is the 

only loading applied to the body. The crack faces are described by the outward normal unit 

vector  0, 1 n  and remain traction free. The following boundary conditions along the 

crack faces hold  

 

 , 0 0yy x  ,      , 0 0yx x  ,     , 0 0yzm x  ,         for     x a  . (27) 

 

 

 

 

Fig. 1: Interaction of a finite length crack with a discrete glide dislocation. 

 

Further, the regularity conditions at infinity are 

 

0pq   ,     0qzm  ,      as      r   , (28) 

 

where    , ,p q x y  and  
1 2

2 2r x y   is the distance from the origin. Equations (28) 

suggest that there is no other remote loading to the body except the one induced by the 

discrete dislocation. 

Moreover, as it is shown in Gourgiotis and Georgiadis (2007), a discrete glide 

dislocation lying at the crack plane ( 0y  ) in an infinite isotropic couple-stress medium 
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induces only shear stresses 
   ,0xb

yx x  along the crack faces, so that 
   ,0 0xb

yy x   and 

   ,0 0xb

yzm x   (c.f. (42), Section 4.1). 

In order to obtain a solution for this problem, two auxiliary problems are considered. 

First, we consider an un-cracked body subjected to the loading 
   ,0xb

yx x d   of the discrete 

glide dislocation placed along the crack line ( 0y  ) and at a distance d  from the crack 

center (origin of the axes). Accordingly, a second auxiliary problem is considered in order to 

generate the corrective solution. A geometrically identical body to the cracked case is 

studied, however, without the loading of the discrete glide dislocation. The only loading in 

this geometry is applied along the crack faces and consists of equal and opposite tractions to 

those generated in the first auxiliary problem. Thus, the boundary conditions of this problem 

are 

 

 , 0 0yy x  ,         , 0 , 0xb

yx yxx x d    ,     , 0 0yzm x      for  x a  , (29) 

 

augmented with the regularity conditions (28). It is worth noting that contrary to the problem 

of the interaction of a finite-length crack with a discrete climb dislocation examined in Part I, 

in the present case, in order to satisfy the boundary conditions (29), it is sufficient to 

distribute only glide dislocations along the crack faces, since the latter defect does not induce 

any normal stresses or couple-stresses along the crack plane ( 0y  ) (c.f. Eqs (42)). 

Therefore, the first and third of Eqs (29) are automatically satisfied. In the framework of 

classical elasticity, the problem is described by the first and second of (29), which are also 

satisfied by a distribution of discrete glide dislocations along the crack faces.  

The shear stress 
   , 0xb

yx x d   generated by a discrete glide dislocation at a distance 

d  from the origin is given in Eq. (41) of Section 4.1. This stress will serve as the influence 

function for the plane shear mode crack problem under consideration. 

 

3.2 Interaction of a finite-length crack with a screw dislocation 

The interaction problem between a finite-length crack and a screw dislocation is considered 

next in the framework of couple-stress theory. The geometrical configuration is the same as 

before: the crack length is 2a  and the distance of the defect from the center of the crack is 

equal to d  (Fig. 2). Antiplane strain conditions prevail and the only loading applied to the 
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body is that of a screw dislocation with Burgers vector  0, 0, zbb . Note that the problem 

of an antiplane crack under remote mode III loading in couple-stress elasticity was 

investigated by Gourgiotis and Georgiadis (2007) and Radi (2008), while the steady state 

dynamic case was examined by Mishuris et al. (2012). 

In view of Eqs (25), the crack problem is described by the following boundary 

conditions 

 

     
1

,0 , 0 , 0 0
2

yz yz x yyt x x m x     ,    , 0 0yxm x        for     x a  , (30) 

 

 

 

 

Fig. 2: Interaction of a finite length antiplane crack with a discrete screw dislocation. 

 

 

along with the regularity conditions at infinity 

 

0pz   ,     0pqm  ,      as      r   , (31) 

 

where    , ,p q x y . Equations (31) suggest that there is no other remote loading to the 

body except the one induced by the screw discrete dislocation. As it was shown by 

Gourgiotis and Georgiadis (2007), a discrete screw dislocation in couple-stress elasticity 

generates only shear stresses 
   ,0zb

yzt x   along the crack plane ( x  , 0y  ), so that 

   , 0 0zb

yxm x   (see also Section 4.2). 
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As in the plane strain case, the original problem is decomposed into two auxiliary 

problems: (i) the un-cracked body subjected to the shear loading    ,0zb

yzt x d  due to the 

discrete screw dislocation placed at a distance d  from the crack center (origin of the axes). 

(ii) the corrective solution where the cracked body is loaded along the crack faces with equal 

and opposite tractions to those generated in the first auxiliary problem. Thus, the boundary 

conditions of the corrective solution are 

 

             
1

,0 ,0 , 0 , 0
2

z z zb b b

yz yz yz x yyt x t x d x d m x d         ,     

 , 0 0yxm x      for  x a  , (32) 

 

augmented with the regularity conditions (31).  

