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Observable patterns of cultural variation are consistently intertwined
with demic movements, cultural diffusion, and adaptation to differ-
ent ecological contexts (Cavalli-Sforza and Feldman 1981; Boyd and
Richerson 1985). The quantitative study of gene-culture co-evolution
has focused in particular on the mechanisms responsible for change
in frequency and attributes of cultural traits, on the spread of cultural
information through demic and cultural diffusion, and on detecting
relationships between genetic and cultural lineages. Here, for the
first time, we make use of worldwide whole-genome sequences (Pa-
gani et al. 2016) to assess the impact of processes involving popu-
lation movement and replacement on cultural diversity, focusing on
the variability observed in folktale traditions (N=596) (Uther 2004) in
Eurasia. We find that a model of cultural diffusion predicted by Iso-
lation by Distance alone is not sufficient to explain the observed pat-
terns, especially at small spatial scales (up to ∼4000 km). We also
provide an empirical approach to infer presence and impact of eth-
nolinguistic barriers preventing the unbiased transmission of both
genetic and cultural information. After correcting for the effect of
ethnolinguistic boundaries we show that, of the alternative models
we propose, the one entailing cultural diffusion biased by linguistic
differences is the most plausible one. Additionally, we identify 15
tales which are more likely to be predominantly transmitted through
population movement and replacement, and locate putative focal ar-
eas for a set of tales which are spread worldwide.
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Advances in DNA sequencing have opened new ways
for exploring the demographic histories of human

populations and the relationship between patterns of genetic
and cultural diversity around the world. Newly available
genome-wide evidence enables us to go beyond the use of
linguistic relationship as a measure of common ancestry [1–3],
and offers unprecedented support for studying the mechanisms
underlying the transmission of cultural information over space
and time [4–11], as well as the coevolution of genetic and
cultural traits [12–18] across populations.

A key question for research in this area concerns the
extent to which patterns of cultural diversity documented
in the archaeological and ethnographic records have been
generated by demic processes (i.e. the movement of people
carrying their own cultural traditions with them) or cultural
diffusion (i.e. the transfer of information without or with
limited population movement/replacement)[6, 19, 20]. Before
tackling this question, however, it is critical to note that
demic and cultural diffusion are not mutually exclusive
conditions, rather opposite extremes of a continuous gradient
whose intermediate and composite positions more accurately
represent empirical reality.

A broadly adopted null model of cultural diffusion draws on
the expectation that selectively-neutral variants would form
geographic clines produced over time by Isolation-by-Distance
processes (IBD; [21]). Under an IBD model, individuals or
groups which are spatially closer to each other are expected
to be more similar than individuals or groups that are
located further apart. A positive correlation between cultural
dissimilarity and geographic distance between samples is
therefore used to infer processes of cultural transmission of
non-adaptive information without population replacement
[8, 17]. On the other hand, observed genetic distance is the
composite result of serial founder events (SFE), long term
IBD and subsequent migratory events, which imply recent
movement and resettling of people [22]. A higher correlation
between genetic distance and cultural dissimilarity than
between culture and geography has therefore been proposed
as a way to single out the relative effect of demic processes on
the distribution of cultural variants [8].

In a recent study Creanza and colleagues [17] investigated
the process responsible for the observed global distribution
of (phonetic) linguistic variability by comparing it to genetic
and geographic distances. The authors found high correlation
between genetic and geographic distances at a worldwide
scale, while linguistic distances were spatially autocorrelated
only within a range of ∼10000 km. The lack of residual
correlation between genetic and linguistic distances up to this
spatial scale did not allow the authors to reject their null
model, and was interpreted as a signal of cultural diffusion
being the main driver of the distribution of phonetic variants
in human populations.

The use of genetic variability as a plausible proxy to reject
cultural diffusion as the sole responsible for the distribution
of cultural traits depends on being able to disentangle genetic
signals from geography. The high correlation between genetic
and geographic distances at a global scale [22] lowers the
inferential power of this model. However, this relationship is
not constant across different geographic scales. We noted that
the correlation obtained between pairwise genetic distances
is stronger when measured across all possible population
pairs at larger geographic scales, while it is considerably
lower at smaller geographic distances (below ∼6000 km for
the present dataset), possibly because of more recent and
short-range population movements (Figure 1 top, yellow
line). It is worth remembering that global trends have been
forming over the past ∼40000 years, while most cultural
traditions are likely to have evolved more recently. This is
supported by previous studies [17], and suggests that the
effect of population movements independent from IBD can
be identified only within limited geographic scales. At this
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spatial resolution events shaping the distributions of genetic
and cultural divergence are more likely to occur at the same
temporal scale and, hence, to be more probably causally
related.

