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Summary 

Chemical cross-linking can identify the neighborhood relationships between specific amino acid residues in 

proteins. The interpretation of cross-linking data is typically performed using single, static atomic structures. 

However, proteins are dynamic, undergoing motions spanning from local fluctuations of individual residues 

to global motions of protein assemblies. Here we demonstrate that failure to explicitly accommodate 

dynamics when interpreting cross-links structurally can lead to considerable errors. We present a method and 

associated software, DynamXL, that is able to account directly for flexibility in the context of cross-linking 

modelling. Our benchmarking on a large data-set of model structures demonstrates significantly improved 

rationalization of experimental cross-linking data, and enhanced performance in a protein-protein docking 

protocol. These advances will provide a considerable increase in the structural insights attainable using 

chemical cross-linking coupled to mass spectrometry. 

 

Keywords: cross-linking, molecular modelling, protein docking, mass spectrometry, computational 

structural biology 

 

 

  



Introduction 

Identifying and characterizing structurally the interactions between proteins is key to our understanding of 

their biological function (Landry et al., 2013; Vidal et al., 2011). Chemical cross-linking coupled to mass 

spectrometry (XL-MS) is revolutionizing our ability to obtain such insights by identifying covalent links 

made by bifunctional reagents between specific amino-acid side chains (Leitner et al., 2010; Rappsilber, 

2011; Sinz, 2014). This information can be employed to identify protein assemblies and the connectivity of 

subunits within (Bruce, 2012; Liu et al., 2015). Furthermore, by establishing proximity relationships between 

amino-acid residues, XL-MS has been used to validate structures (Agafonov et al., 2016; Greber et al., 

2015), examine protein conformations (Fischer et al., 2013; Schmidt and Robinson, 2014), and guide coarse-

grained and atomistic structural modeling (Hall et al., 2016; Kalisman et al., 2012; Leitner et al., 2016; 

Politis et al., 2015; Shi et al., 2014). 

 

In principle, because a cross-linking reagent and the side-chains it bridges have defined lengths, XL-MS data 

contains information that could directly enable high-resolution structure determination. A cross-link may be 

established during an experiment if the distance between two linking atoms is momentarily shorter than the 

spacer-length of the cross-linking reagent. From a modeling perspective, therefore, a significant challenge in 

using such data stems from complications arising from the intrinsic dynamics of proteins. These range from 

the reorientation of individual side-chains, to the concerted movement of large segments of the backbone 

(Fig. 1A)(Henzler-Wildman and Kern, 2007). As such, proteins populate a conformational ensemble in 

solution, rather than a static structure. Within this ensemble, the distance between two specific amino acids 

may vary dramatically (Fig. 1B). Because cross-linking is an essentially irreversible chemical modification, 

XL-MS is sensitive to the conformational heterogeneity of proteins. As such, XL-MS modeling based on a 

single atomic structure is fundamentally limited, and methods that accommodate protein dynamics are 

required. 

 

In XL-MS modeling, dynamics are frequently accounted for implicitly, in coarse fashion. Typically, to 

determine whether two sites are cross-linkable, the distance between α- or β-carbon pairs rather than between 

the side-chain atoms that mediate cross-linking is measured. By comparison of this measure with a cut-off 



defined by the length of the cross-linker plus that of the side chains, reorientation of the amino acids is, in 

part, accommodated (Rappsilber, 2011). In order to account for movements of the protein backbone, this cut-

off is sometimes increased ad hoc. While simple, such blanket approximations do not account for the 

respective orientation of specific linkage sites, and the fact that different regions of the protein will feature 

different mobilities. As a result, interpretation of XL-MS data in a structural context, at atomistic resolution 

with a single structure, can lead to misinterpretation of the data.  

 

Here we present a modeling strategy for cross-links that explicitly accommodates protein dynamics. We 

employ an efficient path-finding algorithm to define the shortest physical distance between two linkage sites, 

defined as the space accessible to the individual amino-acid side-chains. We also account for larger protein 

rearrangements by enabling the analysis of multiple protein conformations. We demonstrate that our method, 

implemented in the freely available software DynamXL, considerably outperforms existing approaches in the 

interpretation of XL-MS information, and allows us to improve the accuracy of protein-protein docking 

applications. 

 

  



Results 

We specified four principal requirements for an improved means for interpreting XL-MS data structurally: 

(1) to explicitly, on a case-by-case basis, accommodate the possibility of side-chain reorientation; (2) to be 

able to measure physical distances between linkage sites; (3) to allow the processing of multiple protein 

conformations concurrently; and (4) employ well-defined error estimates and confidence limits. Our solution 

is DynamXL, software written in Python, which can function both as a standalone package with graphical 

user interface, or as a library to facilitate integration with other computational structural biology tools. 

Shortest paths between ensembles of amino acid side-chain conformations 

Amino-acid side chains undergo rapid motions on the picosecond timescale, sampling many alternate 

conformations (Fig. 1A,B) (Henzler-Wildman and Kern, 2007). To accommodate this flexibility, we 

developed a strategy based on the linking atom being able to explore a series of concentric hemispheres 

defined by the plane of the protein backbone, and centered on the α-carbon (Cα) of the residue under 

consideration (Fig. 1C and S1). The radii of the hemispheres correspond to the probable distances, arising 

from side chain rotamers, between the Cα and the linking atom (Fig. S1). These hemispheres are constructed 

by DynamXL as a mesh of evenly distributed points, omitting those that overlap with the electron density of 

the remainder of the protein. This set of points thereby represents the linkage site as an ensemble explicitly 

accounting for the possible reorientations of the side-chains. 