The total shear stress    ,0zb

yzt x d  generated by a discrete screw dislocation in 

isotropic infinite couple-stress medium is given in Eq. (49) in Section 4.2. This stress will 

serve as the influence function for the antiplane shear mode crack problem under 

consideration. 

 

4. Influence functions 

The stress fields of a glide and a screw dislocation in an infinite couple-stress medium are 

obtained in this Section. These fields are derived either by employing a stress functions 

approach or by using Fourier transforms. 

 

4.1 A glide dislocation in couple-stress elasticity 

Α discrete glide dislocation with Burgers vector  , 0, 0xbb  is imposed at the origin of the 

 ,x y -plane. In the framework of couple-stress elasticity, the appropriate Mindlin’s stress 

functions for this problem have been presented by Cohen (1966), Knésl and Semela (1972), 

and Nowacki (1974)  

 

 
 2ln 1 sin

4 1

xb r
r




 
   


 , (33) 
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1

2
cosxb r

K
r






  
    

  
 , (34) 

 

where  
1 2

2 2r x y  ,  1tan y x   and  iK r  is the thi  order modified Bessel 

function of the second kind. Substituting Εqs (33) and (34) into (19)-(24) , we derive the 

stress fields for a glide dislocation in an infinite isotropic medium as 

 

 

 

2

22

2 02

2 2
(3sin sin3 ) sin3

4 1

(sin sin3 ) ,
4

x x xb
xx

x

b b r
K

r r r

b r r
r K K

 
   

  


 



  
          

     
           

  (35) 

 

 

2

22

2 02
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4
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r r r

b r r
r K K

 
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  


 


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  (36) 

 

 

2

22

2 02

2 2
(cos cos3 ) cos3

4 1

(cos cos3 ) ,
4

x x xb
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x
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K
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r K K

 
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  


 
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  (37) 
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 
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2 02
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4

x x xb
yx

x

b b r
K

r r r

b r r
r K K

 
   

  


 



  
         

     
           

  (38) 

 

 
2

2 02

2
cos2x x xb

xz

b r b r
m K K

r

 


 

    
      

    
 , (39) 

 
2

22

2
sin 2x xb

yz

b r
m K

r






  
    

  
. (40) 

 

Employing the asymptotic relations for the modified Bessel functions (see Part I, Eq. (21)), 

we observe that as 0r  , the stresses pq  retain the Cauchy type singularity that arises in 

classical elasticity. On the other hand, the couple-stress xzm  exhibits a logarithmic singularity 
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while the couple-stress 
yzm  is bounded as 0r  . The stress field reduces to the 

corresponding solution of classical elasticity as 0 . 

Finally, from Εqs (36), (38) and (40),  we obtain the following tractions for 0y   at a 

surface defined by  0,1n  

 

   
 

2

22

2 02

2 2
, 0

2 1
x x xb

yx

x

b b x
x K

x x x

b x x
x K K

 


  





  
        

     
          

 ,  (41) 

   , 0 0xb

yy x  ,     
   , 0 0xb

yzm x  . (42) 

 

Εq. (41) is the influence function for the interaction problem of a finite-length crack and a 

glide dislocation in couple-stress theory presented in Section 3.1. 

 

4.2 A screw dislocation in couple-stress elasticity 

The stress field generated by a screw dislocation with Burgers vector  0,0, zbb  in an 

infinite isotropic couple-stress medium has been derived previously by Gourgiotis and 

Georgiadis (2007) using the Fourier integral transform method. The out-of-plane 

displacement in that case becomes 

 

 
2

22

2
1 sin 2

2 4

z zb b r
w K

r
  

 

  
      

  
 . (43) 

 

with    . It should be noted that only the first term in Εq. (43) contributes to the 

displacement discontinuity while the quantity within the bracket is continuous and bounded 

as 0r  . Therefore, the displacement w  remains bounded as we move towards the 

dislocation core similarly to the classical elasticity solution.  

Accordingly, the stress field for a discrete screw dislocation in couple-stress elasticity 

is obtained by substituting Εq. (43) to the constitutive relations (19)-(24) 
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   2

3

1
sin sin3

2
z z zb

xz

b b

r r

  
  

 


    , (44) 

   2

3

1
cos cos3

2
z z zb

yz

b b

r r

  
  

 


  , (45) 

 

       

 

22 2 2

22 2 2

2

0 0 2

1 3 1 2
cos2 cos4

1
3 4 cos4

8

z z z zb b
yy xx

z

b b r
m m K

r r r

b r r r
K K K

   
 

 

 




    
       

  

          
                   

 , (46) 

 

     

 

2 2

22 2

2

2 0 2

1 2 6 1
sin 4 sin 2

2

1
2 sin 2 3 4 sin 4

8

z zb
yx

z

b r
m K

r r

b r r r
K K K

  
 



 
 



     
      

    

          
                   

, (47) 

 

   

   

2 2 2

2 0 22 2

2

22

1 3 2 1
3 4 sin 4

8

1 2 1
sin 2

2 2

z zb
xy

z

b r r r
m K K K

r r

b r
K

r

 




  




           
            

          

    
    

  

. (48) 

 

Regarding the characteristics of the above stress field, the following points are of notice: (i) 

Based on the asymptotic behavior or the modified Bessel functions (see Part I, Eq. (21)), we 

conclude that the shear stresses exhibit an 
3r
 singularity, whereas the couple-stresses 

behave as 
2r
 at the dislocation core. (ii) As 1   (i.e.    ), the above stress field 

reduces to the corresponding classical elasticity field.  

