
Effects of memory on spatial heterogeneity in neutrally 

transmitted culture 

 

R. Alexander Bentley1 

Department of Archaeology and Anthropology, University of Bristol, Bristol, UK   

r.a.bentley@bristol.ac.uk 

 

Camila Caiado 

Department of Mathematical Sciences, Durham University, Durham, U.K.    

c.c.d.s.caiado@durham.ac.uk 

 

Paul Ormerod 

Department of Anthropology, Durham University, Durham, U.K. 

 & Volterra Partners LLP, London, U.K.  

pormerod@volterra.co.uk 

 

1Corresponding author. 

 

Abstract 

We explore how cultural heterogeneity evolves without strong selection pressure or 

environmental differences between groups. Using a neutral transmission model with an 

isolation-by-distance spatiality, we test the effect of a simple representation of cultural 

‘memory’ on the dynamics of heterogeneity. We find that memory magnifies the effect of 

affinity while decreasing the effect of individual learning on cultural heterogeneity. This 

indicates that, while the cost of individual learning governs the frequency of individual 

learning, memory is important in governing its effect. 
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Abstract 3 

 4 

We explore how cultural heterogeneity evolves without strong selection pressure or 5 

environmental differences between groups. Using a neutral transmission model with an 6 

isolation-by-distance spatiality, we test the effect of a simple representation of cultural 7 

‘memory’ on the dynamics of heterogeneity. We find that memory magnifies the effect of 8 

affinity while decreasing the effect of individual learning on cultural heterogeneity. This 9 

indicates that, while the cost of individual learning governs the frequency of individual 10 

learning, memory is important in governing its effect.  11 

 12 

1. Introduction 13 

 14 

From the foundations of human behavioural ecology (HBE), differences in cultural 15 

behavior have been explained as “forms of phenotypic adaptation to varying social and 16 

ecological conditions, using the assumption that natural selection has designed organisms 17 

to respond to local conditions in fitness-enhancing ways” (Boone and Smith 1998).  18 

 19 

Scaled up to group level, the HBE model characterises successful strategies as 20 

environment-specific and adaptive, enabling successful groups to out-reproduce competing 21 

groups (Henrich et al. 2006). When copying successful behaviours of the community 22 

benefits both individual and group, then cooperation can evolve in social networks 23 

extending beyond the limits of Hamiltonian inclusive fitness among kin (Henrich et al. 24 

2006; Hill et al. 2011; Hrdy 2009; Rendell et al. 2011). 25 

 26 

With new discoveries of cross-cultural variation in behaviours once assumed to be 27 

universal (see Nettle 2009a, 2009b), group-selection under different environments has 28 

become a more accepted phenomenon in HBE. Cross-cultural variation in the mean offers 29 

made in the Ultimatum Game, for example, has been explained through the different 30 

benefits of cooperation imposed by different modes of subsistence required in the 31 
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environment (Henrich et al. 2006). Norms of attractiveness, for another example, are also 32 

related to subsistence (and consequently environment), as humans under low resource 33 

conditions tend to be attracted to individuals of larger body mass index (Nettle 2009b). 34 

When attractiveness is enhanced by material culture, the stylistic variation may also be 35 

adaptive, by maintaining group identity. 36 

 37 

The actual details, however, of stylistic traits—such as linguistic dialects, decorative 38 

designs and details of folklore (Tehrani and Reide 2009; Evans and Levinson 2009; 39 

Kandler and Shennan 2013)—are not specific adaptations to local environment. Within-40 

group cooperation may be advantageous enough in itself—without resort to established 41 

models of kin selection, reputation, reciprocity or punishment (Nowak 2006)— such that 42 

cooperative norms can evolve among selfish agents modelled only to migrate toward 43 

successful communities and copy local strategies (Helbing and Wu 2009; Rand et al. 2009).    44 

  45 

As evidenced by cultural phylogenetics (Currie and Mace 2011; Fortunato and Jordan 46 

2009; Tehrani and Reide 2009), stylistic differences between communities in similar 47 

environments arise historically, due to chance events and migration over many generations. 48 

Even the cross-cultural variation in cooperative norms may be partly explained by 49 

demographic differences between groups rather than by their different environments 50 

(Lamba and Mace 2011). 51 

 52 

To account for historical contingency, over the past decade or so in the context of HBE 53 

(Winterhalder and Smith 2000; Nettle et al. 2013), it has become useful to distinguish 54 

"evoked culture" from "transmitted culture" (Nettle 2009). Whereas evoked culture is 55 

largely determined by environment, transmitted culture is governed by the dynamic 56 

equilibrium between social learning and individual learning, as individual learning is 57 

disseminated via social learning into evolving cultural traditions (Laland 2004; McElreath 58 

& Boyd 2007; Mesoudi 2008).  59 

 60 

Crucial to most dynamical models of transmitted culture is the ratio of independent versus 61 

social learners in dynamic equilibrium (Rogers 1995; Mesoudi 2008, 2011; Rendell et al. 62 
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2011).  This mixture can be reduced to a single variable for the fraction, µ, of individual 63 

learners in the population, and (1- µ) for social learners. Evolutionary theory predicts that 64 

social learners (1- µ) can increase in stable environments, and also naturally when the cost 65 

of individual learning, µ, is high (McElreath & Boyd 2007; Nettle 2009). These approaches 66 

assume a selective environment, one where the ‘fitness landscape’ has substantial peaks 67 

and individual learners produce the information needed by social learners (“scroungers”) 68 

to climb fitness peaks (Mesoudi 2008).  69 

 70 

Neutral models 71 

 72 

As a logical extreme, “neutral” models can explore cultural evolution on a ‘flat’ fitness 73 

landscape, when selective pressures are so weak as to be hypothetically absent. Concerning 74 

songbird communication for example, application of a neutral model would assume that in 75 

each generation "all subpopulations go through mutation, drift and migration, and all 76 

mutant forms are new to the region” (Lynch & Baker 1994: 354).  For chaffinches in the 77 