 

To measure the shortest path between two linkage ensembles, we evaluate the distances between all possible 

pairs of points. To ensure that the paths we measure are physically meaningful, in that they do not penetrate 

the protein, we calculate the shortest solvent accessible surface distance (SASD) (Bullock et al., 2016; 

Kahraman et al., 2011). We achieve this using a novel approach (full details in the STAR Methods), 

exploiting the Lazy Theta* path-planning algorithm (Nash et al., 2010). In brief, our strategy involves 

surrounding the protein with a fine-grained mesh, and determining the shortest route between defined start- 

and end-points, through a series of mesh points. The shortest path is subsequently smoothed, resulting in a 

shorter trajectory closer to the protein surface (Fig. S2A). We benchmarked the performance of our path-

finding approach, and found it to return values that are within 5.7% of the true shortest path (Fig. S2B,C), 



while the error associated with the discretization of the space accessible to side chains was estimated as 6.1% 

(Fig. S2D-G). 

 

Side chain flexibility is key to effective distance estimation 

In order to evaluate the benefit of accommodating side-chain dynamics and solvent-accessible paths in 

modeling cross-links, we used DynamXL to compare five different cross-linking distance measurement 

methods. These report either straight-line distances (SLDs) between static Cα-Cα or Cβ-Cβ pairs (hereon 

notated SLDCα and SLDCβ), SASDs between static Cβ or Nζ pairs (SASDCβ and SASDNζ), and both SLDs 

and SASDs between Nζ ensembles ({SLD}Nζ and {SASD}Nζ, where curly brackets indicate the shortest 

distance between two ensembles of alternative atom positions). We then performed extensive benchmarking 

using all 1755 PDB files in the PiQSi database of protein assemblies (Levy, 2007). Though DynamXL is 

capable of accommodating links between any atoms, we focused here on lysine side-chains, as their amino-

nitrogen (Nζ) is targeted by many commonly used cross-linking reagents, and measured distances between 

each of the 70001 lysine occurrences using these different methods (Fig. S2H).  

 

When interpreting cross-linking data using atomic coordinates, an approach widely adopted in the literature 

is to employ a cut-off longer than just the length of the cross-linker (plus the side-chain lengths, if not 

measuring between Nζ atoms) to accommodate implicitly the possibility of protein dynamics, including side-

chain reorientation. The inevitable result is that, if the cut-off is not sufficiently accommodating, possible 

cross-links are missed (false-negatives). Conversely, if the threshold is overly generous, cross-links will be 

presumed when they are physically impossible (false-positives) (Fig. 2A). In our approach, where side-chain 

ensembles are modeled explicitly, the cut-off can instead be defined as the exact length, plus computational 

error, of the cross-linker used in the experiment. To describe this improvement quantitatively, we used the 

{SASD}Nζ metric as reference to identify, for every alternative method, the cut-off that minimizes the 

classification error, that is the sum of false-positives and -negatives. This revealed that, for instance, using 

SLDCβ in trying to explain data produced with lysine cross-linkers BS2, BS3 or EGS or the 

heterobifunctional SDA leads, at best, to classification errors of 15.5%, 20.9%, 17.1% and 9.2%, respectively 

(Fig. 2B, second column, and Table S1). When instead of measuring a straight line path we examined the 



SASDCβ measure, we noted better performances, especially for the longer cross-linkers. Nevertheless, we 

still found errors of approximately 10%. Importantly, while measuring the SASDNζ proved inferior to 

SASDCβ, measuring {SLD}Nζ produced relatively low errors. Indeed, for short-range cross-links, this 

approach featured fewer errors than SASDCβ measurements. For instance, for the SDA cross-linker 4.9% 

classification error has to be expected when using {SLD}Nζ, whereas SASDCβ would lead to 8.8% (Fig. 2B). 

The performance obtained by SASDCβ and {SLD}Nζ shows how side-chain flexibility is essentially as 

important for accuracy in modeling cross-links as SASDs. Importantly, {SLD}Nζ calculations are over 10-

fold faster than SASDCβ, making it suitable for applications where computational speed is critical (Table S2, 

Fig. S2D). This combines to demonstrate that modelling alternate side-chain conformations outweighs the 

loss in performance caused by not measuring SASDs. 

 

Examining ensembles of proteins allows the distinction of different conformational and ligand-bound 

states  

To test our method on experimental data, we mined the XLdb (Kahraman et al., 2013), a database 

comprising experimentally determined cross-links of proteins for which a crystal structure has been 

deposited in the protein data bank (PDB). We calculated the {SASD}Nζ
 
for BS3 cross-links detected on 55 

different proteins. Of 359 measures, 286 (79.7%) were found to be below the length defined by the cross-

linker (Fig. S3A). In comparison, the commonly used SASDCβ could explain only 69.1% of the distances 

(Fig. S3B), even when applying the ideal 25 Å cut-off which we determined above (Table S1). This reveals 

that {SASD}Nζ is the most effective metric for explaining the available experimental data (Fig. S3C). Cross-

links which could not be explained by our measurements are likely caused by a difference between the 

oligomerization or conformation of the protein in solution and the crystal lattice. One approach to tackle the 

latter error is to increase the cross-linking cut-off by a constant amount. We found that, whatever this 

additional increment, {SASD}Nζ explained more data than SASDCβ (Fig. S3D). This shows that protein 

dynamics beyond the side-chain level, have a negligible effect on the relative performance of the different 

distance metrics. 

 



However proteins differ in their flexibility, both internally and between each other. To tackle this problem, 

DynamXL can measure the {SASD}Nζ on multiple alternative protein conformations concurrently, thereby 

delivering a “distance of closest approach” (Jacobsen et al., 2006) within the multi-level ensemble for each 

pair of atoms under consideration. To examine the benefits of this capability, we first examined the four 

nuclear magnetic resonance spectroscopy (NMR) derived ensembles for which a total of 10 cross-links have 

been deposited in the XLdb (PDB ID: 1JM7, 2EJM, 2CQY, 1ZWV). We found that one of these cross-links 

could be explained by just a subset of available models, and one could not be explained by any of them (Fig. 