Finally, in view of Εqs (45)-(47), it is noted that on the crack plane ( 0y  ) we have 

   ,0 0zb
yxm x  , while the total shear stress becomes  
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           

   

 

22 2 2

23 3 2

2

2 0

1
,0 , 0 , 0

2

2 1 6 1 2

2

1
5 3

4

z z zb b b
yz yz x yy

z z

z

t x x m x

b b b x
K

x x x x

b x x
K K

x



    

  

 



   

    
      

  

      
          

 .  (49) 

 

It is remarked that the shear stress yzt  exhibits a cubic singularity 3x  as 0x  . Equation 

(49) is the influence function for the interaction problem of a finite-length crack and a screw 

dislocation in couple-stress theory presented in Section 3.2. For 1    it reduces to the 

corresponding influence function of classical elasticity (Bilby, 1968). 

 

5. Integral equation approach 

5.1 Interaction of a finite-length crack with a glide dislocation 

In order to generate the corrective solution stresses (Εq. (29)), discrete glide dislocations 

need to be distributed along the crack faces. The elastic field generated by the continuous 

distribution of these defects is derived by integrating the influence function (Εq. (41)) along 

the crack faces. The first and third of Εq. (29) are automatically satisfied, so that a single 

integral equation is obtained. Employing asymptotic analysis, we separate the singular from 

the regular part of the kernel and obtain the following singular integral equation 

 

   
 
 

 
   

1

1

4

3 2
, 0 ,

2 1

x

aa

b II

yx II

a a

B t
x d dt B t R x t dt

x t

  


   


    

 


 
 

    x a .  (50) 

 

The quantity       II x xB t db t dt d u t dt     is the glide dislocation density at a point t  

 t a , where    , 0 , 0x x xu u t u t     is the relative tangential displacement between 

the upper and lower crack faces. The kernel  4R x t  is given as 

 

 
 

 

 

2

4 22

2

2 022

2 2 1

2

2

x t
R x t K

x t x t

x t x tx t
K K

x t

   
      

    

      
      

     

, (51) 
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and it can be readily shown, using the asymptotic properties of the modified Bessel functions, 

that is regular as x t  . 

Further, in order to ensure uniqueness of the values of the tangential displacement for 

a closed loop around the crack, the following closure condition must hold  

 

 
1

1
0IIB t dt


  . (52) 

 

In the special case that the discrete dislocation lies at the crack-tip, the LHS of Eq. (50) tends 

to zero and the contribution of the defect is described by letting Eq. (52) be equal to the 

Burgers vector 
xb  of the discrete glide dislocation (Markenscoff, 1993). 

Regarding now the asymptotic behavior of the tangential displacement xu , Huang et 

al. (1997) showed that in the framework of couple-stress theory it behaves as ~
1 2R  near the 

crack tips, where R  is the radial distance from the crack tip. Thus, the glide dislocation 

density behaves as ~
1 2R

 and can be written as 

 

    
1 2

2

0

1 ,      1II n n

n

B t b T t t t






   , (53) 

 

where  nT t  are the Chebyshev polynomials of the first kind, nb  are unknown parameters 

and t t a .  

The singular (Cauchy) integral in Εq. (50) is calculated in closed form using Εq. (A1) 

in Appendix A. Also, due to the complementary condition (52), the constant 0b  turns out to 

be zero. Based on the above considerations and after appropriate normalization over the 

interval  1, 1 , the integral equation (50) is written in the following discretized form 

 

   
 
 

   (4)

1

1 1

3 2
, 0

2 1
xb

yx n n n n

n n

ax ad b U x b Q x
  


 

 



 


    


  ,      1x   , (54) 

 

where x x a , d d a  and the function 
   4

nQ x  is defined as 
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        
1 1 24 2

4
1

1n nQ x T t t R ax at dt



    .  (55) 

 

Note that the regular integral in (55) is evaluated using the standard Gauss-Chebyshev 

quadrature. 

Eq. (54) is solved numerically by truncating the series at n N  and using an 

appropriate collocation technique, where the collocation points are chosen as the roots of the 

second kind Chebyshev polynomial  NU x , viz.   cos 1jx j N   with 1,2,...,j N . 

The convergence of the solution depends on the ratio a  as shown in Table 1 (Section 7).  