An additional confounder is the potential effect of linguistic
barriers, which might cause departures from a pure IBD
model by constraining the exchange of genetic and/or
cultural information between demes belonging to different
ethnolinguistic groups. Given the relevance that spoken
language has on the transmission of folktales, and the light but
measurable impact they have for variants of individual tales
in Europe [23], ethnolinguistic barriers should also be consid-
ered as key components of plausible alternative models to IBD.

The diffusion of folktales: investigating mechanisms of
cultural transmission in the genomic era

Here we capitalize on the short-range decoupling of genetic
and geographic distance to further infer mechanisms of
genetic and cultural coevolution by using newly available
genomic evidence [24] as an unbiased proxy of population
relatedness. To do so, we analyze the observed distribution of
a set of individual folktales in Eurasia looking for deviations
from the null model of cultural diffusion predicted by
geographic distance alone. Folktales are an ubiquitous and
rigorously typed form of human cultural expression, and hence
particularly well-suited for investigating cultural processes at
wider cross-continental scale. Researchers since the Brothers
Grimm [25] have long theorized about possible links between
the spread of traditional narratives and population dispersals
and structure, but have found mixed levels of support for this
hypothesis when using indirect evidence for demic processes,
such as linguistic relationships among cultures. One recent
study suggested that, within the same linguistic family
(Indo-European), the distributions of a substantial number of
fairy tales were more consistent with linguistic relationships
than their geographical proximity, suggesting they were
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inherited from common ancestral populations [3]. This finding
is confirmed by the relevance that ethnolinguistic boundaries
may have for the transmission of variants of individual
folktales in Europe. Ross and colleagues [23] have shown that
at population level geographic distribution explains more
variability than ethnolinguistic grouping. At this scale, when
controlling for the effect of geography, linguistic boundaries
do not show any residual significant relationship with folktale
variant distribution, suggesting a possible temporal mismatch
between folktale and linguistic traditions. However, when
individual folktales are considered, ethnolinguistic identity is
a significant predictor. This suggests that demes belonging
to different ethnolinguistic affiliations may undergo higher
costs for the transmission of individual folktales even when
they are closer in space. The simultaneous effect of shared
linguistic ancestry and spatial proximity was also documented
on the distributions of folktales recorded among Arctic
hunter-gatherers [26].

Overview of the present study

In the present study we focus on 596 folktales comprising
"Animal Tales” and “Tales of Magic” [27], typed as present
(1) or absent (0) in 33 populations (DatasetMAIN) for which
whole- genome sequences are available and exhibiting presence
of at least five folktales (Figure 1 b; SI Appendix Section 1;
Dataset S1 Table S2-I, Table S2-II, Table S2-3.1-3, Table S2-6).
Following previous examples [8] we test for deviations from
a null model of pure cultural diffusion without population
replacement (IBD), in which geographic distance alone is the
best predictor of the decreasing number of shared folktales be-
tween pairs of populations (Dataset S1 Table S2-4,Table S2-5).
We measure and compare the fit of a number of alternative
models comprising: a) a clinal model in which populations
belonging to different ethnolinguistic groups are less likely to
share folktales as predicted by IBD (cultural diffusion with
linguistic barriers); b) population movement and admixture
between demes (demic process) as a substantial additional
driver of folktale transmission; and c) a demic process con-
strained by linguistic barriers.

We test our hypothesis first by visualizing possible mis-
matches between actual geographic location of each population
and the location inferred by applying explicit models account-
ing for genetic and cultural admixture (population movement
with replacement) [28]. We quantify the impact of linguistic
barriers on both genetic and folktale variability using Analysis
of MOlecular VAriance [29]. We further investigate this by
looking for the set of linguistic barrier parameters (intensity
and geographic buffer) that maximizes the fit between genetic
distance and geographic distance on the one hand, and folktale
distance and geographic distance on the other. We use this
parameter combination to generate alternative models whose
fitness is formally assessed at both a global scale and over
cumulative geographic distance. Following the assumptions
of previous works [8] we develop a method to identify those
folktales that - in the whole corpus - may be more likely to
have been transmitted through population movement and re-
placement, supporting the idea that individual tales may have
undergone different processes. To provide a starting point for
this further analysis on the diffusion of individual or smaller
packages of tales, we infer potential focal areas - intended as a
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putative proxy for center of origin - of the most popular tales
in the dataset.