S3E). These two cross-links span notably flexible protein regions, associated with large fluctuations in 

{SASD}Nζ (7.7 Å and 9.8 Å) within the respective ensemble. Since these four proteins are relatively small 

(6-26 kDa) and sparsely cross-linked, we next selected rhodopsin, a 39 kDa membrane protein (Jacobsen et 

al., 2006) for which 11 cross-links are reported in XLdb. We aggregated an ensemble of 16 rhodopsin 

structures from the PDB, and calculated the {SASD}Nζ for each of them. We found that, although no single 

structure was able to explain more than 7 of the 11 (64%), the resulting ensemble of structures was sufficient 

to rationalise all the experimental cross-links (Fig. 3). 

 

To test the selectivity of the cross-linking data, we tested them against an ensemble of opsin (rhodopsin 

lacking its cofactor retinal). In this case, one cross-link could not be explained from the available structures, 

revealing the data to, in principle, be capable of discerning conformational variations. When we examined 

another protein-ligand system, myoglobin and its haem group (Seebacher et al., 2006), we found that the data 

could not be explained entirely by an ensemble of 38 non-redundant holo-myoglobin structures, but 

necessitated the inclusion of apo- structures (Fig. S3F). This indicates that at least some of the myoglobin 

molecules in solution may have not had a haem group bound. These results reveal that the binding of a 

ligand, and the conformational change it induces, can be distinguishable by combining XL-MS data with our 

analysis approach.  

 

Side chain flexibility for docking applications 

Docking algorithms predict the arrangement of multiple proteins of known structure in a complex. Given the 

vast number of possible combinations, this task is extremely challenging (Bonvin, 2006). Experimental data 



can however simplify the docking process, by guiding the prediction process towards regions of interest in 

the search space. In this context, XL-MS data have already been exploited multiple times to guide protein-

protein docking protocols (Leitner et al., 2016). Given the high error-rate associated with simpler distance 

measures (Fig. 2), we quantified the number of false-positives and false-negatives a docking algorithm 

should be robust against. We extracted from our PiQSi database analysis all the inter-molecular distances 

obtained between lysine pairs, and simulated the identification of SDA, BS2, BS3 and EGS using as cut-off 

the optimal distances identified above (Fig. 2B and Table S1). We then quantified the expected number of 

false-positives and -negatives using the {SASD}Nζ
 
measures as a reference (Fig. 4A). Our results indicate 

that no significant difference is to be expected between the usage of SLDCα and SLDCβ metrics. SASDCβ 

provides a substantial reduction in false-positives for long cross-linkers (5% less for BS3, 10% less for 

EGS), and outperforms SASDNζ, which has a high false-negative rate. Notably, measuring {SLD}Nζ yields 

the best performance in terms of false-negatives (always <4%), while false-positive rates are comparable to 

those of SASDCβ for all but the longest cross-linkers. This propensity of only rarely overestimating the 

distance between two atoms, is important in a molecular docking context: while false-positives may lead to a 

larger pool of docking candidates being returned (decreasing precision), false-negatives may lead to the 

rejection of a correct docking pose (decreasing accuracy). 

 

In principle, performing docking using {SASD}Nζ
 

should yield the best performance. However, the 

associated computational cost renders it currently impractical for applications where tens of thousands of 

measures must be performed rapidly (Table S2). Our benchmarking suggests however that measuring 

{SLD}Nζ
 
constitutes a good alternative. To test this hypothesis we simulated 1180 protein-protein docking 

cases restrained by sparse BS3 cross-linking distances, and 351 using SDA ones (Table S2, Fig. S4). We 

docked all these cases using the POW
ER

 docking algorithm (Degiacomi and Dal Peraro, 2013) that, in a total 

of 4593 independent runs, exploited SLDCα, SLDCβ, or {SLD}Nζ
 
to assess the distance restraints. The best 

models obtained with our ensemble approach have on average a lower RMSD from the crystal structure, 

compared with those produced by using SLDCα or SLDCβ (Fig. 4C). Furthermore, they satisfied a larger 

number of cross-linking restraints, and ranked higher in the list of best models produced by the docking 

algorithm (see Table S2 and Fig. S4). We observed that using the less accurate distance metrics resulted in 



an increased likelihood of obtaining models that, despite satisfying all distance restraints, were incorrect (e.g. 

in Fig. 4D). Interestingly, we found that using a larger number of restraints did not necessarily lead to 

improved results, since the likelihood of misinterpreting at least one distance (and thus wrongly biasing the 

docking algorithm) increased (Fig. S4F). Notably, constraining the docking with a short- rather than long-

range cross-linkers (SDA vs BS3) only improved performance when using the {SLD}Nζ metric (Table S2). In 

sum, therefore, {SLD}Nζ, constitutes a fast and more accurate means for exploiting XL-MS data for protein 

docking. 

 

  



Discussion 

Recent advances in XL-MS experiments have enabled the identification of cross-links in, and between, a 

wide variety of proteins, even within complex mixtures. Here we have presented DynamXL, software that 

greatly improves the interpretation of identified cross-links in a structural context. In contrast to alternative 

strategies, our approach explicitly accommodates protein dynamics, allowing the interrogation of 

conformational ensembles rather than individual, static structures. 

 

Other approaches accommodate side-chain and backbone motions implicitly by adding a constant to the 

length of the cross-linker and amino-acid residues to obtain a cut-off distance below which a cross-link is 

considered feasible. A variety of different values for this constant have been used in the literature. For 

example, in the case of BS3/DSS cross-linkers, cut-offs of 27 Å (Fritzsche et al., 2012), 28 Å (Kalisman et 

al., 2012) and 35 Å (Hall et al., 2016) have been used for SLDCα; 30 Å (Kahraman et al., 2013) and 34 Å 

(Herzog et al., 2012) for SASDCβ. Others have attempted to estimate the average effect of dynamics by 

mining a dataset of MD simulations, suggesting a criterion for SLDCα <26-30 Å (Merkley et al., 2014), or to 

further adapt a static cut-off distance on the basis of specific linking pairs crystallographic beta factors 

(Rappsilber, 2011). Here we have shown how failing to account for side chain flexibility on a case-by-case 

basis will introduce large errors: for instance, the error of SLDCα for BS3 is >20% (Fig. 2B). Our new 

approach, involving the measurement of a SASD on side-chain rotamers that are modeled explicitly, without 

the need of ad hoc corrections, is therefore more accurate than any previous method. 