 

5.2 Interaction of a finite-length crack with a screw dislocation 

As in the shear mode crack problem, the generation of the corrective solution stresses  

(Εq. (32)) is achieved by a continuous distribution of screw dislocations. The desired elastic 

field is produced by integrating the influence function (Εq. (49)) along the crack faces. In this 

way, a single integral equation that governs the problem is obtained. With the use of 

asymptotic analysis, we separate the singular from the regular part of the kernel and obtain 

the following governing equation 

 

   
 

 

 

   
1

1

2

1 23

3 5

, 0 F.P.

,

z

a a

b III III

yz

aa

a

III

a

B t B t
t x d c dt c dt

x tx t

c B t R x t dt x a





    


  

 







 , (56) 

 

where the symbol F.P. denotes a Hadamard finite-part integral (see e.g. Kutt, 1975; 

Monegato, 1994). Equation (56) is a hyper-singular integral equation with cubic and Cauchy 

type singularities. The screw dislocation density at a point t   t a  is defined as 

      III zB t db t dt d w t dt    , where    , 0 , 0w w t w t     is the relative out-of-

plane displacement between the upper and lower crack faces. The constants qc , with 

1, 2, 3q  , are given as 

 

      
22

1 2 3

2 91 3 1
, , ,

2 16
c c c

      

  

   
     (57) 
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and the regular kernel  5R x t  as 

 

 
   

 

2 2

5 23 2

0 2

2 1
6

2

1 1
3 5

4 4

x t
R x t K

x t x t

x t x t
K K

x t

    
             

      
      

      

 . (58) 

 

It is interesting to note that for 1   , Εq. (56) reduces to the corresponding governing 

equation in classical elasticity. 

In the framework of couple-stress theory, Zhang et al. (1998) employed the 

asymptotic Williams technique to show that the antiplane displacement w  behaves as ~
3 2R  

near the crack tip region. Therefore, the screw dislocation density behaves as ~
1 2R  and can 

be written as 

 

    
1 2

2

0

1 ,      1III n n

n

B t b U t t t




    , (59) 

 

where  nU t  are the Chebyshev polynomials of the second kind. Also, the following closure 

condition holds in order to ensure uniqueness of the values of the antiplane displacement for 

a closed loop around the crack 

 

 
1

1
0IIIB t dt


  . (60) 

 

After appropriate normalization over the interval  1, 1 , the integral equation (56) 

takes the following form for 1x   
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   
  
 

  
 

1 1 2
22

1

32
0

1

1 21 2

(5)

2 3

0 01

1
, 0 F.P.

1

z
nb

yz n

n

n

n n n

n n

U t tc
t ax ad b dt

a x t

U t t
c b dt c b Q x

x t






 

 


   




 














 

, (61) 

 

with x x a , d d a , and the function    5

nQ x  is defined as 

 

        
1 1 25 2

5
1

1n nQ x U t t R ax at dt


    . (62) 

 

The singular and hyper-singular integrals in Εq. (61) are calculated in closed form 

using Εqs (A2) and (A3) in Appendix A, whereas the regular integral in Εq. (62) is evaluated 

using the standard Gauss-Chebyshev quadrature. The closure condition (Eq. (60)) dictates 

that the constant 0b  is equal to zero. In view of the above, the hyper-singular integral 

equation (61) is written in the following discretized form 

 

   
 

       

   

2
2 21

1 12 2
1

(5)

2 1 3

1 1

, 0 3 2
4 1

,         1 ,

zb

yz n n n

n

n n n n

n n

c
t ax ad b n n U x n n U x

a x

c b T x c b Q x x

 

 



 



 

       
 

  



 

  (63) 

 

In order to solve Eq. (63), an appropriate collocation technique is employed. In this 

case, we select as collocation point the roots of the Chebyshev polynomial  1NT x , that is 

   cos 2 1 2 1kx k N      with 1,2,..., 1k N  . Equation (63) along with the closure 

condition (60) comprise an algebraic system of 2N   equations with 1N   unknowns which 

is solved in the least-squares sense. Solution convergence is achieved for different numbers 

N  depending on the ratio a , as shown in Table 2 (Section 7). Finally, after calculating the 

unknown parameters nb , we use Εq. (59) to evaluate the screw dislocation density IIIB . It 

should be noted that the numerical scheme followed herein for the solution of the hyper-

singular integral equation (56) differs from the approach employed by Gourgiotis and 

Georgiadis (2007). 
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6. Evaluation of the energy release rate  

6.1 Interaction of a finite-length crack with a glide dislocation 

In this Section, the energy release rate (J-integral) is derived at both crack tips. In particular, 

taking into account that in the plane shear mode problem the normal stress 
yy  and the 

couple-stress 
yzm  vanish along the crack plane 0y  , the J-integral takes the simple form 

(c.f. Eqs (38) and (39) in Part I) 

 

 
 

0

, 0
2 lim , 0

a

x

yx

a

xu
J x dx

x








  




 






  
   

  
 . (64) 

 

The dominant singular behavior for the shear stress 
yx  is attributed to the Cauchy integral in 

Εq. (78). The asymptotic behavior of the shear stress near the right  x a  and left 

 x a  crack-tips is given as  1x   
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 . (65) 

 

Further, employing the definition of the glide dislocation density, the following asymptotic 

relations are obtained  1x   

 

 
 

 
   

1 2

1

1 2

1

, 0 1
1

2 2

, 0 1
1 1

2 2

N
x

n

n

N
nx

n

n

u x a
b x

x

u x a
b x

x

 





 





 
   



  

   






.  (66) 

 

To evaluate the J-integral, we follow a strictly analogous procedure to the one outlined in 

Part I of this study (see Section 6, Part I). More specifically, a rectangular shaped contour is 

used that surrounds the (left or right) crack tip and has vanishing height along the y-direction. 