Azores, neutral drift within populations was a better explanation than migration for 78 

differences between populations (Lynch & Baker 1994). Among warblers of 79 

Massachusetts, elements of male-male competition songs were characterised by neutral 80 

drift but male-female courtship songs were not, confirming that courtship song elements 81 

were selected by the females (Byers et al. 2010).  82 

 83 

Comparing tree populations in Panama, Ecuador and Peru, Condit et al. (2005) found that 84 

within each region, the similarity (fraction of species shared in common) between small 85 

forest plots declined with increasing distance between them, most rapidly at small distances 86 

(3-5 km) and then much more slowly further out to 50km, such that similarity decayed 87 

linearly with the logarithm of the distance. Condit et al. (2005) found good agreement 88 

between these data and Hubbell’s (2001) neutral theory, in which they modeled a landscape 89 

of trees which have the same universal probability of death in any time step. When a tree 90 

dies, it is either (a) replaced by a copy (descendant) of a randomly-chosen neighbor from 91 

a random distance (chosen from a Gaussian distribution), or, with probability µ, replaced 92 

by a mutant tree of an entirely new species (Condit et al. 2005). This is the neutral model 93 
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situated in space, and the process is known as the Moran version because one agent (tree) 94 

at a time is selected for replacement.  95 

 96 

A substantial insight from such neutral models is that a predominant behavioural norm 97 

always emerges through unbiased copying, despite the lack of any fitness difference 98 

between the behavioural variants (Neiman 1995). Whatever behaviour emerges as 99 

predominant need not be any more adaptive than others, as it can emerge due to different 100 

chance histories of individual and social learning. This trend toward predominance is 101 

exhibited in the emergent right-skewed distributions of popularity, which closely resemble 102 

real data from social and economic contexts (Bentley, Ormerod, Batty 2011; Kandler and 103 

Shennan 2013; Ormerod 2012; Reali and Griffiths 2010). This historical contingency 104 

means that the same result is unlikely if we were to “replay the tape” of history.  The 105 

corresponding dynamic turnover in the right-skewed distributions of neutral options 106 

(Bentley et al. 2007; Eriksson et al. 2010) is another contrast with optimal adaptations that 107 

should not change until the environment changes.  108 

 109 

By removing fitness effects, the neutral model allows us to isolate the effects of three 110 

components, which we could briefly label as 1) the individual/social learning ratio, 2) 111 

distance and 3) memory.  112 

 113 

Regarding the individual/social learning ratio, neutral approaches typically model 114 

successive generations of agents of individual learners µ and social learners (1 - µ).  In the 115 

simplest of these neutral models, individual learning is modelled as random variation, and 116 

social learning is modelled through agents randomly sampling behaviours from the 117 

previous generation with equal probability (Neiman 1995).  More complex versions would 118 

impose biases or a network structure (Blythe 2012; Franz & Nunn 2009; Mesoudi and 119 

Lycett 2008; Ormerod et al. 2012).  120 

 121 

The invention parameter we use is strictly analogous to genetic mutation, but we see the 122 

parameter as closely related to the effect of individual learning, in the sense of Boyd and 123 

Richerson (1985), through trial and error experimentation, which effectively produces new 124 
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variants at specific locations.  New variants can also be created, however, through copying 125 

errors in the social learning process, so the invention parameter is not exactly a measure of 126 

individual learning. Nevertheless, we expect individual learning and ‘invention’ to be be 127 

strongly correlated, because each new variant qualifies as an invention. Also, to clarify our 128 

terms, if a new variant spreads (becomes widespread), the invention has become an 129 

innovation (O’Brien & Shennan 2010; Schumpeter 1934).  130 

 131 

To capture distance effects generally, we can incorporate assumptions of standard ‘gravity’ 132 

models and related ‘isolation by distance’ models. This involves a decay parameter that 133 

can be relaxed. Modern hyper-mobility can be translated into these same models when 134 

geographic space is transformed into transport network space (Grady et al. 2012). Note 135 

how this hypermobility contrasts with the trees modelled by Condit et al. (2005), whose 136 

distribution of mobility is Gaussian and exhibited a linear decline in similarity with eth 137 

logarithm of distance. We note also that distances also characterise social networks, which 138 

can be considered a form of ‘space’, broadly construed as physical, network or even design 139 

space.  140 

 141 

Memory is central to the unique human capacity for goal-directed problem-solving. This is 142 

another contrast with most ecological neutral models -- e.g. only living trees are ‘copied’ 143 

(Condit et al. 2005) – in which there is no ‘memory’ back to lost trees of past generations. 144 