 

As well as accommodating the high-frequency motions of side-chains, we have specifically designed 

DynamXL to allow the concurrent interrogation of multiple structures differing in back-bone conformation. 

Such ensembles could be experimental (e.g. from NMR or collections of crystal structures in different 

conformations), or computational (e.g. from MD simulations or normal mode analysis) in origin. Our 

analyses demonstrate that incorporation of these different structures, representing low-frequency tertiary 

structure rearrangements, can be important when explaining experimental data. We anticipate that this 

capability will prove particularly important for large proteins and their assemblies, as these will typically 



have an increased capacity for large amplitude motions, and necessitate multiple models to explain the 

observed data. 

 

While the {SASD}Nζ
 
method is the most accurate in its description of protein flexibility, it demands the 

highest computational cost. Our results indicate that, within all alternative distance metrics, {SLD}Nζ
 

performs the best for cross-linkers shorter than ~12 Å. This metric features the lowest false-negative rate, 

and a false-positive rate comparable to that of SASDCβ, while requiring a fraction of its computational time. 

This observation shows how modeling the side-chain ensemble results in a greater improvement in accuracy 

over measuring SASDs instead of SLDs. In particular, we have demonstrated that using {SLD}Nζ instead of 

the commonly employed SLDCα and SLDCβ leads to significant improvements in the performance of protein-

protein docking restrained by XL-MS data. 

 

In summary, we have demonstrated that our software, DynamXL, is well suited to accommodate the 

complications incurred by considering the dynamic structures of proteins and how they impact on XL-MS 

experiments. It is capable of explicitly accommodating motions at the level of both the reactive side-chains 

and larger-scale rearrangements of the protein backbone. By performing exhaustive benchmarks, we have 

revealed how these inclusions increase the accuracy of cross-link assessment, and also allow significant 

improvements in protein-protein docking. These more sophisticated computational approaches ultimately 

represent improvements in the effective resolution of structures built based on MS data. These improvements 

will go hand-in-hand with improved scoring metrics (Bullock et al., 2016), advances in methods for profiling 

interactions between proteins in the cell (Liu et al., 2015), and developments in integrative modeling (Sali et 

al., 2015) to cement the role of XL-MS in structural proteomics. 
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Figure Legends 

 

Figure 1: Distances between side-chains depends on both global and local protein dynamics. A A 550 

ns MD simulation of monomeric HIV-1 capsomer shows that it is composed of two rigid domains connected 

by a flexible linker (Degiacomi and Dal Peraro, 2013). Multiple resulting structures are superimposed with 

the N-terminal domain aligned (and the motional extremes emphasised), revealing large relative motions of 

the two domains. Inset Examination of individual side-chains reveals them to undergo considerable local 

fluctuations. B The distribution of distances between lysine Nζ (blue spheres in A) pairs, separating them 

into inter- (red) and intra- domain pairs (blue). Inter-domain distances are affected by relative motions of the 

domains such that broad (up to 45 Å wide), and sometimes bimodal, distance distributions are observed. 

Intra-domain distances are instead mostly affected by the relative orientation of side chains, leading to 

variations up to 15 Å. C To accommodate side-chain orientations, we can consider lysine Nζ atoms as able to 

explore a spherical space centered on the backbone Cα, and described by spherical coordinates with respect 

to their backbone plane. D The sampling of predicted Nζ positions for all lysines in the HIV-1 capsomer 

using our methodology (coloured surfaces) encompass all orientations observed in the MD simulation (black 

points), and more. Notably, some side chains are heavily constrained by their local environment (e.g. K20), 

while others can fully explore the space around them (e.g. K193). See also Fig. S1. 

 

Figure 2: Benchmarking cross-linking measures using the PiQSi database. A Simulation of putative 

cross-links made from a selected lysine using {SASD}Nζ (right), SASDNζ (middle), and SASDCβ (right). For 

each distance metric, a cross-link to a nearby lysine is considered possible (yellow lines, or overlapping 

spheres) if the measured distance is below the optimal, fixed cut-off (identified in our benchmarks, see B). 

Using the {SASD}Nζ metric, the most accurate because it measures physically meaningful distances between 

alternative locations representing side chain flexibility, three links are identified. SASDNζ identifies five 

links, thus producing two false-positives (i.e. links that are not possible given the structure). SASDCβ predicts 

only two links, as such yielding one false-negative (i.e. an unidentified link). B We measured distances 

between all ~1.5 million lysine pairs in the PiQSi database using five alternative distance metrics (SLDCα, 

SLDCβ, SASDCβ, SASDNζ, {SLD}Nζ) and compared them to {SASD}Nζ. In this latter method, a cut-off equal 



to the cross-linker length, plus computational error, is used (e.g. 13.0 Å for BS3). For the other methods, that 

either do not model side-chain reorientation or use straight-line distances, the cut-off is altered so that cross-

linker and side-chain flexibility are implicitly accommodated for must be used. Note, this cut-off 

encompasses contributions from the cross-linker, the side-chains it links, computational error, and the side-

chain dynamics of the residue under question). Upper Classification error (the sum of false-positives and -

negatives) depending on the cross-linker length and choice of cut-off distance, versus the {SASD}Nζ 

reference. Blue regions feature the smallest classification error, red the highest. White circles indicate the 

cut-off that minimizes classification error for four commonly used cross-linkers. Smaller cut-offs lead to 

more false-negatives, larger ones increase false-positives. By selecting cut-offs that minimize the 

classification error, SASDCβ yields a significant improvement over a simple SLD. Nevertheless, 

classification errors above 10% are still expected. Lower Expected error for the BS3 cross-linker, depending 

on the cut-off distance employed, for each measurement approach. The minimum corresponds to the cut-off 

that minimizes the classification error in our benchmark. See also Tables S1-2, Fig. S2. 