Employing the asymptotic expressions (65) and (66) in conjunction with Fisher’s theorem for 
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products of singular distributions, the J-integrals for the right and left crack tips assume 

finally the forms 
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where 
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6.2 Interaction of a finite-length crack with a screw dislocation 

The J-integral for the antiplane case is evaluated now at the right and left crack tips. In the 

antiplane case, the couple-stress 
yxm  vanishes for 0y  , so that the J-integral is written as 
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The dominant singular behavior for the shear stress yzt  ahead of the crack tips is attributed to 

the hyper-singular integral in Eq. (56). For the right crack tip x a , the total shear stress is 

given as (see Εq. (Α6) in Appendix A) 
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  (70) 

 

in a similar manner the total shear stress ahead of the left crack-tip becomes 
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Moreover, for the screw dislocation density  IIIB t , the following asymptotic relations hold 

 1x   

 

 
   

 
     

1 2

1

1 2

1

,0 1
1 1

2

,0 1
1 1 1

2

N

n

n

N
n

n

n

w x a
n b x

x

w x a
n b x

x

 



 



 
   



  

    






 .  (72) 

 

In view of the above, the J-integral at the right crack tip is given by the expression 
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where we recall that 1x x  . Note that the distributions of the bisection type 3/2x


 and 1/2x  

in Eq. (73) are defined in Eq. (45) in the Part I of this study. Moreover, for the evaluation of 

the integral in (73), use of Fisher’s theorem has been made where the product of distributions 

is computed as:      
3 2 1 2 12x x x

 

    . 

In an analogous manner, the J-integral at the left crack tip is given as 

 

 
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where  
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The corresponding values for the J-integral in classical elasticity may be evaluated in 

closed form by utilizing a similar contour as the one used earlier in conjunction with the 
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elastic fields of the problem (Zhang and Li, 1991). Following this procedure, the following 

forms for the J-integral at the right and left crack tips are obtained 
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  (77) 

 

7. Results and discussion 

In this Section, we proceed to the presentation and discussion of the results obtained for the 

two crack problems. 

 

7.1 Interaction of a finite-length crack with a glide dislocation 

In Fig. 3a, the effect of the ratio a  on the tangential crack-face displacement is displayed 

for a discrete glide dislocation lying at a distance 2.5d a   in a couple-stress medium with 

Poisson’s ratio 0.3  . It is observed that as the characteristic length  becomes comparable 

to the crack length, the crack-face displacements become smaller in magnitude compared to 

the respective ones in classical elasticity. For instance, the maximum displacement for 

5a   appears reduced by 24% compared to the maximum displacement in the classical 

elasticity solution. This rigidity effect has already been reported in crack problems in the 

framework of couple-stress elasticity and has been verified also in the opening mode case 

examined in the Part I of this study (see Fig. 5, Part I). In Fig. 3b, the effect of the dislocation 

distance to the crack-face displacements is investigated for a material with 10a   and 

0.3  . It is shown that the magnitude of the crack face displacements decreases quickly as 

the distance of the dislocation to the crack tip increases. This due to the fact that the 

dislocation loading diminishes as 
1( )x d   from the dislocation core. 
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Fig. 3: Normalized upper-half crack tangential displacement profile for a) various ratios a  due to 

the interaction with a glide dislocation lying at 2.5d a  . b) various dislocation positions in a 

couple-stress material with 10a  . The Poisson’s ratio is 0.3   in all cases. 

 

 

Next, we study the behavior of the shear stress 
yx  ahead of the crack tip. 

Superposing the solutions of the two auxiliary problems, we obtain the following expression 
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 , (78) 

 

In view of the asymptotic relations (65) it is inferred that the shear stress 
yx   at the crack-

tips exhibits a square-root singularity, as in the classical elasticity case. 

Further, integrating Εq. (39) across the crack faces  , 0x a y   and employing 

results from asymptotic analysis, the couple-stress xzm  is evaluated as 

 

a b 
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where the regular kernel  6R x t  is defined as 
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Regarding the asymptotic behavior of the couple-stress xzm  near the right crack tip, the 

following expressions hold for x a  
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which imply that xzm  is bounded at the crack tip, verifying the asymptotic results obtained by 

Huang et al. (1997). 