Results

Effects of ethnolinguistic boundaries. We use AMOVA[29] to
formally asses the impact of ethnolinguistic boundaries on
both genetic and folktale variability. To do this, we assign
each population to an ethnolinguistic group (see Materials and
Methods section; SI Appendix section 5; tDataset S1 able SI2-
9.1). Our analysis yielded ΦST = 0.036 (p<0.001) for genetic
distance matrix while ΦST =0.1 (p<0.001) for distances based
on folktale distributions. These results confirm the expected
differential impact of intergroup boundaries between genetic
and cultural variability, and are consisted with previous re-
sults obtained for population structure on the transmission of
cultural traits ([23, 30]).

We use this evidence to further investigate the separate
effects of linguistic barriers on the flow of genetic and cul-
tural information by focusing on two parameters, i.e. intensity
and geographic buffer of the cultural barrier (See Materials
and Methods for details). We find that the parameter com-
binations that resulted in the highest correlation between
genetic-geographic distances (intensity=0.1; radius=1500 km)
and between folktale-geographic distances (intensity=0.3; ra-
dius=3000 km) implies that linguistic barriers have a differ-
ential impact of these two kinds of information, and we use
this parameter setting to generate two corrected distance ma-
trices for genetics (geneticL; Dataset S1 Table SI2-3.4) and
folktales (folktaleL; Table SI2-4.2) respectively. By using raw
and corrected distance matrices, we define alternative mod-
els as: a) biased cultural diffusion (folktaleL∼geographic);
b) demic diffusion (folktale∼genetic); and c) biased demic
diffusion (folktaleL∼geneticL).

Assessing models of folktale transmission. We set to test for
deviations from the null model of cultural diffusion due to IBD
focusing only on Eurasian populations (DatasetEurasia, N=30)
to control for the effect of the Out of Africa expansion on ge-
netic distance (See S1 Section 3 for further details). We explore
the relationship between our genetic, folktale, and geographic
distance matrices using SpaceMix [28] (SI1 section 3). We
note that, when transformed into pseudo-spatial coordinates,
folktale distances tend to match actual geographic coordi-
nates better than genetic distances (Fig.1c and SI1 Fig. 3.1).
The role of geography and of ethnolinguistic barriers is also
confirmed by a NeighborNet [31] based on folktale distances,
showing a broad spatial clustering and proximity/reticulation
between demes belonging to the same ethnolinguistic group
(SI1 section 4).

We then asses the goodness of fit of all the alternative mod-
els at a global scale by comparing Pearson’s product-moment
correlation [32], bias-corrected distance correlation [33], and
partial distance correlation [34, 35] (Table 1; See Materials and
Methods and SI1 sections 2,6 for details). It is evident how,
after Bonferroni correction, all alternative models accounting
for ethnolinguistic boundaries perform better than the mod-
els that do not consider them. With both product-moment
correlation coefficient and bias-corrected distance correlation
the best model is the one representing cultural diffusion with
linguistic barriers, followed by demic processes constrained by
linguistic barriers. With distance correlation, however, the

difference between the two models is smaller than with stan-
dard correlation coefficient. When the dependence between
variables is assessed controlling for a third variable through
partial distance correlation, linguistic-biased cultural diffusion
remains as good a predictor of folktale variability as IBD. This
could be due to the fact that, at a global scale, correlation
between language-corrected genetic distance and geographic
distance is higher (Fig.1) and lowers the residual signal.

Significant deviations from the null model of cultural diffu-
sion predicted by IBD are further investigated over cumulative
geographic distance by comparing Pearson’s correlation coef-
ficients (Fig.2; Fig. SI Appendix 1 Section 7; Table SI1-7.1).
Above 4000 km language-biased cultural diffusion presents
with the highest fit at all bins, followed by language-biased
demic diffusion. Under 4000 km folktale distance exhibits
stronger dependence from genetic distance than from geo-
graphic distance. This is particularly visible under 2000 km,
where the effect of linguistic barriers is the same for genetic
and cultural variability.

All results allow us to reject the null model of plain cul-
tural diffusion predicted by IBD, and suggest instead that,
of all alternative models, the one involving cultural diffusion
mitigated by linguistic barriers could be the most plausible
one. In addition, as previously pointed out (Fig.1), results
consistently confirm that small geographic scale offer a more
efficient disentanglement between possible uncoupled effects
of genetic and geographic distances over cultural variables -
even after correcting for potential ethnolinguistic barriers.