 

Figure 3: DynamXL allows comparison of experimental cross-links within a structural ensemble.  

Upper left The horizontal lines indicate experimentally determined shortest distances between cross-linked 

lysine pairs in rhodopsin (Jacobsen et al., 2006), and points indicate {SASD}Nζ measures on an ensemble of 

X-ray structures in the PDB. Blue points indicate measures below the experimental cut-off, and red points 

those above it. Lower left Areas colored in blue indicate an experimental cross-link explained by a specific 

crystal structure, while red ones are unexplained, and white ones indicate that a measure could not be 

performed because one or more of the linking atoms was absent in the structure.  Lower right Hierarchical 

clustering of crystal structures according to Cα RMSD. Edges are colored according to their explanatory 

power: the darker, the more cross-links can be explained by the underlying cluster. Top right The various 

structures are superimposed, with the position of the lysine Nζ in the different structures shown (each a 

different color). Notably, the experimental data for rhodopsin can only be explained by rhodopsin structures, 

one link cannot be explained by opsin structures (identified by the PDB codes in parentheses). See also Fig. 

S3. 

 



Figure 4: Accommodating side-chain dynamics improves protein-protein docking performance. A The 

number of false-positives and -negatives returned for the different distance metrics, when measuring 

distances between inter-monomer lysine pairs on all 245 dimers in the PiQSi database. {SLD}Nζ yields the 

best performance, particularly in terms of false-negatives, revealing how modeling side-chain orientations is 

more important in this application that SASDs.  B RMSD of the best model obtained with each of the three 

SLD metrics relative to the known dimeric arrangement. Cases in the grey band are those where the two 

metrics perform similarly, returning a difference in RMSD <1 Å. A larger proportion of cases lie below this 

gray band, rather than above it, indicating that {SLD}Nζ in general outperforms SLDCα and SLDCβ. C 

Distributions of the best models’ RMSD to the known structure shows that the {SLD}Nζ yields better models 

on average. D Example docking results performed with different distance metrics are superimposed on the 

known dimeric structure, shown in light grey (PDB codes, upper: 1E87, middle: 1T4H, lower: 1T3C). The 

best model obtained using SLDCα is shown in blue, SLDCβ in red and {SLD}Nζ in dark grey. The fraction of 

satisfied distance restraints, and RMSD of the best model are noted. See also Table S3, Fig. S4. 

  



STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for data will be fulfilled by the lead contacts Matteo T. Degiacomi 

(matteo.t.degiacomi@durham.ac.uk) and Justin L.P. Benesch (justin.benesch@chem.ox.ac.uk). 

 

METHOD DETAILS 

Software implementation 

DynamXL is written in Python and C (via Cython). It can be executed as a Python package to facilitate its 

integration in external software, or via a graphical user interface allowing the facile comparison of 

experimental XL data and theoretical distances. The current version is capable of handling multi-PDB as 

well as gro files from molecular dynamics simulations performed with Gromacs. Though in this work we 

have focused on the lysine Nζ, DynamXL can measure distances between any pair of atoms. 

 

Protein density representation and generation of the accessible mesh grid 

We obtain an electron density map for the protein by centering a 3D Gaussian distribution with the atom’s 

van der Waals radius at 1 standard deviation on each atomic coordinate. We then generate a mesh grid 

encompassing the whole protein with a spacing of 1 Å, and within every voxel calculate the sum of all local 

Gaussian distributions. Mesh points associated with voxels having an electron density greater than 1 (e.g. 

falling within the van der Waals radius of an atom, and hence considered as occupied) are removed. When 

studying larger proteins, the mesh might become too large to be held in memory. In this case, a smaller cubic 

mesh of predefined dimensions (based on the cross-linker spacer length) is used. When studying several 

cross-links on the same protein, the cubic mesh is displaced between two linkable atoms, if these are at a 

distance shorter than the box size. When using a single mesh grid encompassing the whole protein, our 

shortest path algorithm will always return a distance measure between two linkable atoms, as long as they 

are both solvent accessible. Using a local grid may fail in the case of start- and end-points being located in 

disconnected mesh regions. Since the size of the local grid is determined by the longest possible distance the 



cross-linker can span, failure indicates that the two linking atoms are excessively far apart, and DynamXL 

reports an unsatisfied cross-link. 

Representing the protein as an electron density dramatically reduces the number of small internal cavities, 

and the likelihood that a shortest path may be identified as passing through the protein instead of on its 

surface. An open area for investigation is represented by large loops and tunnels. If a tunnel through a 

protein is sufficiently large, our path detection algorithm can in principle identify shortest paths through it. 

Although such a scenario is unlikely in vitro, it might be possible for cross-linkers to connect residues 

through larger tunnels, such as the central cavity of a pore. 

 

Construction of hemispheres 

The underlying hypothesis of our side-chain modelling method is that linking atoms will explore the whole 

accessible region, represented as multiple concentric spheres centered on the Cα (Fig. 1C, Fig. S1B). Our 

method discretizes the spherical accessible region, replacing it by a mesh of equally spaced points 

representing alternative linking atom conformations. A uniform spherical point distribution (“golden 

sphere”) is obtained using the 3D equivalent of Vogel’s spiral method used to describe the distribution of 

sunflower seeds (Vogel, 1979),  as follows. Let the coordinates of a point distribution centered at the origin 

be described in cylindrical coordinates (r, α, z), where α is the azimuth, and z the elevation (Fig. 1C); θ the 

golden angle 𝜋(3 − √5) equal to ~137.508°; and i an integer number from 0 to the desired number of points 

N. Then: 

 

{
 
 

 
 

𝑟𝑖 = 𝜃𝑖

𝛼𝑖 = √1 − 𝑧𝑖
2

𝑧𝑖 = (1 −
1

𝑁
)(1 −

2𝑖

𝑁−1
)

      (Equation 1) 

We define N as the closest integer to the value necessary for a desired point density. This is found by 

controlling the surface area σ represented by a single point. The higher the point density (and the smaller σ), 

the better the accessible sphere is represented. From this resulting mesh, points are removed according to 

three rules. First, the backbone plane is identified (using the amide O, C,  and N atoms), and only the points 

located on the same side of the plane as the side chain atom are retained to ensure that no alternate atom 

positions represent unrealistic backbone twists (see Fig. S1A). Second, points within 2 Å of other atoms are 



removed as these represent clashes with the protein. Last, if multiple concentric golden spheres feature an 

accepted point at the same position (same elevation and azimuth), only the outermost is retained. 