In Fig. 4a, the distribution of the shear stress 
yx  due to the interaction with a discrete 

glide dislocation lying at a distance 2.5d a   is displayed in a couple-stress medium with 

10a   and Poisson’s ratio 0.3  . We observe that the Cosserat effects are visible within 

a zone of 7  around the dislocation core and 2  near the crack tip. Also, as x d , the shear 

stress retains the Cauchy type singularity reported in classical elasticity. On the other hand, 

the couple stress xzm  (Fig. 4b) exhibits a bounded negative value at the right crack tip and 

diminishes quickly to zero as x d . On both sides of the discrete dislocation ( x d ), the 

field changes from finite negative values to unbounded positive values, exhibiting a 

logarithmic singularity, as Eq. (39) suggests. It should be mentioned that for certain positions 

of the discrete defect, positive values of the couple-stress xzm  are reported in the range 

0 x d a   . 
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Fig. 4: Variation of a) the shear stress yx  and b) the couple-stress 
xzm  ahead of the right crack tip 

due to the interaction with a glide dislocation lying at 2.5d a   in a medium with 10a   and 

Poisson’s ratio 0.3  . 

 

 

The variation of the stress intensity factor (SIF) in both crack tips is examined next in 

the context of couple-stress theory. The SIF at the right crack tip (a similar definition can be 

given for the left crack tip) is defined as    
1 2

lim 2 , 0II yx
x a

K x a x 


    , where the shear 

stress  , 0yx x  is given by Εq. (78). In Fig. 5a, the deviation of the SIF in couple-stress 

theory from the classical elasticity prediction is highlighted by plotting the ratio .clas

II IIK K  in 

both crack tips with respect to the microstructural ratio a  and the Poisson’s ratio   for a 

glide dislocation placed at 1.4d a  . It is observed that the SIF in couple-stress theory is 

higher when couple-stress effects are considered for any a . As a  increases, all curves 

exhibit an initial decreasing response until a minimum value is reached in the range 

0.1 0.15a   for the right crack tip (this range varies depending on the Poisson’s ratio and 

the dislocation distance d a ). Then, the ratio increases monotonically tending to an 

asymptotic value of  3 2  as a  . For 0a   a finite jump discontinuity is reported 

(i.e. . 1clas

II IIK K  ), which is attributed to the severe boundary layer effects of couple-stress 

elasticity in singular stress-concentration problems (Sternberg and Muki, 1967; Gourgiotis 

and Georgiadis, 2007; 2008). It should be noted that the magnitude of this discontinuity, 

b a 
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equal to  
1 2

3 2 , is independent of the distance of the defect and significantly higher than 

the one observed in the interaction problem between a finite-length crack and a climb 

dislocation (see Part I, Fig. 8). Also, the same discontinuity has been observed in other 

problems where in-plane shear loading is applied to the crack faces (Gourgiotis and 

Georgiadis, 2007; Gourgiotis et al., 2012). 

 

 

         

 

 

Fig. 5: a) Variation of the ratio of SIFs .clas

II IIK K  in couple-stress theory and in classical elasticity 

with a  for a glide dislocation lying at 1.4d a  . b) Variation of .clas

II IIK K  in the right crack-tip 

with the dislocation distance d a  in a material with 10a  . 

 

Moreover, in Fig. 5b, the variation of the ratio .clas

II IIK K  ahead of the right crack-tip is 

plotted for various values of the dislocation distance d a  and the Poisson’s ratio   in a 

medium with 10a  . As d a  increases, all curves exhibit an initial decreasing response 

until a minimum value is reached in the range 1.25 1.35d a   for the right crack tip (this 

range varies depending on the Poisson’s ratio and the ratio a ). Then, the ratio increases 

monotonically as the dislocation is placed farther from the crack-tip and quickly reaches a 

constant value. This value coincides with the corresponding value of the ratio in the problem 

of a finite-length crack under constant remote loading (mode II), for the same ratio a . 

Indeed, Gourgiotis and Georgiadis (2007) reported a ratio of 1.66 for 0.1a   and 0   

a b 
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while for 0.25   and 0.5   the values are 1.52 and 1.38, respectively. A similar response 

is observed at the left crack-tip.  

 

Table 1: Convergence of the SIFs ratio .

, ,

clas

II r II rK K  at the right crack-tip for increasing collocation points N . 

The glide dislocation lies at a distance 2.0d a   in a couple-stress material with Poisson’s ratio 0  . 