Working memory, if simply defined as the "ability to maintain and manipulate thoughts 145 

over a brief period” (Wynn and Coolidge 2010: S8), is central to human language use, logic, 146 

emotional reasoning, general intelligence, visual and spatial attention, decision making, 147 

and planning (Baddley 2001; Wynn and Coolidge 2010). In our model, we consider the 148 

effects of cultural memory in a simplified representation, by which spatial location is 149 

chosen through neutral decision among many possible locations and, subsequently, the 150 

choice of behavior is then chosen from among local options.   Using the non-spatial neutral 151 

model, we previously found that adding memory imposes an ‘egalitarian’ bias on the 152 

popularity distribution, making it less right-skewed as memory is increased while holding 153 

invention rate constant (Bentley et al. 2011).  The effects of memory on spatial 154 

heterogeneity, however, were not explored.  This motivates us to explore how memory 155 
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affects, in turn, the effect of the fraction µ of individual learners on cultural drift or the 156 

strength of isolation-by-distance effects.  157 

  158 

Our first hypothesis is that increasing µ will increase cultural heterogeneity, by injecting 159 

local variation that can be preserved through isolation by distance. Our second hypothesis 160 

is that long memory would tend to preserve cultural heterogeneity especially under strong 161 

isolation by distance. 162 

 163 

2. Methods 164 

 165 

The model proceeds in a series of repeated iterations. We start with a fixed number of 166 

‘locations’ that could be interpreted as geographical locations, or more generally as social 167 

locations. At a given point in time t, a number, nt, of new agents enter the model.  Each of 168 

these nt agents makes two decisions.  Firstly, the agent selects a location and secondly it 169 

then has to choose amongst the alternative cultural traits available at that location.  Agents 170 

make each of these choices through random sampling, i.e., with probability proportional to 171 

the frequency of the choice among existing agents. In every period, every agent either 172 

learns socially from previously available options (with probability 1 – µ), or learns 173 

individually by inventing something entirely new (with probability µ). 174 

 175 

More formally, the algorithm is described by the flowchart in Figure 1. At each time t, a 176 

set number of agents nt enter the model. Each agent Ai,t , i.e. the i-th agent to enter the model 177 

at time t for i = 1,…, nt, selects a location Li,t from k possible locations which follow a 178 

multinomial distribution with probabilities proportional to the number of agents in any 179 

given location that entered the model in the last m steps. Once agent Ai,t is assigned to its 180 

location Li,t, it chooses a previously selected cultural trait Pi,t based on preferential 181 

attachment or chooses a new trait with probability µ, which we call the invention parameter. 182 

If the agent chooses to not innovate, its choice is also influenced by its memory m, i.e. the 183 

agent will take into account decisions made by all agents that entered the model in the 184 

previous m time steps, and by the influence of other locations in its own.  185 

 186 
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We measure the influence of one population into another by a k-by-k matrix W where Wi,j 187 

describes the influence of the ith location in the jth location. Therefore, given that the agent 188 

chose not to innovate, cultural trait choices follow a multinomial distribution with 189 

probability vector given by the proportion of agents that selected each trait in each location 190 

within the last m time steps and reweighted by matrix W to account for the effect of 191 

distance.  192 

 193 

________________________ 194 

Figure 1 195 

________________________ 196 

 197 

The universal ‘memory’ parameter, m, which takes integer values from one time step 198 

previous to all previous time steps, specifies how much previous history agents take into 199 

account in terms of the choices others have made (Bentley et al. 2011).  The memory 200 

parameter m specifies that the decisions made by the agents that entered the model in the 201 

previous m steps will influence the decision of new agents.  In addition to the choices that 202 

an agent has made previously at its own location, the agent can also be influenced by the 203 

choices made at the other locations.  The importance that the agent assigns to these, relative 204 

to the importance of agents at its own location, will vary according to how distant the other 205 

locations are.  If the number of agents that enter the model at each time step is sufficiently 206 

large, we can focus on exploring the impact of memory on the individual learning factors.  207 

 208 

The invention parameter µ refers to the probability with which a specific agent will deviate 209 

from the norm and select a trait that was not previously selected in its own location.  This 210 

does not necessarily mean that the chosen behaviour is new in the global context of the 211 

system, it only means it is new to the local dimension.  212 

 213 

Finally, the influence matrix W assigns weights to the different levels of influence that 214 

choices made by agents in other locations might have in the agent’s own location. Here we 215 

focus on outcomes when the off-diagonal elements of the influence matrix, W, are non-216 
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zero.   In particular, we are interested in the degree of homogeneity in the aspects of cultural 217 

behaviour, which emerges across the different locations.  If, for example, agents pay equal 218 

weight to trait choices at every location, not just their own, then the outcome will be 219 

completely homogeneous, the relative frequency of the various alternative traits will be the 220 

same at every location. 221 

 222 

Consider now, for example, when the influence of location i on location j is assumed to 223 

decay exponentially with the square of the distance, as is illustrated in Figure 2. 224 

 225 

________________________ 226 

Figure 2 227 

________________________ 228 

 229 

The formula for the curves is 230 

𝑊𝑖,𝑗 = exp(−𝜆𝑑2(𝑖, 𝑗))         (1) 231 

 232 

where d(i,j) is the distance between locations i and  j.  233 

 234 

The special case of λ = ∞ has already been explored, as in this case agents only take into 235 

account the decisions of agents at their own location (Bentley et al. 2011). This reduces to 236 

the non-spatial version of the neutral model, with the diagonal elements of the matrix W 237 

equal to one and all other values zero.  This non-spatial neutral model generates an entire 238 

family of non-Gaussian, right-skewed popularity distributions, including exponential, 239 

power law tails of varying exponents, and power laws across the whole data (Bentley et al. 240 