Uniform body of knowledge or individual units?. Our results
show that when considering the folktales contained in our
dataset as a uniform corpus, the null model dictated by IBD
could be rejected. Previous results [23], however, have shown
that individual tales or smaller groups of tales may be transmit-
ted across populations as partially independent evolutionary
units. If a given cultural trait is not transmitted through pop-
ulation movement and replacement, populations that share
it should not exhibit significantly lower genetic distance than
populations that do not exhibit it[8]. To single out folktales
that markedly contradict such null hypothesis, we compare
the distribution of pairwise genetic distances corrected for
ethnolinguistic boundaries among populations sharing a given
tale against distances of the remaining pairs of populations
using Mann-Whitney-Wilcoxon test. We focus on the 308
folktales that are present in at least five populations and run
two separate tests, the first considering all pairs of populations
(Table S2-7.1), and a second considering only those within a
conservative geographic range of 6000 km (Fig.1a; Table S2-
7.2). After Bonferroni correction, 15 out of the 308 analyzed
folktales (4.9%; Table S2-8.1, S2-8.2) present with significantly
lower than expected pairwise genetic distance, hence allowing
us to reject our null hypothesis and suggesting that these
tales may indeed have spread during events of demic diffusion
biased by ethnolinguistic barriers.

Folktale dispersal and focal areas. For a subset of the analyzed
folktales we identify focal areas, representing potential areas
of origin and defined as locations that maximize the decay of
a given folktale abundance over geographic distance measured
with Pearson’s correlation coefficient (Dataset S1 Table S2-
8.3). Focal areas were generated for the 19 most widespread
folktales, which follow four main trends (SI Appendix Section
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8). Some of these tales possibly started to be diffused mostly
via cultural transmission from eastern Europe with subsequent
radial diffusion across Eurasia and Africa (such as ATU155,
"The Ungrateful Snake Returned to Captivity", Figure S1-
8-I 1; ATU313 or "The Magic Flight", Fig.3), while others
probably started their journey from Caucasus (Figure S1-8-I
6-8). Examples of the latter are ATU400 "The Man on a
Quest for His Lost Wife", ATU480 "The Kind and Unkind
Girls", ATU531 "The Clever Horse", and ATU560 "The Magic
Ring". Some narrative plots might have originated in northern
Asia - such as the famous "Thumbling" (Tom Thumb; Figure
S1-8-I 18), while a last group could have spread from Africa
(Figure S1-8-I 17), as in the case of ATU670 "The Man Who
Understands Animal Language".

Discussion

Using genetic evidence to infer processes of cultural trans-
mission. Our results resonate with broader questions in cul-
tural evolutionary studies, particularly those concerning the
mechanisms of cultural transmission over time and space.
They show that the use of newly generated, whole-genome
sequences offers a unique opportunity for an unbiased assess-
ment of patterns of cultural variation in the ethnographic and
archaeological records. Genetic variability has been already
interpreted in the past as a direct proxy of the movement of
human groups over time and space, and as such it has been
used as a potential marker of demic mechanisms [8, 17].

We demonstrate the effect of ethnolinguistic barriers on
both genetic and cultural population structure. By introduc-
ing an empirical approach we find that ethnolinguistic identity
has a potentially independent and differential impact on ge-
netic and cultural information. More specifically, our results
suggest that linguistic barriers may be twice as effective on
the diffusion of cultural traits than on population movement,
and that the decay over geographic distance of such effect
is almost two times slower for culture than for genetic infor-
mation. Nevertheless, this work very explicitly generates a
cautionary tale concerning the use of genomic evidence for
investigating such events at a cross-continental or global scale,
where geographic clines in genetic variability are the result of
different processes that can hardly be disentangled and that
may present with considerable temporal mismatch with more
recent cultural processes.

Cultural evolutionary mechanisms of folktale transmission.
Folktales are a prime example of a universal form of cultural
expression linked to various vectors of propagation over
generations and across geographic and ethnolinguistic barriers,
that allows us to address questions on cultural evolutionary
processes at a cross-cultural and cross-continental scale. Our
results provide new insights on the processes driving the
spread of folkloric narratives that go beyond previous studies
that were limited to a single language family [3].