N  1.0a   0.8a   0.5a   0.2a   0.1a   0.05a   0.01a   0.005a   

10 1.78048 1.55748 1.18799 1.24669 1.51183 1.66267 2.71730 2.96546 

20 1.78051 1.55750 1.18801 1.24668 1.51058 1.63311 1.77377 2.12084 

30 1.78051 1.55750 1.18801 1.24668 1.51058 1.63310 1.71490 1.75901 

40      1.63310 1.71424 1.72635 

50       1.71405 1.72338 

60       1.71405 1.72335 

70        1.72335 

 

 

We proceed to the numerical evaluation of the energy release rate (J-integral) and the 

investigation of its dependence upon the characteristic length  of couple-stress elasticity, the 

Poisson’s ratio  , and the distance d  of the discrete defect from the crack tip. In Fig. 6, the 

variation of the ratio 
.clasJ J  on both crack tips with respect to a  and the Poisson’s ratio 

  is presented for a glide dislocation lying at 1.4d a  . The expressions for the J-integral in 

classical elasticity remain the same as in the interaction problem between a finite-length 

crack and a climb dislocation examined in Part I (see Eq. (48) in Part I). The plot reveals that 

as 0a  , the ratio 
.clasJ J  tends to unity, so that the J-integral in couple-stress theory 

converges to the corresponding result of classical elasticity. This behavior has been reported 

in other studies of crack problems in couple-stress theory (Atkinson and Leppington, 1977; 

Gourgiotis and Georgiadis, 2008; Gourgiotis et al., 2012). Similarly to the SIF response, the 

J-integral ratio does not exhibit a monotonic behaviour with respect to a . Specifically, as 

a  increases, all curves exhibit an initial decreasing response  .clasJ J  until a minimum 

value is reached for 0.1 0.15a   (for the right crack tip) and then the ratio monotonically 

increases  .clasJ J . Therefore, depending on the ratio a , the energy release rate in 

couple-stress theory may either decrease, compared to the classical value, revealing a 

strengthening effect, or increase predicting thus a weakening effect. The asymptotic value of 

the ratio 
.clasJ J  as a   is the same with the ratio of SIFs, that is  3 2 . 
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Fig. 6: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with 

respect to the ratio a  for a glide dislocation lying at 1.4d a  . 

 

 

A more detailed description of how the ratio of the energy release rates depends upon 

the material and geometrical characteristics of the cracked body is presented in Fig. 7. More 

specifically, Fig. 7 illustrates the level sets of 
.clasJ J  (right crack tip) with respect to the 

ratios a  and d a  for a couple-stress material with Poisson’s ratios 0   (Fig. 7a) and 

0.5   (Fig. 7b). It is observed that below the contour 
. 1clasJ J  , the energy release rate, or 

equivalently the crack driving force, increases in couple-stress theory. This region, where the 

weakening effect (
. 1clasJ J  ) is predicted, reduces by a small percentage as the Poisson’s 

ratio increases. However, comparing this response to the one obtained for the opening mode 

(Part I, Fig. 10), we conclude that the response varies significantly for the two plane 

problems. In the shear mode studied herein, the weakening effect is limited to smaller 

distances to the crack tip. Similar conclusions can be drawn by evaluating the driving Peach-

Koehler force exerted on the discrete glide dislocation using its definition and the expression 

for the shear stress 
yx  (Εq. (78)). 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29 

 

 

        

 

Fig. 7: Level sets of the ratio .clasJ J  with respect to a  and d a  for Poisson’s ratio  

a) 0   and b) 0.5  . 

 

7.2 Interaction of a finite-length crack with a screw dislocation 

The discussion of the results for the antiplane crack problem is now in order. In Fig. 8, 

the dependence of the antiplane displacement w  upon the ratio a  is plotted for a discrete 

screw dislocation lying at a distance 2.5d a   in a couple-stress medium with 0  . 

Focusing on the detail of this figure, we observe that the crack faces near the crack tip close 

in a smoother way  ~ 3 2x  (as Eq. (72) suggests) compared to the classical elasticity prediction 

(~ 1 2x ). This type of closure has been observed also in experimental studies where the crack 

tip remains sharp and not blunted up to the atomic scale (Elssner et al., 1994). Moreover, 

similarly to the plane problem presented earlier, it is noted that as the crack length becomes 

comparable to the characteristic length , the material exhibits a more stiff behaviour, that is, 

the crack-face displacements are smaller than those provided by classical elasticity. The latter 

solution serves as an upper bound for the couple-stress elasticity results. 

 

 

a b 
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Fig. 8: Normalized upper-half crack antiplane displacement profile for various ratios a  due to the 

interaction with a screw dislocation lying at 2.5d a   in a material with 0  . 

 

 

The total shear stress yzt  ahead of the crack tip can be evaluated using Eq. (56)  
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, (82)  

 

where the integrals in (82) are now regular. In addition, based on previous asymptotic 

considerations, the shear traction yzt  exhibits a higher-order singularity at the crack tip of the 

form 3 2x   as compared to the standard square-root singularity predicted by the classical 

theory. Such an asymptotic behavior has been reported also in the mode III problem in 

couple-stress theory (Gourgiotis and Georgiadis, 2007) and in dipolar gradient elasticity for 

both plane and antiplane strain modes (Georgiadis, 2003; Gourgiotis and Georgiadis, 2009). 
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Fig. 9: Variation of the total shear stress yzt  ahead of the right crack tip due to the interaction with a 

screw dislocation lying at 2.5d a   in a medium with 500a   for different values of  . 