2010; Evans 2007; Mesoudi and Lycett 2009; Strimling et al. 2009), and also a ‘winner-241 

takes-all’ result when there is no invention at all, i.e. μ = 0 (Neiman 1995). In addition, the 242 

model produces the continuous turnover of rankings of popularity observed empirically 243 

within these distributions (Bentley et al. 2007; Eriksson et al. 2010; Evans and Giometto 244 

2011). 245 

 246 
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Our approach here is to build on these results by exploring finite values of λ. For small 247 

values of λ, which we describe as the affinity parameter, the influence of other locations on 248 

the choice made by an agent declines rapidly with distance. This distance need not be 249 

physical, it could also be a network distance, for example (Grady et al. 2012). We measure 250 

the level of homogeneity in the popularity of choices, which emerges across the different 251 

locations as follows.  We run the model for a 1000 time steps, for a given triplet of values 252 

for the memory, invention and affinity parameters, with 1000 agents entering the model at 253 

each time step.  254 

 255 

In order to assess the level of homogeneity between locations, we calculate the correlations 256 

of cultural trait distributions between locations at time τ and propose the following measure 257 

of similarity 258 

𝑆 =
1

𝑘(𝑘−1)
∑ 𝐶𝑜𝑟𝑟(𝑃𝐿𝑖,𝜏, 𝑃𝐿𝑗,𝜏)1≤𝑖<𝑗≤𝑘        (2) 259 

where k is the number of different locations and 𝑃𝐿𝑖,𝜏 is a vector that represents the relative 260 

proportions of different traits in the ith location after τ time steps.  Each element of this 261 

vector represents one of the possible choices, and the vector is long enough to include the 262 

maximum possible number of different choices by the end of the run (τµnt + nt), which at 263 

each location may include zeros for absent choices.  The similarity measure S lies within 264 

the interval [-1,1]. When S equals 1, we have total similarity, or in other words global 265 

homogeneity. When S approaches 0, we have maximum heterogeneity. When S is negative, 266 

then the choices in pairwise comparisons tend to be anti-correlated, and as S approaches -267 

1 they comparisons yield completely contradictory choices between each pair. 268 

 269 

In the results that we report here, the locations are placed around a circle.  They could 270 

equally be placed at random, or in a network.  All that we need is a measure if distance 271 

between every pair. We repeat the experiment 100 times for the given parameter triplet.   272 

Experimentation suggests that this number is more than adequate to assume convergence 273 

occurs. We start with k =100 locations and τ = 1000 time steps. Concerning the invention 274 

fraction, we vary μ from 0.005 to 0.05, which is consistent with previous studies that 275 

consider mutation rates from μ = 0.001 to 0.1 (e.g., Lynch and Baker 1994) and similar to 276 
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ranges proposed for human invention (e.g., Eerkens and Lipo 2005; Diederen et al. 2003; 277 

Srinivasan and Mason 1986; Rogers 1964). 278 

 279 

3. Results 280 

 281 

To illustrate the character of the results, we first show them for low values of both memory 282 

m and invention fraction μ and for single solutions of the model. We therefore set m = 1 283 

and μ = 0.005.  Figure 3 shows both the weight matrix, W, and the correlation matrix used 284 

to calculate S for λ = 1, and Figure 3b sets λ = 10.  These are illustrative results from a 285 

single simulation of the model.  The locations are placed on a circle, so for location 1, its 286 

nearest neighbours are location 2 on one side, and location 100 on the other.    287 

________________________ 288 

Figure 3 289 

________________________ 290 

 291 

The parameter values m = 1 and μ = 0.005, as already noted, generate solutions which 292 

approach ‘winner-takes-all’ when agents at a location only take account of agents at the 293 

same location.   Setting λ = 1 means that agents assign a high weight to the decisions of a 294 

number of neighbours when choosing from the alternatives available.  This means that the 295 

same cultural trait emerges as the ‘winner’ at all locations.  There is high correlation 296 

between outcomes at any pair of locations. 297 

 298 

Figure 4 presents illustrative results for a single solution for the same parameters as in 299 

Figure 3, except with a much stronger decay of influence with distance, λ = 10.  The chart 300 

for the weight matrix in Figure 3b, when contrasted with that in Figure 3a, shows that 301 

agents at any given location pay much less attention to decisions made at other locations. 302 

________________________ 303 

Figure 4 304 

________________________ 305 
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At any given location, the solution is similar to ‘winner-takes-all’, but the trait that wins 306 

now differs across the individual locations. This difference is strongest between location 307 

pairs coloured blue in Figure 3b (right).   Figures 3 and 4 illustrate the impact of varying λ, 308 

one of the parameters in the triplet (m, μ, λ) in a single solution.  We now illustrate how 309 

varying (m, μ, λ) impacts the similarity measure S; in each case, we fix the memory and 310 

invention parameters and simulate the model 100 times for values of λ from 1 to 50.   311 

 312 

Figure 5 shows the average of the similarity measure across 100 solutions of the model for 313 

given values of m and μ when λ is varied. The top two curves show the results when 314 

memory is short, in each case m = 1, and the bottom two show results with longer memory 315 

when m = 10. There is a strong tendency towards homogeneity across the system when 316 

memory is short and the level of homogeneity, or similarity, declines as the rate of 317 

invention increases.    318 

 319 

These results confirm the illustrative results from a single simulation set out in Figures 3 320 

and 4.  For example, the red and the green curves in Figure 5 both have μ = 0.005. The 321 

curves illustrate quite clearly the importance of memory in the model. For any given value 322 

of the affinity parameter, there is considerably more cultural homogeneity when memory 323 

is smaller. Higher values of memory mean that, if differences arise in the distribution of 324 

cultural traits between locations during the process of solving the model, they have a 325 

stronger tendency to persist. 326 

________________________ 327 

Figure 5 328 

________________________ 329 

 330 

We also find that the effect of invention on the degree of similarity between locations 331 

declines markedly as memory is increased. Consider the green and yellow curves in Figure 332 