 

Shortest path algorithm 

First, accessible regions surrounding the protein of interest are identified. We consider a region accessible if 

it does not clash with the protein’s buried amino acids, as well as backbone and Cβ atoms of solvent-exposed 

residues. This is based on the hypothesis that solvent-exposed side chains can move away from the trajectory 

of the cross-linker (see below). The problem of measuring the shortest distance between two atoms is now 

one of finding the shortest path within the remaining mesh points. The path start- and end-points are 

identified as the mesh points closest to the atoms of interest. The shortest path between the two is identified 

using the Theta* path detection algorithm, in its “lazy” form (Nash et al., 2010). Importantly, the paths 

identified by Theta* are not bound to pass through all intermediate mesh points if line-of-sight between two 

distant points exists (any-angle path detection (Nash and Koenig, 2013)). Without smoothing, the paths 

identified by this algorithm are shorter than those of algorithms bound to travel solely through mesh points, 

and are therefore very close to the true shortest path (Uras and Koenig, 2015). In order to obtain smoother 

direction changes, and to better connect the actual start- and end-coordinates, the path is then smoothed. This 

is done by applying a two-pass smoothing algorithm on Theta* paths. First, our algorithm adds pseudo-atoms 

separated by 1 Å on every straight section of path. Then, in a sliding-window fashion, triplets (a1-a2-a3) are 

read from this pseudo-atom chain. When a triplet is not collinear (i.e. forms an angle other than 180°), a2 is 

first displaced in the geometrical center of atoms a1 and a3, and then displaced towards its initial position in 

0.1 Å steps, until no clash is detected. The operation is performed first from the start to the end of the chain, 

and then in the opposite direction. This important step makes changes in direction less angular, and paths 

around the protein shorter (on average 6.5%, Fig. S2A). 

 

The Theta* path detection algorithm is executed on a mesh grid associated with all unoccupied voxels given 

the following conditions: 1) the SLD between start and end points is shorter than the length of the cross-

linker, 2) the distance between the linking atom and the closest mesh point is <1 Å (a longer distance 

indicates that the linkage site is likely buried) and 3) the two points fail a line-of-sight test (i.e. an obstacle is 



located between them). If start and end points have line-of-sight, their SLD is returned, otherwise Theta* is 

executed. For our tests, SASDs were measured between the subset of lysine pairs being at an SLD <24 Å (a 

cut-off including any pair at a distance shorter than the length of a BS3 cross-linker plus twice the length of a 

lysine side chain).  

 

Protein-protein docking restraints and scoring function 

We extracted all 245 dimers from the PiQSi database, and simulated experimental SDA and BS3 cross-

linking datasets using {SASD}Nζ. For BS3, any inter-monomer lysine distance below 13 Å (i.e. 11.4 Å plus 

computational error) was considered as cross-linked. For analogous reasons, for SDA the cross-linking cut-

off was set to 4.4 Å. All datasets had to contain at least two cross-linking distances. Whenever possible (i.e. 

>2 linking pairs available), up to four random subsets were produced from each of these cross-linking 

datasets in order to simulate data sparsity.  As such, a total of 1180 simulated cross-linking datasets were 

obtained for BS3, and 351 for SDA (Table S3). 

All the obtained datasets were exploited as distance restraints for docking, and SLDCα, SLDCβ, and {SLD}Nζ 

were exploited as measurement metrics. For every docking pose, the distance of each pair in the restraint set 

was measured, and compared with a cross-linking acceptance criterion, . In the case of the BS3 datasets, 

distances  were equal to 18.7 Å for SLDCα and SLDCβ, and 10.6 Å for {SLD}Nζ. For SDA,  was equal to 

11.0 Å for SLDCα, 12.1 Å for SLDCβ, and 3.8 Å for {SLD}Nζ. All these distances had been previously 

identified as the optimal cut-off distance (Fig. 2B, Table S1). The following penalty function p was 

exploited, to score how much a docking pose respects n simulated target cross-linking distances, where d are 

the cross-linking distances measured on the structure: 

 𝑝 = ∑ {
0 𝑖𝑓 𝑑𝑖 < 𝑖

𝑖 − 𝑑𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑛
𝑖=0       (Equation 2) 

Furthermore, models featuring clashes between atoms should also be penalised. Hence we added a further 

energy term to the penalty function. This was represented by a 9-6 Lennard-Jones potential, e, between the 

Cα and Cβ of both docking partners, where rij is the distance between two atoms i and j, A = 1 is the depth of 

the potential minimum, and B = 2.7 the distance at which the potential is zero: 



 𝑒 = 𝐴∑ ∑ (
𝐵

𝑟𝑖𝑗
)
9
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𝐵

𝑟𝑖𝑗
)
6

𝑗𝑖      (Equation 3) 

Energies less than 0 indicate proteins that are in contact, but do not clash. Since the objective of this test was 

to assess the capacity of a cross-linking metric alone to the docking process, we decided to treat the van der 

Waals energy solely as a penalty. As such, any clash-free model was considered as equiprobable, by setting a 

minimum value of 0 for e. We combined equations 2 and 3 to produce the following fitness function, f: 

 𝑓 = 𝑝 +min (0, 𝑒)       (Equation 4) 

 