 

In Fig. 11, the distribution of the shear stress yzt  due to the interaction with a discrete 

screw dislocation lying at a distance 2.5d a   is presented, in a medium with 500a   and 

three values of the parameter  . We observe that yzt  takes on negative values in a very small 

zone ahead of the right (and the left) crack tip  0.5x  , exhibiting, thus, a cohesive-

traction character along the prospective fracture zone. Also, a bounded maximum value is 

noted for 2x  , which may be used a critical stress criterion for further advancement of the 

crack. For 2x  , the distribution of the total stress yzt  tends to the classical elasticity 

solution. Regarding the parameter  , it is noted that as 1   the width of the cohesive-

traction zone significantly reduces, while the maximum value of the total stress increases. A 

similar behavior has been reported in the mode III problem in couple-stress theory 

(Gourgiotis and Georgiadis, 2007) and in dipolar gradient elasticity (Georgiadis, 2003) and is 

also supported by experimental evidence (Prakash et al., 1992).  

In Fig. 10, the variation of the ratio 
.clasJ J  on both crack tips with respect to the 

ratio a  and the constant   is given, for a screw dislocation lying at 2.5d a  . As in the 

plane strain cases, we note that as 0a   the energy release rate tends to the corresponding 

result of classical elasticity. However, contrary to the previous cases, the ratio 
.clasJ J  
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exhibits a monotonically decreasing behavior as a  increases. This response is independent 

of the screw dislocation distance d a . Consequently, the energy release rate reveals a 

strengthening effect in the antiplane problem when couple-stresses are considered. It is 

interesting to note that the ratio 
.clasJ J  tends to zero for 0   and 1a  . This behavior 

has also been observed in strain gradient elasticity in the cases of mode I and mode II cracks 

(Gourgiotis and Georgiadis, 2009). Finally, it should be mentioned that, contrary to the plane 

strain problems, the ratio 
.clasJ J  is always higher at the left crack tip. 

 

 

 

Fig. 10: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with a  

for a screw dislocation lying at 2.5d a  . 

 

 

Table 2: Convergence of the ratio .

, ,

clas

r rJ J  at the right crack-tip for increasing collocation points N . 

The screw dislocation lies at a distance 2.0d a   in a couple-stress material with 0.9   . 

N  1.0a   0.8a   0.5a   0.2a   0.1a   0.05a   0.01a   0.005a   

10 0.27016 0.37823 0.57837 0.81850 0.80671 0.17252 0.66546 2.55497 

20 0.27017 0.37827 0.57839 0.81810 0.90653 0.95216 0.09993 0.22237 

30 0.27017 0.37827 0.57839 0.81806 0.90681 0.95287 0.38653 0.09138 

40    0.81806 0.90681 0.95287 0.95458 0.19633 

50       0.99012 0.72165 

60       0.99049 0.97271 

70       0.99049 0.99431 

80        0.99522 

90        0.99522 
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8. Concluding remarks 

 

In Part II of this investigation, the interaction problems between a finite-length crack and 

discrete glide and screw dislocations were examined in the framework of couple-stress 

elasticity. The distributed dislocation technique was employed to formulate the governing 

equations for both problems, which resulted, accordingly, in a singular and a hyper-singular 

integral equation for the plane and antiplane shear mode problems. 

As in the opening mode problem examined in Part I of this study, a rigidity effect was 

observed in both shear mode cases. Moreover, it was shown that the couple-stress 

contribution is significant within a small zone adjacent to the crack tip and around the 

dislocation core. In the case of the glide dislocation loading, the evaluation of the energy 

release rate ( J -integral) revealed an interesting ‘alternating’ behavior between strengthening 

and weakening of the crack as compared to the classical elasticity behavior. On the contrary, 

in the case of the screw dislocation loading the response is monotonic predicting always a 

strengthening effect when couple-stresses are considered. 

As a final comment to this two-part investigation, it should be noted that, as a first 

approximation, the edge defects were assumed to lie along the crack plane. In the general 

case, a randomly oriented discrete edge dislocation may be considered at an angle off the 

crack plane. This configuration leads in a mixed mode problem where discrete climb, glide, 

and constrained wedge disclinations need to be distributed along the crack faces in order to 

produce a traction free crack. Further, for some orientations and locations of the dislocation, 

partial or full crack closure might occur and the problem has to be formulated following a 

different approach. It should be noted that this problem has not been extensively investigated 

even in classical elasticity (Comninou, 1987). 
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Appendix  

 

In this Appendix, we provide the closed-form expressions for the singular and hyper-singular 

integrals involving Chebyshev polynomials that were utilized in Section 5. The singular 

integrals are calculated in the Cauchy principal value sense, while the hyper-singular 

integrals in the finite-part (F.P.) Hadamard sense. The following relations are reported for 

1x   (see also Kaya and Erdogan, 1987; Chan et al., 2003) 
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 (A3) 

 

where  nT t  and  nU t  are the Chebyshev polynomials of the first and second kind, 

respectively. 

For 1x  , the above integrals are no longer singular and are evaluated according to 

the following expressions 
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