5. In each case m = 1, and μ = 0.005 and 0.05 respectively. The outcomes are clearly 333 

different. For small values of the memory parameter, the higher the invention parameter is, 334 

the less the overall degree of similarity. Consider now the red and blue curves, where and 335 
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μ = 0.005 and 0.05 respectively. However, memory is now set at a distinctly higher value, 336 

m = 10. In this case, the impact of varying invention is almost eliminated. With a long 337 

memory, the impact of previous choices on an agent’s decision about which cultural trait 338 

to adopt is higher.  339 

 340 

In summary, the similarity measure is impacted by the various parameters in the following 341 

ways: 342 

 High values of the affinity parameter, for any given values of invention and 343 

memory, mean that an agent assigns low weights to decisions taken by agents in 344 

different locations.  The higher the affinity parameter, λ, the lower the similarity, in 345 

other words the more culturally heterogeneous is the outcome;  346 

 For given values of the affinity parameter, the lower the memory, the higher the 347 

degree of similarity, in other words the higher the degree of cultural homogeneity; 348 

 The lower the value of the invention parameter, μ, the higher the degree of 349 

similarity.  However, as memory increases, the effect of varying the invention 350 

parameter becomes much less noticeable. 351 

4. Discussion 352 

 353 

In exploring how cultural heterogeneity evolves, memory is important. In smaller societies, 354 

collective cultural memory provides a means for humans to situate themselves in their 355 

cultural niche and thus cooperate (Pinker 2010). Memory of past observations and 356 

encounters allows individuals to anticipate the consequences of future decisions (Giguère 357 

and Love 2013; Olivola and Sagara 2009; Stewart et al. 2006). Shared knowledge of other 358 

people's feelings helps preserve social relationships amid continual complex negotiations 359 

of cooperation (Pinker et al. 2008). Among the !Kung San of the Kalahari Desert, for 360 

example, names designate whether two people have a joking relationship or an avoidance 361 

relationship (Marshall 1957), which is adaptive for mobile people who may encounter 362 

distant relatives infrequently. 363 

We have found that memory is also important in our modelling of cultural heterogeneity 364 

under neutral evolution situated in space. Compared to spatial neutral models in an 365 
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ecological context without memory (Condit et al. 2005), or cultural neutral models in which 366 

the current generation copies from individuals in the previous generation (Neiman 1995; 367 

Shennan and Wilkinson 2001; Bentley et al. 2011), it seems appropriate to add memory for 368 

cultural phenomena. Cultural variants can be passed between distant generations either 369 

directly—when grandma tells a story, so to speak—or when preserved through material 370 

culture, written media, or even different cultural groups in which older variants have not 371 

yet gone extinct.  372 

 373 

Before simulating this spatial neutral model with memory, our hypotheses were that 374 

increasing individual learning fraction µ would promote spatial heterogeneity, increasing 375 

memory m, and/or strengthening isolation by distance by increasing λ. Although it seemed 376 

reasonable at the outset that, under neutral transmission, modelling cultural memory might 377 

possibly help to preserve local unique inventions and thus increase the effect of individual 378 

learning variation on heterogeneity, our modelling shows that, to the contrary, the longer 379 

the memory m, the less likely cultural homogeneity was to emerge. In retrospect it appears 380 

that this is because increasing the memory parameter decreases the relative visibility of a 381 

new invention, as increasing m increases the number of choices available to an agent 382 

entering the model. Short memory means that cultural traits frequently drop out and 383 

become unavailable, because no-one has chosen them in the relevant time frame.  With m 384 

= 1, for example, unless a trait has been chosen in the previous time step, it drops out of 385 

the system, no matter how many times it has been selected previous to this.  With longer 386 

memory, however, more traits remain to be selected, and hence the relative size of 387 

‘invention pool’, the number of new alternatives created, becomes very small compared to 388 

the number of existing traits. 389 

 390 

Regarding individual learning fraction and isolation by distance, our results were more 391 

complex than our hypotheses because their effects were not independent of memory. We 392 

find that increasing memory m magnifies the effect of changing the affinity λ, but it 393 

decreases the effect of individual learning fraction µ. Similar to isolation by distance 394 

models, our spatially-aggregated similarity measure decreases as the affinity parameter is 395 

increased, but this inverse relationship becomes markedly steeper when memory is 396 
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increased.  With low memory, for a given value of affinity, increasing invention rate 397 

decreases aggregated similarity by introducing random variation.  At higher memory 398 

values, however, this effect of invention rate vanishes, i.e. even an increase by an order of 399 

magnitude in inventiveness has negligible effect under high memory.  400 

 401 

5. Conclusions  402 

 403 

We have shown one basic means by which cultural heterogeneity can evolve under a 404 

neutral drift process with memory. This is not in any way meant as a universal explanation, 405 

but as substantiation of a powerful alternative hypothesis to selective adaptation to different 406 

environments. While it is well established that population size and the individual/social 407 

learning ratio are central to neutral evolution, we find that some simple representation of 408 

memory increases isolation by distance but decreases the effect of individual learning on 409 

cultural heterogeneity. More complex treatments of memory in neutral models, not to 410 

mention forward-looking cognitive processes, could underlie new studies of cultural drift 411 

contrasting past and present. 412 

 413 

The effect of changes in the time scale of this memory is a pertinent evolutionary question, 414 

as the Internet paradoxically combines permanent storage of information with shorter 415 

attention spans. Over the generational scale, written language accumulates technological 416 

knowledge but also regenerates the cultural basis by which people make sense of their own 417 

experience, maintain social relationships, and devise scenarios for problem-solving (Carrol 418 