Protein-protein docking protocol 

All optimizations were performed exploiting the POW
ER

 optimization environment (Degiacomi and Dal 

Peraro, 2013). One of the two docking partners, the “receptor”, was aligned at the origin and kept fixed. The 

other protein, the “ligand”, was roto-translated around the receptor. The search space was therefore 6-

dimensional (3 translations, 3 rotations). Boundary conditions were treated as reflexive, and were equal to [-

100,100] for translations and [0,360] for rotations. The aim here was to identify positions in the search space 

leading to dimers being clash-free while respecting all distance restraints, i.e. having fitness f=0. The Particle 

Swarm Optimization “kick and reseed” (PSO-KaR) optimization algorithm was used with default parameters 

for inertia, and weights for personal- and global-best. Each optimization featured 80 particles, exploring the 

dimeric conformational space for 500 steps. In the “kick and reseed” paradigm, particles that are too slow 

(stagnating, i.e. displacing in any dimension by less than 0.01% of the total dimension size) are restarted in a 

new region of the search space, and their memory erased. To avoid other particles exploring that same region 

of the search space, a repulsive potential is added at that location. Every optimization case was executed five 

times, and the list of repelling potentials passed from one instance to the next. 

 

All measures performed by every particle were logged. In a post-processing phase, all models associated 

with  f = 0 were generated. If fewer than 100 models were found to fulfill this criterion, the 100 top-scoring 

models were extracted. For all of these, the Cα RMSD against the reference structure was calculated. The 

lowest score, as well as its rank in terms of fitness and the total number of fully satisfied distance restraints, 

was returned. All models with f=0 were considered as equiprobable, and assigned the same rank (i.e. 1). 

 



QUANTIFICATION AND STATISTICAL ANALYSIS 

Estimation of SASD measurement accuracy 

We identified two possible sources of error in our SASD measurement method: the Theta* heuristic (e1), and 

the specific location of mesh points with respect of protein atoms (e2). To assess algorithm error, we 

randomly selected 100000 lysine pairs from the PiQSi database, 63.3% of which had no line-of-sight. For 

each of these, we measured the SASDs using both the Theta* and Dijkstra algorithms. The latter, though 

much slower, identifies the absolute shortest path between two nodes by exploring every accessible node in 

the mesh (Dijkstra, 1959). Paths obtained with the Dijkstra algorithm were refined by identifying key nodes 

via line-of-sight tests, and removing all others. Both Theta* and Dijkstra paths were then smoothed as 

described in the STAR Methods. Results indicated that, on average, only marginal differences between the 

two methods exist (for links shorter than 40 Å, average measures deviate by 0.08%, Fig. S2B). Standard 

error e1 appears to grow near-linearly with SASD length, and is equal to 2.1% in our region of interest 

(SASD <24 Å). 

 

The mesh grid location can affect the distance of linking atoms to their closest mesh point, as well as its 

capacity to sample narrow gaps. To assess the magnitude of these effects, we calculated the SASD on a 

subset of 5000 lysine pairs, 64 times. For each of these cases, the mesh grid position was altered with 0.25 Å 

steps in the x, y and z direction, for maximal displacements of 0.75 Å. Results indicated that the error e2 

caused by grid location is equal to 3.6%, independent of link length (Fig. S2C). In 1.3% of pairs, at least one 

grid position led to a SASD distance not being measured while other positions yielded a measure. The 

likelihood of missing a possible SASD measurement was 0.5%, which we can consider as negligible. 

Overall, we assess the error in our SASD measurement method as e1 + e2 = 5.7%. 

 

Assessment of side chain reorientation error 

To study the effect of the surface area per point, σ, on path length, we randomly selected 300 different 

proteins from the PiQSi database. Within this subset, 4539 lysine pairs were at a SLDNζ <24 Å. We measured 

the {SASD}Nζ between every pair multiple times, with σ ranging from 1 to 100 Å
2
, and compared them with 

the measures obtained from the crystal structure conformation alone (i.e. SASDNζ). Our results indicated that, 



the smaller σ, the shorter the measured distance (Fig. S2E). We fitted the relationship between σ and path 

shortening, i.e. {SASD}Nζ/SASDNζ, with a shifted logarithmic curve. The resulting function allows us to 

estimate the SASD one would obtain by treating the sphere as a continuum (i.e. as σ tends to 0). In such a 

case, paths would be on average 41% shorter than measured from the crystal structure alone. The function 

can also be exploited to predict how much longer the paths obtained with a sphere discretized at an arbitrary 

σ will be, versus a continuous sphere. This information can be used to identify the error e3 dependent σ: 

 e3(σ) = 0.18 log10(σ + 9.7) - 0.41   (Equation 5) 

By combining this equation with the errors e1 and e2 identified in the previous section (expressed as 

fractions), every measured SASD is then rescaled as follows to obtain more accurate distance estimations: 

 SASD(σ) = SASD[1 – e1 – e2 – e3(σ)] = SASD[1.35 - 0.18 log10(σ + 9.7)]   (Equation 6) 

A cross-link is considered possible if the distance between the linking atoms is below a given cut-off 

distance, typically dependent on the spacer length of the cross-linker. This classification can be prone to both 

false-positives and -negatives. Although SASDs corrected with equation 3 better reflect the shortest possible 

distance, higher σ values will be inevitably connected with worse distance estimates. Indeed, the fewer 

sampling points on the sphere, the fewer sphere-sectors corresponding to favourable side chain 

conformations are likely to be sampled. To better visualize the effect of σ on cross-link classification, we 

calculated the classification error of measures collected with different σ values against those collected at the 

smallest σ (1 Å
2
) for SDA, BS2, BS3 and EGS cross-linkers. Without any correction, large classification 

errors are observed. In particular, larger errors arise with long spacer arms and low σ (Fig. S2F). Importantly, 

the application of the correction factor (Equation 6) substantially decreases all classification errors (Fig. 