By correcting for the presence of ethnolinguistic barriers,
we find that the null model of cultural diffusion predicted
by IBD alone cannot explain the observed distribution of
folktales across Eurasia. Instead, beyond ∼4000 km, cultural
diffusion biased by linguistic barriers exhibits the highest
correlation at all geographic bins. At small geographic bins
(< 4000km) population movements and linguistic barriers
may be more relevant than geographic proximity, pointing

once again at the possible importance of small-scale processes
of cultural transmission for testing more specific hypotheses
when using genetic evidence. In addition, processes other
than simple cultural diffusion may be more relevant for a
smaller group of tales shared by pairs of populations which
are genetically closer than populations not exhibiting those
tales. Looking for smaller packages of tales or for individual
tales and their variants can be useful to shed light on the
formation process of this vast body of popular knowledge.
The long-range patterns detected by our analyses may
complement this picture by suggesting a more ancient origin
of some of these folktales (SI Appendix Section 8;[36–39]).
On a broader level, these results can be used in the future
to infer directional trends of cultural dispersal, as well as
to test for the emergence of systematic social biases (such
as prestige bias, conformism/anti-conformism, heterophily,
content-dependent biases [5, 23, 30]) or cultural barriers
different from linguistic ones, whose chronology may be
independently ascertained.

Materials and Methods

Dataset description. Folktale data were sourced from the Aarne
Thompson Uther catalogue (ATU; [27]).The present dataset com-
prises "Animal Tales" (ATU 1-299), and "Tales of Magic" (ATU
300-749). Of the 198 societies in which the tales were recorded, 73
matched available genetic data (Table S2-1). Of these, 33 popu-
lations exhibiting at least 5 folktales were selected (Table S2-2.1,
Figure 1 b). Each population is described by a string listing the
presence (1) or absence (0) of any of the included 596 folktales.

Genetic, Folktale and Geographic distances. Genetic distances were
estimated by the average pairwise distances between two genomes,
one from each population, including both coding and non-coding
regions to avoid ascertainment biases. Genetic distance for (i, j)
pairs of populations represented by more than one genome was
calculated as the average of all possible (i, j) pairs of genomes. As
a consequence the diagonal of the genetic distance matrix was not
constrained to be zero (Table SI2-3.1b). Folktale distance between
population pairs was calculated as asymmetric Jaccard distance
[40] (Table S2-4.1a). Geographic distance was calculated as pair-
wise great circle distance with a waypoint located in the Sinai
Peninsula to constrain movement of African demes (through the
package gdistance in R; [41]). Coordinates (longitude and latitude
in decimal degrees; Table S2-5.1a) identify the assumed center of
the area occupied by a given folkloric tradition as defined by the
ATU index.

Transformation of dissimilarities into Euclidean Distances. In order
to perform bias corrected and partial distance Correlation, folktale,
genetic, and geographic distances were transformed into their exact
Euclidean representations [33, 42]. The original folktale and genetic
distance matrices were scaled through Classic Multidimensional
Scaling using the function cmdscale in R and following the procedure
for exact representation [34]. Euclidean distances were computed
from the obtained number of descriptors (n-2) using the function
dist in R (Tables SI2-3.5 and SI2-4.3). Euclidean representation
of geographic distance (Table SI2-5.1) was instead obtained by
reprojecting the original set of coordinates on a plane using two-
point equidistant projection through the functions tpeqd in the
package mapmisc [43] and spTransform in the package sp in R
[44, 45] . Euclidean distance between the new set of coordinates
was computed using the function rdist in the package fields in R
[46].

Analysis of MOlecular VAriance (AMOVA). To implement AMOVA
[29] in our analysis, each population was assigned to an ethnolin-
guistic group derived from Ethnologue (Table SI2-9.1), and we used
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the function amova in the package pegas [47] in R. Significance

Variable and model comparison. The relationship between original
and biased folktale, genetic, and geographic pairwise distance ma-
trices was quantitatively assessed at global scale and at cumulative
geographic scales. Measures were obtained through: a) Pearson’s
product-moment correlation coefficient using the function cor.test
in R; b) bias-corrected distance correlation [33] using the function
dcor.ttest in the package energy in R [48]; and partial distance
correlation using the function pdcor.test in the package energy in R.
In parallel, SpaceMix [28] was used to compute folktale and genetic
pseudo-coordinates which were compared with actual geographic
coordinates to explore inferred processes of admixture.