1995; Pinker et al. 2008).  It is certainly plausible that information overload is making 419 

neutral evolution models more relevant. For the sake of argument, suppose that the Internet 420 

makes memory m longer while decreasing isolation by distance λ. How learning fraction µ 421 

is changing online is an exciting research question. Other neutral models may incorporate 422 

agents with memory, and also with forward expectations (Gureckis and Goldstone 2009). 423 

This might be asymmetrically weighed, as experiments suggest people expect less change 424 

over the next decade than they report experiencing over the past decade (Quoidbach et al. 425 

2013).  426 

 427 
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In any case, these changes in memory and individual invention rate brought about by online 428 

media surely contrast with millennia of cultural evolution that allowed humans to 429 

accumulate information and learn skills over many generations (Henrich 2004; Hruschka 430 

et al. 2009; Powell et al 2009). As economist Thomas Schelling put it, most human life 431 

consists of individuals responding to a context of other individuals’ responses to other 432 

individuals. As humans adapt themselves to a `cognitive niche' of other knowledge-using 433 

and cooperative individuals (Pinker 2010), we might consider memory to be the depth of 434 

that niche, contemporary population as its length and width, and invention as the ultimate 435 

driver of change within it. 436 

 437 

References 438 

 439 

Baddeley, A. (2001). Is working memory working? American Psychologist 56, 851–864. 440 

Bentley, R.A., P Ormerod & Batty, M. (2011). Evolving social influence in large populations. 441 

Behavioral Ecology and Sociobiology 65: 537-546. 442 

Bentley, R.A., Lipo, C.P., Herzog, H.A. & Hahn, M.W. (2007). Regular rates of popular culture 443 

change reflect random copying. Evolution and Human Behavior 28, 151–158. 444 

Blythe, R.A. (2012) Random copying in space. Advances in Complex Systems 15, 1150012. 445 

Boone, J. L. & Smith, E.A.  (1998) Is it evolution yet? A critique of evolutionary archaeology. 446 

Current Anthropology 39, S141–S173. 447 

Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. The University of 448 

Chicago Press, London. 449 

Byers, B.E., Belinsky K.L. & Bentley, R.A. (2010). Independent cultural evolution of two song 450 

traditions in the chestnut-sided warbler. American Naturalist 176, 476–489. 451 

Carrol, J. (1995). Evolution and literary theory. Human Nature 6:119–134.  452 

Condit, R., Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Núñez, P., Aguilar, S., 453 

Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E., & Hubbell, S.P. (2005). Beta-454 

diversity in tropical forest trees. Science 295: 666-669. 455 

Currie, T.E. and Mace, R. (2011) Mode and tempo in the evolution of socio-political organization. 456 

Phil. Trans. R. Soc. B, 366: 1108-1117  457 

Diederen, P., van Meijl, H. & Wolters, A. (2003). Modernisation in agriculture: What makes a 458 

farmer adopt an innovation? International Journal of Agricultural Resources, Governance 459 

and Ecology 2, 328–342. 460 



16 

 

Eerkens, J. W. & Lipo, C.P. (2005). Cultural transmission, copying errors, and the generation of 461 

variation in material culture and the archaeological record. Journal of Anthropological 462 

Archaeology, 24, 316-334. 463 

Eriksson, K., Jansson, F. & Sjöstrnad, J. (2010). Bentley’s conjecture on popularity toplist turnover 464 

under random copying. The Ramanujan Journal, 23, 371–396. 465 

Evans, T.S. (2007). Exact solutions for network rewiring models. European Physics Journal B 56: 466 

65–69. 467 

Evans, T. & Giometto, A. (2011), Turnover rate of popularity charts in neutral models. 468 

arXiv:1105.4044 [physic.soc-ph]. 469 

Evans, N. & S.C. Levinson (2009). The myth of language universals: Language diversity and its 470 

importance for cognitive science. Behavioral and Brain Sciences 32: 429–492. 471 

Fortunato, L. & Jordan, F.M.(2010) Your place or mine? A phylogenetic comparative analysis of 472 

marital residence in Indo-European and Austronesian societies. Philosophical Transactions 473 

of the Royal Society B 365: 3913–3922. 474 

Franz, M. & Nunn, C. L. (2009). Rapid evolution of social learning. Journal of Evolutionary 475 

Biology 22, 1914–1922. 476 

Grady, D., Thiemann, C. & Brockmann, D. (2012) Robust classification of salient links in complex 477 

networks. Nature Communications 3, Article 864  478 

Gureckis, T.M. & Goldstone, R.L. (2009). How you named your child: Understanding the 479 

relationship between individual decision making and collective outcomes. Topics in 480 

Cognitive Science 1, 651–674.  481 

Giguère G. & Love B.C. (2013) Limits in decision making arise from limits in memory retrieval. 482 

Proceedings of the National Academy of Sciences USA, in press  483 

Helbing, D. & Yu, W. (2009) The outbreak of cooperation among success-driven individuals under 484 

noisy conditions. Proceedings of the National Academy of Sciences 106:3680–85. 485 