S2G). While, in principle, one should choose the smallest possible value, reducing σ leads to increasing 

computational times (Fig. S2D). In the following tests, we selected σ = 4 Å
2
, connected to a ~2% 

classification error, and an error in SASD of 6.1%. Coupling this error connected to sphere point density 

with the SASD measurement error identified above (e1 + e2 = 5.7%), a total error of 11.8% has to be 

accounted for. We stress that this error quantifies the imprecision in distance measurement, and not the 

algorithm’s classification error. In this work, we accounted for our estimated distance measurement error by 

proportionally increasing the cross-linking distance acceptance cut-off. 

 



Testing collisions of SASD with solvent-exposed side chains 

The flexibility of side-chains (in addition to those involved in the cross-link directly) may be important, as 

they could impact on the shortest path by reorienting themselves to avoid a clash. Our approach, and that of 

others (Kahraman et al., 2011), is to account for this implicitly, by measuring SASDs using paths that avoid 

collisions only with the protein backbone and Cβ atoms. This assumes that the side-chains are essentially 

invisible to the cross-linker, returning a distance at least as short as if we modeled these side-chains 

explicitly. We therefore verified whether it will always be possible to rearrange side chains so that the cross-

linker’s path is unhindered. To do so, we measured {SASD}Nγ between lysine pairs on 80 proteins randomly 

extracted from the PiQSi database, representing the resulting shortest paths as trails of pseudo-atoms. We 

then counted how many “spectator” side-chains each trail would clash with. In order to determine how many 

of these clashes could be avoided by rearranging the side chain, we mined the PiQSi database to characterize 

the accessible rotameric space of each amino-acid type (i.e., as per Fig S1, but for all amino acids). For each 

side-chain involved in a clash, we were thereby able to identify an ensemble of alternative positions. We then 

tested whether at least one of these alternative positions would abolish the clash with the path. Our 

benchmark consisted of 3711 paths, of which 1541 clashed with at least one side chain. This indicates that 

only in 32.7% of the cases paths travel through areas occupied by protein mass. Within the subset of 

hindered paths, in 1346 cases side chains could be rearranged to avoid the clash, whereas in 297 the clash 

was inevitable (i.e. 5.2% of all paths are hindered by a side chain). This benchmark required us to test a total 

of 3171 “spectator” side chains (within the 1541 clashing paths), of which 2874 (89.7%) could be reoriented 

to accommodate the cross-linker. This is a stringent test, because it only considers the rearrangement of side-

chains, and does not account for minor and local rearrangements of the backbone that also occur, and would 

act to increase the number of alternative locations available to the clashing side-chain. 

 

Comparison of {SASD}Nζ distances against those obtained with alternative distance metrics 

A scatter plot of {SASD}Nζ, the most sophisticated and accurate measure, against SLDCα reveals two striking 

features (Fig. S2H, first column): a vertical limit at SLDCα ~4 Å, due to the shortest possible distance between 

Cαs in a protein structure, and a diagonal limit. The data points on the first limit correspond to a situation 

where two side chains point away from each other. In these cases, because an extended lysine side chain is 



~6.5 Å long, the distance between linkage ensembles is ~13 Å shorter than the corresponding SLDCα 

distance. Importantly, a large number of SLDCα measures yield shorter paths (above the 1:1 diagonal) than 

our method, arising from those straight-line paths penetrating the protein. Similar results are obtained when 

measuring SLDCβ (Fig. S2H, second column). Measuring SASDCβ instead of a straight line yields a 

completely different distribution (Fig. S2H, third column), whereby the vast majority of distances are longer. 

SASDNζ values (Fig. S2H, fourth column) are inevitably equal or longer than those obtained with {SASDNζ}. 

This is because the position of each linking atom, as identified in the provided protein structure, is included 

in the ensemble of alternative conformations considered by the latter measuring method. {SLD}Nζ
 
distances 

are instead bound to be always equal or shorter than {SASD}Nζ as, between the same ensembles of 

alternative atom arrangements, no distance can be shorter than a straight line. 

 

In order to quantify the relative performance of these different distance metrics, we calculated the Pearson 

cross-correlation coefficient of each alternative method against the result from {SASD}Nζ. The correlation 

coefficient can take values between -1 (anti-correlation) and 1 (correlation). Both SLDCα and SLDCβ, which 

employ the coarsest approximations and are widely used, correlate poorly (0.70 and 0.74, respectively, where 

a value of 1 represents perfect correlation). Interestingly, although SASDNζ measures curved paths, it also 

yields poor performance (0.73). This is because the increase in precision gained by measuring a SASD 

instead of an SLD is counterbalanced by a large uncertainty about Nζ location (i.e. the position of Nζ in the 

crystal structure correlates poorly with its best possible linking position). Much better performance is 

obtained using {SLD}Nζ (0.82), while the best correlation is obtained by the SASDCβ metric (0.86) that 

benefits from the slower but more accurate SASD measure. 

 

Measurement of execution times 

For each distance metric, we measured the execution times of DynamXL while analysing all proteins in our 

PiQSi database benchmark. All calculations were performed on a workstation equipped with Intel i7-3770 

3.40 GHz cores. Only lysine pairs at a distance <24 Å were assessed, and we expect longer execution times 

when measuring longer SASDs. For metrics accounting for side chain flexibility, i.e. {SLD}Nζ and 

{SASD}Nζ, σ = 4 Å
2
 was used (see Fig. S2D for a benchmark reporting on the effect of σ on execution 



times).  All SASD metrics require a preprocessing phase to identify accessible regions around the protein 

taking on average 27.66 s (depending of protein size and shape, see above). Average execution times for the 

proteins in the PiQSi database, excluding this preprocessing time but including the time required to identify 

side chains alternate conformations, are given in Table S3. 

 

DATA AND SOFTWARE AVAILABILITY 

DynamXL is available for download together with a user manual and example files at 

http://dynamXL.chem.ox.ac.uk. 

 

KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

DynamXL software and manual http://dynamXL.chem.ox.ac.uk DynamXL 
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