Estimating the effect of ethnolinguistic barriers on genetic and folk-
tale distance. We assumed that, if existent, a linguistic barrier would
act on pairs of populations that belong to different linguistic families
and live within a d geographic distance, and artificially increases the
actual genetic (Dgen) or folktale (Dfolk) distance by an intensity
factor f . We also assumed that parameters d and f may be different
when looking at genetic (dG, fG) and folktale (dF , fF ) distances.
We assessed the correlation between geographic and genetic or folk-
tale distances at increasing spatial bins before and after correcting
for putative linguistic barriers. Particularly, we chose as best pairs
of (dG, fG) and (dF , fF ) those that maximized the above mentioned
correlations. Notably fG = 0 or fF = 0 (i.e. absence of linguistic
barriers) had an equal chance of being picked up as the best values
for our parameters. We instead reported (1500, 0.1) and (3000, 0.3)
as best pairs of genetic and folktale parameters respectively. To
obtain unbiased genetic (Dgen′) and folktale (Dfolk′) distances
we therefore corrected for the effect of linguistic barriers so that,
for populations (i, j), Dgen′

ij = Dgenij ∗ (1 − fG) if dij � dG, and
Dfolk′ = Dfolk ∗ (1 − fF ) if dij � dF .

Data availability and codes. R scripts and related commands used
to generate all the results described in the paper are available in
Supplementary Appendices. Folktale and geographic data, as well
as genetic distances, are also available in Supplementary Appendices.
Genetic data used to run SpaceMix are taken from [24] (www.ebc.
ee/free_data).
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a

Fig. 1. a) Plot of product-moment correlation values between pairwise genetic dis-
tance (both whole genome and biased for linguistic barriers) and pairwise geographic
distance over cumulative geographic distance; b) Map showing the spatial distribution
of 33 populations comprised in DatasetMAIN. Surface colors represent interpolated
richness values (i.e. the number of folktales exhibited by each population). Purple
indicates higher values, while yellow indicates lower numbers; c) Example of map
with SpaceMix results for genetic and folktale distance, both projected on standard
geographic coordinates. It is evident how, overall, folktale distribution (F) tends to
cluster closer to geographic coordinates (dots), while the inferred source and direction
of possible genetic admixture (G) is mismatched. For example, Burmese and Yakut
exhibit quite segregated folktale assemblages, while their putative source of genetic
admixture is closer in space. The case of Hungarian is emblematic for its folkloric
assemblage rooted in Europe while its putative genetic (and linguistic) source of
admixture is located in the Ural region.
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Fig. 2. Comparison of null model of cultural diffusion dictated by IBD
(folktale∼geographic; light blue) against all alternative models: demic diffusion
(folktale∼genetic; red), language-biased cultural diffusion (folktaleL∼geographic;
purple), and language-biased demic diffusion (folktaleL∼geneticL; yellow) over cumu-
lative geographic distance. Product-moment correlation coefficients are calculated at
each geographic bin (size=2000 km) with original distance matrices up to 12000 km.

Fig. 3. Possible focal area and dispersion pattern for tale ATU313 "The Magic Flight",
one the most popular folktales in the present dataset which may have been additionally
spread through population movement and replacement. It is interesting to note how
this tale reached locations that are far from its putative origin (such as Japan and
south eastern Africa) while it was not retained by many populations located in between
(grey dots).

Table 1. Variable association at a global level

cor p bcdCor p
folktale∼genetic 0.20 <0.001 0.20 <0.001
folktale∼geographic 0.19 <0.001 0.31 <0.001
genetic∼geographic 0.71 <0.001 0.84 <0.001
folktaleL∼geneticL 0.55 <0.001 0.55 <0.001
folktaleL∼geographic 0.64 <0.001 0.57 <0.001
geneticL∼geographic 0.76 <0.001 0.83 <0.001

pdCor p
folktale∼genetic, geographic - - -0.11 1.00
folktale∼geographic, genetic - - 0.26 <0.001
folktaleL∼geneticL, geographic - - 0.17 <0.001
folktaleL∼geographic, geneticL - - 0.25 <0.001

Upper table: Comparison between null model of cultural diffusion
predicted by IBD (folktale∼geographic) and alternative models, i.e.
demic diffusion (folktale∼genetic), cultural diffusion biased by linguistic
barriers (folktaleL∼geographic), and demic diffusion biased by linguistic
barriers (folktaleL∼geneticL). Values refer to Pearson’s product-moment
correlation (cor) and bias-corrected distance correlation (bcdCor) af-
ter Bonferroni correction. Lower table: Results of partial distance
correlation for null and alternative models, after Bonferroni correction.
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