Henrich, J. (2004). Demography and cultural evolution: Why adaptive cultural processes produced 486 

maladaptive losses in Tasmania. American Antiquity, 69, 197–214. 487 

Henrich, J., Boyd, R., Bowles, S., Gintis, H., Fehr, E., Camerer, C., McElreath, R., Gurven, M., 488 

Hill, K., Barr, A., Ensminger, J., Tracer, D., Marlow, F., Patton, J., Alvard, M., Gil-White F. 489 

& Henrich, N. (2005) ‘Economic Man’ in cross-cultural perspective: Ethnography and 490 

experiments from 15 small-scale societies. Behavioral and Brain Sciences 28:795–855. 491 

Hill, K.R., Walker, R.S., Božičević, M., Eder, J., Headland, T., Hewlett, B., Hurtado, A.M., 492 

Marlowe, F., Wiessner, P. & Wood, B. (2011). Co-residence patterns in hunter–gatherer 493 

societies show unique human social structure. Science 331, 1286–1289. 494 



17 

 

Hrdy, S.B. (2009). Mothers and Others: The Evolutionary Origins of Mutual Understanding. 495 

Cambridge, MA: Belknap Press. 496 

Hruschka, D.J., Christiansen, M.H., Blythe, R.A., Croft, W., Heggarty, P., Mufwene, S.S., 497 

Pierrehumbert J.B & Poplack, S. (2009). Building social cognitive models of language 498 

change. Trends in Cognitive Sciences 13(11),464-469. 499 

Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton 500 

University Press. 501 

Kandler, A. & Shennan, S.J. (2013). A non-equilibrium neutral model for analysing cultural 502 

change. Journal of Theoretical Biology, in press. 503 

Laland, K.M. (2004). Social learning strategies. Learning & Behavior, 32, 4–14. 504 

Lamba, S. & Mace, R. (2011). Demography and ecology drive variation in cooperation across 505 

human populations. Proceedings of the National Academy of Sciences USA 108(35):14426–506 

14430. 507 

Lynch, A. & Baker, A.J. (1994). A population memetics approach to cultural evolution in chaffinch 508 

song. Evolution 48(2),351-359 509 

McElreath, R. and Boyd, R. (2007). Mathematical Models of Social Evolution: a Guide for the 510 

Perplexed. Chicago: University Press. 511 

Marshall, L. (1957). The kin terminology of the !Kung Bushmen. Africa 27, 1 – 25.  512 

Mesoudi, A. (2008). An experimental simulation of the “copy-successful-individuals” cultural 513 

learning strategy: adaptive landscapes, producer–scrounger dynamics, and informational 514 

access costs. Evolution and Human Behavior 29, 350–363.  515 

Mesoudi, A. (2009). How cultural evolutionary theory can inform social psychology and vice versa. 516 

Psychological Review, 116(4):929–952. 517 

Mesoudi, A. & Lycett, S.J. (2009). Random copying, frequency-dependent copying and culture 518 

change. Evolution and Human Behavior 30: 41–48. 519 

Mesoudi, A. (2011). An experimental comparison of human social learning strategies: payoff-520 

biased social learning is adaptive but underused. Evolution and Human Behavior 32, 334–521 

342. 522 

Neiman, F.D. (1995). Stylistic variation in evolutionary perspective. American Antiquity, 60, 7–36.  523 

Nettle, D. (2009a). Ecological influences on human behavioural diversity: a review of recent 524 

findings. Trends in Ecology and Evolution, 24(11):618–624. 525 

Nettle, D. (2009b). Beyond nature versus culture: cultural variation as an evolved characteristic. 526 

Journal of the Royal Anthropological Institute, 15:223–240. 527 



18 

 

Nettle, D., Gibson, M.A., Lawson, D.W. &  Sear, R. (2013) Human behavioral ecology: current 528 

research and future prospects. Behavioral Ecology, in press. 529 

Nowak, M.A. (2006) Five rules for the evolution of cooperation. Science 314: 1560--1563. 530 

Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M.A. (2006). A simple rule for the evolution of 531 

cooperation on graphs and social networks. Nature 441:502--505. 532 

Olivola, C.Y. & Sagara, N. (2009) Distributions of observed death tolls govern sensitivity to human 533 

fatalities. Proceedings of the National Academy of Sciences USA, 106, 22151–22156.  534 

Ormerod, P. (2012) Positive Linking: How Networks Can Revolutionise the World. London: Faber 535 

and Faber. 536 

Pinker, S. (2010) The cognitive niche: Coevolution of intelligence, sociality, and language. 537 

Proceedings of the National Academy of Sciences USA 107, 8993–8999.  538 

Pinker, P., Nowak, M.A. & Lee, J.J. (2008) The logic of indirect speech. Proceedings of the 539 

National Academy of Sciences USA 105, 833–838.  540 

Powell, A., Shennan, S. & Thomas, M.G. (2009). Late Pleistocene demography and the appearance 541 

of modern human behavior. Science 324, 1298–1301. 542 

Quoidbach J., Gilbert, D.T. & Wilson, T.D. (2013) The end of history illusion. Science 339:96–98. 543 

Rand, D. G., Dreber, A., Ellingsen, T., Fudenberg, D. & Nowak, M. A. (2009). Positive interactions 544 

promote public cooperation. Science 325, 1272–1275. 545 

Reali, F. & Griffiths, T. L. (2010) Words as alleles: Connecting language evolution with Bayesian 546 

learners to models of genetic drift. Proceedings of the Royal Society B 277:429–36. 547 

Rendell, L., Fogarty, L., Hoppitt, W.J.E., Morgan, T.J.K., Webster, M.M & Laland, K.N. (2011). 548 

Cognitive culture: theoretical and empirical insights into social learning strategies. Trends in 549 

Cognitive Sciences, 15: 68–76. 550 

Rogers, E.M. (1964). Diffusion of Innovations. Glencoe, IL: Free Press.  551 

Schumpeter, J. A. (1934) The Theory of Economic Development, Harvard University Press. 552 

Shennan, S.J. & Wilkinson, J.R. (2001). Ceramic style change and neutral evolution. American 553 

Antiquity 66:577–594. 554 

Srinivasan, V. & Mason, C.H. (1986). Nonlinear least squares estimation of new product diffusion 555 

models. Marketing Science 5, 169–178. 556 

Stewart, N., Chater, N. & Brown, G.D.A. (2006) Decision by sampling. Cognitive Psychology, 557 

53:1–26.  558 

Strimling, P., Sjöstrand, J., Enquist, M. Eriksson, K. (2009). Accumulation of independent cultural 559 

traits. Theoretical Population Biology 76: 77–83. 560 

O’Brien, M. J. & Shennan, S. J. (2010) Issues in anthropological studies of innovation. In: 561 



19 

 

Innovation in cultural systems: Contributions from evolutionary antropology, ed. M. J. 562 

O’Brien and S. J. Shennan, pp. 3-17, MIT Press. 563 

Ormerod, P., Tarbush, B. & Bentley, R.A. (2012). Social network markets: the influence of network 564 

structure when consumers face decisions over many similar choices.  Cornell 565 

University arXiv:1210.1646 566 

Tehrani, J. J. & Riede, F. (2008). Towards an archaeology of pedagogy: learning, teaching and the 567 

generation of material culture traditions. World Archaeology, 40(3):316–331. 568 

Winterhalder, B. & Smith, E.A. (2000). Analyzing adaptive strategies: Human behavioral ecology 569 

at twenty-five. Evolutionary Anthropology 9, 51–72. 570 

Wynn, T. & Coolidge, F.L. (2010). Beyond symbolism and language. Current Anthropology 51, 571 

S5-S16. 572 

  573 



20 

 

Figure legends 574 

 575 

Figure 1. Flowchart representing the algorithm described in Section 2. Here we show the solution 576 

for any weight matrix W. In the examples described throughout this paper, we use W as described 577 

in Equation 1. 578 

 579 

Figure 2. For a given location, the weight assigned by an agent to the choices made in 580 

other locations.  Distance on the x-axis and the y-axis shows the weight.  581 

 582 

Figure 3. Weak decay by distance (λ =1). Left: weight matrix, W, for λ =1, m = 1 and μ = 583 

0.005.  The axes show the location number (note that locations are in a circle, so location 584 

100 is adjacent to location 1). The colour codes show the weight associated between each 585 

location pair.  Right: the correlation matrix between the cultural trait distributions in each 586 

location.  Note all correlations between location pairs are high and the calculated S measure 587 

for this simulation is 0.99. 588 

 589 

Figure 4. Strong decay by distance (λ =10). Left: the weight matrix, W, for λ =10, m = 1 590 

and μ = 0.005.  The axes show the location number.  The colour codes show the weight 591 

associated between each location pair.  Right: the correlation matrix between the cultural 592 

trait distributions in each location.  The calculated S measure for this simulation is 0.10. 593 

 594 

Figure 5. Average of the similarity S, as a function of influence decay parameter λ, across 595 

100 solutions of the model for several combinations of m and μ. Red: m = 10, μ = 0.005;  596 

Blue : m = 10, μ = 0.05; Yellow: : m = 1, μ = 0.05;Green: : m = 1, μ = 0.005.  597 



Agents 𝐴1,1, 𝐴2,1, …, 𝐴𝑛1,1 enter the model

For 𝑖 = 1,2, … , 𝑛1

Agent 𝐴𝑖,1 selects location 𝐿𝑖,1 from k 

possible locations each with probability  1 𝑘.

Agent 𝐴𝑖,1 selects cultural trait 𝑃𝑖,1 from p 

possible products each with probability  1 𝑝.

𝑡 > 1

For 𝑖 = 1,2, … , 𝑛𝑡

Agent 𝐴𝑖,𝑡 selects location 𝐿𝑖,𝑡 from k possible locations, 

each location l with probability proportional to

where 1 is the indicator function.

 
max(0,𝑡−𝑚)≤𝑠<𝑡
1≤𝑗≤𝑛𝑠

𝟏 𝐿𝑗,𝑠 = 𝑙

Agent 𝐴𝑖,𝑡 doesn’t innovate. In a given location 𝐿𝑖,𝑡 = 𝑙, 𝐴𝑖,𝑡
selects cultural trait 𝑃𝑖,𝑡 from p possible traits, each product 

q with probability proportional to

The number of traits p equals the number of cultural traits 

available in the previous m time steps.

𝐴𝑖,𝑡 innovates

𝑝 ≔ 𝑝 + 1
𝑃𝑖,𝑡 = p+1 

 
max(0,𝑡−𝑚)≤𝑠<𝑡
1≤𝑗≤𝑛𝑠

𝟏 𝑃𝑗,𝑠 = 𝑞 𝑊𝐿𝑗,∙,𝒍
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Agents 𝐴1,𝑡, 𝐴2,𝑡, …, 𝐴𝑛𝑡,𝑡 enter the model
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